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Abstract— This paper presents a comprehensive scheduling
framework for residential demand response (DR) programs
considering both the day-ahead and real-time electricity markets.
In the first stage, residential customers determine the operating
status of their responsive devices such as heating, ventilation, and
air conditioning (HVAC) systems and electric water heaters
(EWHs), while the distribution system operator (DSO) computes
the amount of electricity to be purchased in the day-ahead
electricity market. In the second stage, the DSO purchases
insufficient (or sells surplus) electricity in the real-time electricity
market to maintain the supply-demand balance. Due to its
computational complexity and data privacy issues, the proposed
model cannot be directly solved in a centralized manner, especially
with a large number of uncertain scenarios. Therefore, this paper
proposes a combination of stochastic programming (SP) and the
alternating direction method of multipliers (ADMM) algorithm,
called SP-ADMM, to decompose the original model and then solve
each sub-problem in a distributed manner while considering
multiple uncertain scenarios. The simulation study is performed
on the IEEE 33-bus system including 121 residential houses. The
results demonstrate the effectiveness of the proposed approach for
large-scale residential DR applications under weather and
consumer uncertainties.

Index Terms—Demand response (DR), home energy
management system (HEMS), electric water heater (EWH),
HVAC, distribution system operator (DSQO), stochastic
programming based alternating direction method of multipliers
(SP-ADMM), uncertainty.

Abbreviations
EWH Electric water heater.
HEMS Home energy management system.
HVAC Heating, ventilation, and air conditioning.

Sets and Indices

d Index of iterations.

Ny/j, k Set/index of buses (aggregators).

Cr Set of child buses of bus k.

Ny/i Set/index of residential customers.

Ns/s Set/index of scenarios.

Nr/t Set/index of time.

Constants

alb Electricity cost coefficients.

cvater Specific heat capacity of water (J/(kg-°C)).
cle Thermal capacitance of house i (J/°C).
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Thermal capacitance of the EWH in house i
(J/7°C).

Hot water consumption of house 7 at time # in
scenario s (kg).

Real/reactive power rating of the HVAC in
house i (kW).

Real load of the non-responsive devices in
house i at time ¢ in scenario s (KW).

Maximum contracted load limit at the PCC
(kW).

PV generation of house i at time # in scenario s
(kW).

Real/reactive power rating of the EWH in house
i (kW).

Resistance/reactance of the distribution line
connecting bus j and bus £ (Q).

Thermal resistance of house i (°C/kW).
Thermal resistance of the EWH in house i
(°C/kW).

Minimum/maximum indoor temperature limit
of house i (°C).

Indoor temperature setpoint of house i (°C).
Outdoor temperature forecast at time ¢ in
scenario s (°C).

Minimum/maximum water temperature limit of
the EWH in house i (°C).

Hot water temperature setpoint of house i (°C).
Voltage magnitude at the PCC.

Weight factors ($/°C).

Primary/secondary tolerance value.

Length of the time interval.

Electricity purchasing/selling price in the real-
time market ($/kW).

Peak load violation rate ($/kW).

Penalty factor of the augmented Lagrangian
term.

Continuous Variables

Indoor temperature discomfort of customer i at
time ¢ in scenario s (°C).

Water temperature discomfort of customer i at
time ¢ in scenario s (°C).

Power flow of line j-k at time ¢ in scenario s.
Real/reactive load of house i at time ¢ in scenario
s (kW / kVar).

Real/reactive load of aggregator j at time ¢ in
scenario s (kW/kVar).

Real/reactive power flowing from node j to
node £ at time ¢ in scenario s (kW/kVar).



The amount of electricity purchased from the

da
Prs day-ahead market at time ¢ in scenario s (kW).
Nz Actual load at the PCC at time ¢ in scenario s
(kW).
The amount of electricity purchased from/sold
Pyl pl to the real-time market at time ¢ in scenario s
(kW).
The maximum amount of load that exceeds the
b contracted load limit in scenario s (kW).
R. Primal residual of ADMM at time ¢ in scenario
s.
s, Secondary residual of house i at time ¢ in
scenario s.
7 Indoor temperature of house i at time ¢ in
o scenario s (°C).
7 Water temperature of the EWH in house i at
o time ¢ in scenario s (°C).
Vo, Voltage magnitude of bus j at time ¢ in scenario
s.
2 Dual variable associated with the power balance

equation at time ¢ in scenario s.
Binary Variables

Operating status of the HVAC in house i at time

t.

B Operating status of the EWH in house i at time
t.

hvac
bi.1

I. INTRODUCTION

HE ever-increasing electric load and growing renewable

integration pose severe threats to the secure and economic
operations of power grids [1]. One solution to address this
challenge is implementing the demand response (DR) [2].
Existing DR programs are primarily designed for industrial and
commercial customers, who tend to have larger electric loads
that are more easily targetable [3]. However, residential loads
account for 38% of the total energy consumption in the United
States, indicating the significant potential in this sector [4].
Since residential loads are composed of numerous low-capacity
home appliances, it is imperative to have an effective algorithm
that can coordinate the operating schedules of residential
components and devices at scale to improve the DR impact and
performance [5].

In recent years, advances in communication technologies
have provided tremendous opportunities for grid operators to
send messages to (or receive messages from) residential
customers through secured two-way communication channels
[6]. With the support of home energy management systems
(HEMSs), distribution system operators (DSOs) can connect
with customers to realize system-wide control objectives, e.g.,
DR. Existing control structures for residential DR programs are
categorized into centralized and distributed [7]. In [8]-[9],
residential DR management problems are formulated as
centralized models, where the control actions are computed and
executed by the control center according to the measurements
from sub-systems. Centralized approaches are straightforward
and applicable to small-scale networks with customers sharing
common goals. However, in a centralized approach, end-users
may have to release their device operation information and

allow the utility to control their appliances. Moreover, as the
number of customers grows, the computational complexity will
increase significantly. In [10]-[11], distributed residential DR
models are proposed, where customers independently conduct
local optimizations to determine the optimal scheduling of
devices. The major part of the calculation is performed by local
HEMSs, distributing intelligence and reducing the centralized
computational requirements. Since each HEMS is independent,
calculations are all run in parallel, reducing the needed
computational time. Meanwhile, privacy can also be better
protected, as only minimal information is shared with the
electric utility company.

In addition to the scalability and privacy issues, residential
DR programs may also confront the challenges of handling
uncertain parameters, e.g., weather and consumer uncertainties.
The conventional approaches treat the uncertain parameters as
fixed values. However, as the forecasting technology is still
immature, extra spinning reserve capacity and supplemental
reserve have to be ensured, which increases the electricity cost.
To address this challenge, attention has been paid to
optimization methods that model uncertainty and fluctuation as
non-constant values [12]. In [13], a robust optimization model
is proposed to shave the system peak load and save residential
customers’ electricity bills while considering weather and
occupancy uncertainties. The results indicate that the
aggregator can still reduce the peak load even in the worst case
where none of the customers agree with the system-level
objectives. Generally, the inputs for robust optimization are the
bounds of the uncertain parameters. This allows robust
optimization to avoid the risks of constraint violations in
extreme conditions. In [14], a stochastic programming (SP)
model for HEMSs is presented, which aims to save customers’
electricity costs while considering the uncertainties of both the
availability of electric vehicles (EVs) and renewable generation.
The results demonstrate that residential customers can save up
to 31% of their electricity costs as compared to the deterministic
approach. Unlike robust optimization, SP assumes that the
uncertain parameters comply with certain probabilistic
distributions, such that it can be converted to an equivalent
deterministic problem. In [15], SP and robust optimization are
applied to solve a real-time price-based DR management
problem. The results suggest that both approaches can mitigate
the financial risk introduced by price uncertainty.

The literature includes additional works that also target
residential DR solutions using home appliances. In [16], an
asynchronous bottom-up scheme is presented to coordinate the
operations of distributed energy resources, including EVs,
thermostat-controlled loads, and energy storage systems. This
approach couples a device’s dynamic state to a stochastic
request rate for electricity services, and it perturbs the
responsive devices’ ON/OFF transition rates to create
flexibility for the virtual power plant operator. In [17]-[18], a
linear time-invariant thermal energy storage model, which is
equivalent to a virtual battery state-of-charge model, is
proposed to capture the dynamics of aggregated thermostat-
controlled loads. This approach significantly reduces the
computational burden, and it allows constraints that couple
system-level and house-level variables. However, a lookup
table that relates the thermal energy storage model to
measurement conditions has to be developed. Moreover, if a



new condition is encountered in the future, the parameters of
the thermal energy storage model must be re-identified. In [19],
a bi-level optimization model is used to flatten the system-level
load curve and minimize the cost of residential customers. The
problem is converted to an equivalent single-level problem and
then solved with an iterative distributed algorithm. However,
this approach does not consider the network losses and the
temperature dynamics for thermostat-controlled loads (e.g.,
heating, ventilation, and air conditioning (HVAC) systems and
electric water heaters (EWHs)). In [20], the mathematical
models of major home appliances (e.g., fridge, freezer,
dishwasher) are formulated. A mixed-integer linear
programming model is developed to minimize the energy
consumption, energy cost, emissions, and peak load of the
residential energy hubs in smart grids. The deficiencies of this
work are that the proposed approach is not scalable, and the
impact of uncertain parameters (e.g., weather and consumer
behaviors) on system performance is not considered. In [21], a
two-stage optimization model is presented to optimize the
customers’ energy consumption patterns and improve grid
operational efficiency. Again, the uncertainties introduced by
renewable and customer activities are ignored. In [22], a
scalable and distributed algorithm is developed for managing
the operating schedules of home appliances. However, the
weather and customers’ uncertainties are not considered.

In summary, even though existing research has already
explored residential DR problems, there is still a lack of a
comprehensive scheduling framework considering the weather
and consumer uncertainties while coordinating the operating
schedules of numerous home devices at scale. To bridge this
gap, a two-stage SP model is formulated to maximize
community social welfare. Then it is decomposed into DSO-
level and house-level sub-problems with the alternating
direction method of multipliers (ADMM) algorithm. The
proposed approach is thus called the SP-ADMM approach.
Instead of formulating an aggregated thermal energy storage
model as suggested in [17]-[ 18], the proposed approach handles
the scalability problem from another perspective by
decomposing the original model into sub-problems and solving
it in a distributed manner. By doing so, the requirement for
building the lookup table is eliminated. Further, if compared
with [20]-[22], the proposed model takes the weather and
consumers’ uncertain behaviors into consideration. The
performance improvement is verified by the case study in the
later sections of this paper. To conclude, the main contributions
of this paper are as follows:

1) A comprehensive scheduling framework that considers
both the day-ahead and real-time electricity markets is proposed
to mitigate the impacts of weather and consumers’ behavior
uncertainties on residential DR performance;

2) A limited information exchange mechanism is developed
among the DSO, load aggregators (LAs), and end-consumers to
better protect residential customers’ privacy;

3) A new algorithm called the SP-ADMM is proposed, which
combines SP and the ADMM algorithm. The proposed
approach decomposes the original model into sub-problems to
ensure its feasibility for large-scale applications while
considering a large number of uncertain scenarios; and

4) A comparison study is conducted to evaluate the
performance of the conventional approach, the deterministic

approach, and the proposed SP-ADMM approach. The outcome
can serve as benchmarking results for future works in
residential DR.

The rest of this paper is structured as follows: Section II
presents the architecture of the residential distribution networks,
Section III formulates the proposed comprehensive framework
for residential DR, Section IV discusses the solution algorithm,
Section V conducts the case studies, and Section VI concludes
the paper.

Notation conventions: superscript " refers to HVAC,
superscript " refers to EWH, superscript ¢ refers to residential
customers, superscript %€ refers to LAs, and superscript /"¢
refers to distribution lines.

II. RESIDENTIAL DISTRIBUTION NETWORK ARCHITECTURE

The proposed residential distribution network has a
hierarchical architecture, including the DSO, LAs, and
residential customers, which are the top, middle, and bottom
levels, respectively. The reason for introducing LAs is that the
flexible load resource of a single residential customer is far less
than the DSO’s minimum capacity threshold. LAs can collect
the small load resources for the DSO and help residential
customers to participate in the electricity market [23]-[24].
Moreover, LAs reduce the DSO communication requirements
since communication needs are now decreased to a single entity
instead of many assets.

In this work, it is assumed that LAs are profit-neutral entities.
The revenue of LAs comes from those customers who
participate in the DR program. Each customer is required to pay
a fixed amount of membership fee to its corresponding
aggregator to access the electricity market. Moreover, any
excess payment will be refunded, and deficiency will be repaid
at the end of each month, which is similar to the business model
of independent system operators (ISO). However, since the
operation cost of aggregators is out of the scope of this work,
the details can be explored in future works.

Also, residential customers are assumed to be clustered by
their geographical locations and interconnected to the
distribution system through LAs. In real-world applications,
LAs may have customers subscribed from different locations of
the distribution network. However, the cost of implementing a
DR aggregator is associated with the distances from the central
aggregation point to individual flexible resources. So, although
each LA may have different customers subscribed, we can
always model and cluster DR loads based on locations (nodes).
This practice of clustering DR loads based on locations is
aligned with [25]-[26]. The authors of [26] solve the distributed
flexible resources aggregation problem by minimizing the sum
of distances from the central aggregation point to individual
flexible resources. Therefore, it is usually more economical for
aggregators to cluster residential customers based on their
geographical locations. From the power flow viewpoint, LAs
are viewed as buses and interconnected to form a distribution
network.

At the house level, HEMSs are responsible for receiving data
from the LAs and local weather service centers to perform
optimization and decision-making on behalf of customers. The
responsive devices considered are HVAC systems and EWHs.



III.MATHEMATICAL FORMULATION

Four types of uncertain parameters are studied in this paper,
including 1) outdoor temperature, 2) solar generation, 3) non-
responsive load, and 4) hot water consumption. To reduce the
impact of uncertain parameters, a two-stage scheduling model
has been formulated. In the first stage, residential customers
determine the operating status of responsive devices, while the
DSO computes the amount of electricity needed to be purchased
in the day-ahead market. In the second stage, the DSO
purchases insufficient (or sells surplus) electricity in the real-
time market to maintain the supply-demand balance. A graph

illustrating this process is provided in Fig. 1.
scenario 1

scenario 2
scenario 3
scenario .
realization scenario 4
o DA electricity purchase scenario s
| *HVAC and EWH scheduling | eRT clectricity purchase/sell | o
[«—— day-ahead ——>le—— real-time —»] timeline

Fig. 1. The proposed two-stage residential management process.

A. Objective function

The objective of the residential DR program is to maximize
the community social welfare, as described by:

min /(x)+E[ O(x.¢) | (1)

f(x)= Z[a~(p,"”)z+b<pf”} (2)
Q(x,f) = Qe _p:io + Z (/Irtp .p;:tsp Qs ptrt;)
teNy (3)
+ 3 Y (a-dise + p-dis)) )
teNyp ieNy

where f(x) represents the first-stage objective, Q(x, &) represents
the second-stage objective, (2) calculates the DSO’s electricity
purchasing cost in the day-ahead market represented by a
quadratic function [27], (3) calculates the sum of peak load
violation charge, electricity trading cost in the real-time market,
and customers’ discomfort cost.

Note that in (3), the peak load violation charge is defined as
the product of a peak load violation rate and the maximum
amount of load that exceeds the contracted load limit at the
point of common coupling (PCC) [28]. The load violation
amount can be calculated from (4) and (5).

prE=pl+pt - pk 4
7o) 5)

In practical application, the discomfort weight factors may
vary from case to case, and they should be determined by the
DR participants. If customers prefer comfort over saving
money, then larger values should be assigned, whereas if
customers prefer to save more money, then smaller values
should be chosen. In other words, this paper is a methodology
paper, and we provide a technical approach to scheduling DR
while the decision makers (i.e., DR participants) may select
weight factors based on their own preferences.

vio _ pee
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B. HVAC model

The input parameter for the HVAC model is the forecasted
outdoor temperature in each scenario. The details of the HVAC
model are available in the Appendix. The discrete-time form of
the HVAC model is represented by:

T = T LT = T ) RIS =B - B )-Ar/ €l (6)
in in in
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. hvac __|mrin ins

Cilsi,t,s _‘YZLS _]7 ‘ (8)

where (6) calculates the indoor temperature of house i at each
time in different scenarios, (7) is the minimum/maximum
indoor temperature limit constraint for each house, and (8)
calculates customers’ discomfort due to indoor temperature
deviating from the setpoint in different scenarios.

C. EWH model

The input parameter for the EWH model is the indoor
temperature and the amount of hot water consumption in each
scenario. The discrete-time form of the EWH model is
represented by:

wh __ owh in wh wh
Z;‘t,.v - I;,t—l,.v + [(T;,t,s - T;,t—hs) / Ri (9)
water water wh in wh wh wh
—C s (Z,r—l,x - T;,t,x) + bi,r : B ] At/ Cz
wh wh —wh
T <7 <T, (10)
O (1)

where (9) calculates the water temperature of house i at each
time in different scenarios, (10) is the minimum/maximum
water temperature limit constraint for each house, and (11)
calculates customers’ discomfort due to water temperature
deviating from the setpoint in different scenarios.

D. Load model

In this work, the power output of the solar photovoltaic (PV)
is viewed as a negative load. Therefore, the load of each house
is equal to the sum of the responsive load (including HVAC and
EWH) and the non-responsive load minus the solar generation.
The load model is given by:

(12)

P =S+ !
i =a" S g S v g (13)

where (12) calculates the real power load of each house in

different scenarios, and (13) calculates the reactive power load

of each house in different scenarios.

E.  Network model

The DistFlow equations in [29] are applied to solve the
network flow problem in the distribution network. The
mathematical formulations for a distribution network flow are
given as follows:

h o wh nr_pv
Sh+pl Pl

P =2 P (14)
icj
4 =24 (15)
icj
li li li li z
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agg
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line — line line line
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where (14) calculates the net real load at aggregator j in
different scenarios, (15) calculates the reactive load at
aggregator j in different scenarios, (16) and (17) respectively
represent the net real and reactive branch power flow of line j-
k at time ¢ in different scenarios, (18) calculates the voltage
magnitude of each bus £ at each time in different scenarios,
(19)is the branch flow constraint, and (20) is the power balance
constraint at the PCC.

Note that if (V;,,)?. (V;.,)* and (Iline j-k.,s)* are viewed as
variables, constraints (16)-(18) are linear, and (19) becomes a
second-order cone constraint after relaxing the “equal” sign to
the “less than or equal” sign.

IV.SOLUTION ALGORITHM

The above model involves a large number of variables if a
centralized optimization algorithm is applied. For example, in
the next section of case studies, the IEEE 33-bus system
including 121 residential houses will be used as the test system,
where the optimization problem has 887,040 continuous
variables, 23,232 binary variables, 654,720 equality constraints,
and 1,059,168 inequality constraints.

Due to the massive problem size, it would be difficult to
directly solve this model with available solvers. Therefore, the
ADMM is introduced to decompose the original problem into a
DSO-level problem and a set of house-level sub-problems to
reduce the computational complexity. Meanwhile, there are
multiple uncertain scenarios in the residential DR behavior, so
a mathematical model considering such uncertainties must be
addressed as well. Therefore, we propose a solution algorithm
called the SP-ADMM, which combines SP and the ADMM
algorithm to solve the proposed model in Section III. The
proposed SP-ADMM algorithm for solving comprehensive DR
scheduling is illustrated next.

A. Decomposing the centralized model with the ADMM

The ADMM is a robust iteration-based algorithm that solves
arbitrary-scale optimization problems and supports distributed
computation. More details on the ADMM algorithm are
available in [30]. In this work, the DSO and customers have
separable objectives. The coupling constraint is the supply-
demand balance constraint in (20), which contains variables
from both the utility-level and house-level. Therefore, the
proposed centralized model can be decomposed into a utility-
level optimization problem and a set of house-level
optimization problems for efficient computation.

The primary residual and the secondary residual in the
ADMM algorithm are calculated by (21) and (22), respectively:

L S 2D

S =p (P =pi ) 22)

The dual variable associated with the coupling constraint is
Iculated by:
A =29 4 p R (23)

Note that the iteration number in the ADMM is related to the
value of penalty factor p. Generally, a smaller p yields better
optimization results, but it comes with the risk of convergence
issues. On the other hand, a larger p may give a sub-optimal
solution, but it makes the algorithm easier to converge.
Therefore, the value of p may differ from case to case in
practical applications.
1) House-level sub-problem

The customers’ objectives are to minimize indoor and hot
water discomfort costs. The decision variable includes the
operating schedules of HVACs and EWHs for the next day.
Therefore, the deterministic equivalent of the house-level
optimization problem can be represented by:

min Y > (a-dis) + p-dis!" )

teN, seNg
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where the first two terms minimize the customers’ discomfort
cost, and the remaining terms present the penalty for violating
the power balance constraints.

The constraints for the house-level optimization problem are
(6)-(13), and (22).
2) LA-level calculation

The aggregator-level calculation collects local real and
reactive load information and reports it to the DSO, as given by
(14)-(15).
3) DSO-level sub-problem

The utility’s objectives are to minimize the contracted load
violation charge plus the electricity purchasing cost in both the
day-ahead and real-time electricity markets. The decision
variables are the amount of electricity purchased from and sold
to the electricity markets. The deterministic equivalent of the
DSO-level objective function becomes:

min 32 [a- (s 40" [+ o2 pr

eN; seNg

(25
I IR VB A 1 YD W EICRs e
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where the first two terms represent the electricity purchasing
cost in the day-ahead market, the third term is the peak load
violation charge, the fourth and fifth terms are the cost/revenue
for trading electricity in the real-time electricity market, and the
rest represents the penalty terms for violating the power balance
constraints.

The constraints for the DSO level optimization problem are
4)-(5), (16)-(19), (21), and (23).
B. Information exchange between agents

The messages sent from the DSO through LAs to all the
customers are arrays that contain the primary residuals in the
ADMM algorithm and the dual variables associated with the
power balance equation in each scenario (i.e., R(d) s and 4 (d)
s). The messages sent from customers to their corresponding
LAs are arrays that contain the total real and reactive load usage
data in each scenario (i.e., pcus i,t,s and gcus i,t,s). Finally, the
messages sent from LAs to the DSO are the total real and
reactive power consumption within their service region in each

R




scenario (i.e., pagg its and qagg its). As such, the
information exchange between the aggregator/DSO and the
load is minimal to best maintain the data security of the
consumers.

C. Flowchart of the proposed algorithm

The flowchart of using the ADMM algorithm to solve the
two-stage residential DR management problem is given in Fig.
2. During the iteration process, the house-level HEMS receives
the arrays of the primal residual in the ADMM and the dual
variables associated with the power balance equations in each
scenario. Then each HEMS locally updates the real/reactive
load consumption data in each scenario accordingly. The
aggregator is responsible for calculating the total load within its
service region and passing the information to the DSO. Finally,
the DSO receives the real/reactive load information from each
aggregator and updates the primal residuals and dual variables
associated with the coupling constraints in each scenario. The
iteration will stop when both ||[R(d) s||, and ||S(d) i||, satisfy the
tolerance criteria.

HEMS pulls weather forecast data

d=10

HEMS determines the operation
schedule in each scenario

HEMS sends the total load
information to its aggregator
¥

Aggregator sends aggregated load
information to DSO
+
DSO solves the sub-problem and
broadcast 4, R, to aggregators.
+
Aggregators pass through the 4,
and R, information to customers

IR l:>&* or [|1” [o>¢*

Fig. 2. Flowchart of the proposed algorithm.

V. CASE STUDY

The proposed algorithm is tested on the IEEE 33-bus system
including 121 residential houses. As mentioned in Section IV,
the optimization model has 887,040 continuous variables,
23,232 binary variables, 654,720 equality constraints, and
1,059,168 inequality constraints. This level of complexity, as
well as privacy protection and the uncertain scenarios, are the
motivation for proposing the SP-ADMM approach. The
simulation is conducted through a hybrid platform: MATLAB
and GAMS. The hardware environment is a laptop with
1.90GHz CPU and 16.00GB RAM. The utility-level sub-
problem is solved by MINOS, and the house-level sub-
problems are solved by SCIP.

A. Parameter settings

The time resolution of the case study is 15 minutes, and the
total time horizon is 24 hours. The total number of houses is
121. The number of residential houses allocated to different
LAs are based on the original load at each bus in the IEEE 33-
bus system [31].

19 20 21 22

26 27 28 29 30 31 32 33

AN
PR

L EL ]
FRFFFRERRRRR R

Fig. 3. Configuration of the IEEE 33-bus test system.

There are 31 houses that have HVAC systems, EWHs, and
PVs installed, while the other 90 houses only have HVAC
systems and EWHs installed. The discomfort weight factor for
indoor temperature is $0.05/°C, and the discomfort weight
factor for water temperature is $0.01/°C. The peak load
violation rate is $10/kW.

The outdoor temperature and standard solar output forecast
information data for generating the test scenarios are plotted in
Fig. 4, and the non-responsive load data for generating the test
scenarios is shown in Fig. 5. Moreover, Monte Carlo sampling
is employed to provide variation and uncertainty in different
scenarios. The ranges of the uncertain parameters are given in
TABLE I. Consequently, 100 samples are generated according
to the probability distribution function of the uncertain
parasmeters
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Fig. 4. Outdoor temperature and solar generation data for generating samples.

o
=)

T T T T T T T
| —©—non-responsive load

o

non-responsive load (kW)

time (15 minutes)
Fig. 5. Non-responsive load data for generating samples.
TABLE I. RANGE OF UNCERTAIN PARAMETERS.

Parameter Lower range Upper range
Outdoor temperature -20% +20%
Solar output -20% +20%
Non-responsive load -20% +20%
Water consumption -20% +20%

Since it is computationally intensive to include all the
samples into our considerations, a scenario reduction technique
is conducted to reduce the computational burden [32]. The crux
of this technique is to exploit a certain probability distance of
the original and the reduced probability measure, and combine
those scenarios that are close or have low probabilities [33].
Details on scenario reduction are available in [34]-[35]. In this
work, the min-max normalization is first applied to preprocess
different uncertain parameters [36]. Then the SCENRED tool
in GAMS is employed as a black box to reduce the number of
scenarios. The inputs to the SCENRED tool are the original



uncertain scenarios and their associated probabilities. The
outputs from the SCENRED tool are the reduced uncertain
scenarios and their new probabilities. Finally, the initial 100
samples are decreased to 10 scenarios considering the tradeoff
between accuracy and computational time. The resulting
probabilities of the reduced scenarios are given in TABLE II.
Note, according to [37]-[38], there is no guarantee that

increasing the number of scenarios will yield better results,
since after passing a certain “sweet point”, selecting more
scenarios does not necessarily bring performance improvement
on modeling the scenario distribution (i.e., performance
improvement is saturated). The impact of scenario reduction on
system performance will be further discussed in Section V.C.1
of this paper.

TABLE II. PROBABILITY OF EACH SCENARIO.

Scenario 1 2 3 4 5 6 7 8 9 10

Probability 0.08 0.11 0.04 0.16 0.11 0.07 0.13 0.16 0.07 0.07
TABLE III. PEAK LOAD IN DIFFERENT CASES.

Scenarios 1 2 3 4 5 6 7 8 9 10 avg.
Casel (kW) 407.18 389.67 430.41 431.84 386.58 419.25 440.00 418.93 399.05 445.50 416.97
Case2 (kW) 405.17 421.09 394.31 387.78 413.54 407.80 376.09 407.27 413.44 396.79 401.36
Case3 (kW) 372.21 377.47 388.76 379.12 382.96 354.19 387.08 365.33 371.44 385.28 376.17

TABLE IV. PEAK LOAD VIOLATION IN DIFFERENT CASES.

Scenarios 1 2 3 4 5 6 7 8 9 10 avg.
Casel (kW) 17.18 0 40.41 41.84 0 29.25 50.00 28.93 9.05 55.50 27.38
Case2 (kW) 15.17 31.09 4.31 0 23.54 17.80 0 17.27 23.44 6.79 13.52
Case3 (kW) 0 0 0 0 0 0 0 0 0 0 0

TABLE V. AVERAGE DISCOMFORT COST IN DIFFERENT CASES.

Scenarios 1 2 3 4 5 6 7 8 9 10 avg.

Casel (§) 5.73 5.66 5.72 5.66 5.71 5.63 5.61 5.61 5.68 5.64 5.66

Case2 ($) 3.90 3.78 3.87 3.69 3.80 3.72 3.59 3.57 3.66 3.74 3.71

Case3 (§) 3.72 3.63 3.70 3.53 3.65 3.57 3.46 3.44 3.51 3.57 3.56

TABLE VI. AVERAGE ELECTRICITY COST IN DIFFERENT CASES.

Scenarios 1 2 3 4 5 6 7 8 9 10 avg.

Casel (%) 5.93 4.50 7.84 8.01 4.56 6.85 8.64 6.86 5.27 9.16 6.78

Case2 ($) 5.67 6.99 4.77 4.23 6.37 5.92 4.45 5.82 6.41 4.98 5.51

Case3 ($) 4.29 4.29 4.29 4.29 433 4.25 4.33 4.32 438 4.40 4.32

Three test cases are designed to compare the performance of
different DR management approaches. In Case 1, the
responsive devices do not change their operating status unless
the indoor/water temperature falls out of the pre-specified
boundaries (i.e., conventional basic rule-based thermostat
control). In Case 2, the DSO treats uncertain parameters as fixed
values and applies the deterministic ADMM to coordinate the
operating schedule of responsive devices. Finally, Case 3
implements the SP-ADMM to manage the operating schedules
of residential components.

B. Simulation results

TABLE III compares the resulting load profiles in different
cases. In Case 1, the peak load of the DSO is 445.50 kW and
appears in Scenario 10 after the scenario reduction. The
weighted average peak load of the DSO for all the scenarios is
416.97 kW. Therefore, both the peak and average loads exceed
the 390-kW contracted load limit. In Case 2, the peak load of
the DSO is 421.09 kW and appears in Scenario 2 after the
scenario reduction. The weighted average peak load of the DSO
for all the scenarios is 401.36 kW. In Case 3, the peak load of
the DSO is further reduced to 388.76 kW, and it appears in
Scenario 3 after the scenario reduction. The weighted average
peak load of the DSO for all the scenarios is 376.17 kW.

TABLE 1V provides the peak load violation in different
cases. It is observed that the highest peak load violation appears
in Case 1, which is 27.38 kW. By applying the deterministic
ADMM approach, the peak load violation is decreased to 13.52
kW. The proposed SP-ADMM algorithm can further reduce the
peak load charge to 0 kW. From Fig. 6 and the tables, it can be
concluded that the SP-ADMM approach can significantly
reduce the peak load and peak demand violation charge as
compared to the conventional and deterministic ADMM
controls. Under the SP-ADMM control mode, the DSO can

coordinate the operating schedules of responsive devices
through pre-cooling/pre-heating and avoid the situation where
responsive devices are switched on at the same time, leading to
performance improvement. The impacts of uncertainties are
also considered, which further contributes to improved
performance.

TABLE V and TABLE VI provide the average discomfort
cost and electricity cost of each house in different scenarios. It
is observed that the customers in Case 1 are expected to have
more discomfort and pay higher costs than the customers in the
other two cases. The sum of discomfort and electricity cost in
Case 1 is $12.43. In Case 2, either the discomfort or electricity
cost is lower than that in Case 1. The total cost is reduced to
$9.22, which is only about 74.18% of the cost in Case 1. In Case
3, the sum of the discomfort and electricity cost is $7.87, which
is 63.31% of the cost in Case 1. Therefore, Case 3 gives the best

performance.
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Fig. 6. Load profiles in different cases Fig. 8. Water temperature of house 1 in different cases.
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; ‘ ; ; Fig. 7 shows the impact of uncertainties on indoor

' j ' temperature. The minimum and maximum indoor temperature
limits for house 1 are 20.50°C and 22.50°C, respectively. In
Case 1, the indoor temperature range of house 1 in all the
scenarios is from 19.91°C to 22.80°C. In Case 2, the indoor
temperature range of house 1 in all the scenarios is from 20.51°C
to 22.69°C. In Case 3, the indoor temperature range of house 1

temperature/(°C)

TR (s in all the scenarios is from 20.51°C to 22.47°C. From Fig. 7, it
(a) Case 1 is observed that the indoor temperature deviation in Case 1 is
% ‘ ‘ ‘ much larger than that in the other two cases. Furthermore, due

to the outdoor temperature uncertainty, the indoor temperature
in Case 2 may violate the temperature constraints. In contrast,
the indoor temperature in Case 3 is always within the pre-
defined limits.
Fig. 8 shows the water temperature of house 1 in different
T T e Tt cases. The minimum and maximum water. temperature limits
time/(15minutes) for house 1 are 45.50°C to 55.50°C, respectively. In Case 1, the
(b) Case 2 water temperature range of house 1 in all the scenarios is from

44.30°C to 58.90°C. In Case 2, the water temperature range of

N
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temperature/(°C)

9 house 1 in all the scenarios is from 45.71°C to 55.28°C. In Case
?55 3, the water temperature range of house 1 in all the scenarios is
g from 45.66°C to 55.27°C. Therefore, the water temperature in
g Case 2 and Case 3 satisfy the pre-defined limits.
Sl | C. Discussions
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tggeg;::;“”tes) This sub-section studies the impact of scenario reduction on

optimization results. First, three test cases are created, with each
case having a different number of scenarios. Then the optimal
HVAC and EWH operating schedules for these cases are solved
and substituted back to the original 100 samples to evaluate the
system performance. The results are given in TABLE VII. The
table shows that the average peak load in all three cases falls
below the 390-kW contracted limit, and the average load
» violations in the three cases are 5.09 kW, 5.18 kW, and 5.16
0 o 2030 40 50 607080 90 100 kW, respectively. Moreover, when the number of scenarios is

Fig. 7. Indoor temperature of house 1 in different cases.
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but are also expected to have more discomfort than other cases.
From the results, it is concluded that the difference among the
results in the three cases is not significant, and therefore setting



the number of scenarios to 10 does not much affect the system

performance.
TABLE VII. IMPACT OF SCENARIO REDUCTION ON RESULTS.
No. of scenarios 10 15 20
Avg. peak load (kW) | 388.05 380.93  384.63
Avg. load violation (kW) 3.22 0.36 1.08
Avg. discomfort cost ($) 4.45 4.17 421
Avg. electricity cost ($) 5.09 5.18 5.16

2) Energy imbalance between day-ahead purchase and actual
load in different scenarios

TABLE VIII shows the energy imbalance between the day-
ahead purchase and actual load in different scenarios due to the
weather and customer behavior uncertainties. From the table, it
is observed that the weighted average daily energy surplus is
96.03 kWh, and the weighted average daily energy deficiency
is 148.53 kWh. Therefore, only 4.78% of the electricity is
cleared in the real-time market, and the effectiveness of the

proposed method is justified.
TABLE VIII. ENERGY IMBALANCE BETWEEN DAY-AHEAD PURCHASE AND

ACTUAL LOAD.
Scenario 1 2 3 4 5 6
Surplus (kWh) 76.22 | 9295 | 103.09 | 109.72 | 92.95 | 103.67
Deficiency (kWh)| 146.37 | 145.97 | 133.65| 130.20 [ 135.96 | 133.45
Scenario 7 8 9 10 avg.
Surplus (kWh) 93.72 | 103.17 | 100.98 | 86.38 96.03
Deficiency (kWh)| 150.43 | 159.44 | 180.54 | 179.77 148.53

3) Worst-case scenario

TABLE IX presents the worst-case scenarios under the
conventional control (i.e. basic rule-based thermostat control),
deterministic ADMM control, and SP-ADMM control,
respectively. First, the optimal operating schedules in the three
different approaches are solved and then substituted back to the
original 100 samples to identify the worst-case scenario. In this
work, the worst-case scenario is defined as the scenario with the
largest objective function value. As shown in the table, the

Scenario number 38th 38th 38th
Avg. electricity cost ($) 8.34 5.92 5.64
Avg. discomfort cost ($) 5.69 3.84 3.68

Load violation (kW) 45.36 17.95 16.57

4) Switching frequency of the responsive devices

Another observation from the case study is that the switching
frequency of the responsive devices in the conventional control
mode is less than that in the SP~ADMM control mode (e.g., 11
times/day versus 35 times/day in house 1). The reason is that
under the conventional control mode, the responsive devices are
not allowed to change their operating status until the
temperature falls out of the set bounds. However, this limit does
not hold in the SP-ADMM control mode. Since frequently
switching on/off the devices may reduce the lifespan of HVAC
systems and EWHs, the time interval is set to 15 minutes in this
work, which is sufficiently long to avoid the short-cycling
problem [39].
5) Computational time

The computational time of the proposed SP-ADMM
approach is given in TABLE XI. The proposed approach takes
eleven iterations to converge. Since the house-level
optimization is run in parallel, the computational time of each
iteration is determined by the house that has the largest
computational time. Also, the house-level model is a mixed-
integer quadratic programming problem, and the first iteration
has the longest computational time (for initializing the problem).
For the utility-level, it only takes around 1.5 seconds to finish
the calculation in each iteration. The total computational time
for solving the residential DR problem with the SP-ADMM
approach is 6 minutes and 32 seconds. As the communication
delay among different agents is not considered in this paper, the
time consumption in practical applications should be slightly
longer than the times in TABLE XI. From the table, it is

worst-case scenarios are different under the three control modes, concluded that the proposed algorithm satisfies the
and the SP-ADMM approach has the best performance in all ~ computational time requirements for residential DR
categories since it has the least electricity cost, discomfort cost, ~ applications.
and load violation. TABLE XI. COMPUTATIONAL TIME OF THE PROPOSED ALGORITHM.
Iteration 1 2 3 4 5 6
TABLE IX. WORST CASE SCENARIO UNDER DIFFERENT CONTROL MODES. DSO (Sec) 1.39 1.16 1.23 0.99 1.50 1.38
Conventional  Deterministic  SP-ADMM House (sec)| 30591 | 11.90 443 24.09 4.23 11.82
Worst scenario number 48th 21st 38th Tteration 7 8 9 10 11
Avg. electricity cost () 9.52 7.61 5.64 DSO (sec) | 1.45 1.43 1.47 1.37 1.40
Avg. discomfort cost ($) 5.66 3.83 3.68 House (sec)| 3.25 330 | 317 | 2491 2.69
Load violation (kW) 61.98 38.39 16.57

In addition, TABLE X compares average costs and load
violations of the different approaches in the worst-case scenario
for the SP-ADMM approach (i.e., scenario no. 38). Still, the SP-
ADMM approach has the best performance of the three.
However, it is observed from the table that the peak load in the
SP-ADMM approach exceeds the desired maximum load limit
in the worst-case scenario. This is reasonable because the SP-
ADMM approach does not intend to guarantee the performance
for the worst case, and the load violation is a soft constraint and
is added to the objective function as a penalty term (i.e.,
occasional small violations can be tolerated). If the load
violation is a hard constraint indeed, other models like robust
optimization or hard constraints should be applied. This may be
an area of research for future works.

TABLE X. COMPARISON OF DIFFERENT APPROACHES IN THE WORST-CASE
SCENARIO FOR SP-ADMM.
| Conventional  Deterministic

SP-ADMM

VI.CONCLUSIONS

This paper presents a comprehensive scheduling framework
for scalable residential DR programs considering day-ahead
and real-time electricity market operations. Due to the
computational complexity and privacy concerns, the model is
not suitable to be solved by the DSO as a centralized
optimization, especially when multiple uncertain scenarios
must be considered in the DR programs. Therefore, this paper
proposes a new algorithm combining stochastic programing and
the ADMM to form the SP-ADMM approach, which can
decompose the original centralized DR scheduling model to a
utility-level problem and house-level sub-problems to distribute
the computational complexity and to incorporate multiple
uncertain scenarios.

The case study demonstrates that the proposed approach can
reduce customers’ electricity bills, discomfort, and the peak
load at the utility level. Also, since the optimization model is



solved in a distributed manner, increasing the number of houses
will not affect the number of variables in each sub-problem.
Hence, it will not significantly impact the computing
performance in large scale applications. The information
exchange among the utility, LAs, and consumers is limited to
the real and reactive power consumption and the primary
residuals and dual variables in each scenario, which protects the
customers’ privacy. Finally, the results show that the proposed
SP-ADMM model can improve residential DR performance
and reduce the chance of constraint violations as compared to
the conventional and deterministic ADMM approaches.

In this work, the voltage magnitudes are always within the
typically allowable range of [0.95, 1.05]. Therefore, the voltage
magnitude constraints are not included in the problem
formulation. However, distribution networks may suffer from
low-voltage problems at the end of feeders in practical
applications, especially when the system is heavily loaded, or
the uncertainty is large. If the DSO has high requirements for
maintaining the voltage levels, more conservative demand
management approaches should be applied. We would like to
address this problem in our future works.

APPENDIX: MODELING OF THERMOSTAT-CONTROLLED LOADS

A simplified version of the resistance-capacitance (RC)
thermal model is applied to capture the temperature dynamics
of thermostat-controlled loads in this work. The RC model is
constituted with an electrical analog pattern with resistance (R)
and capacitance (C), which are obtained from historical data by
using linear regressions. It has a “visible” model structure and
therefore can be used for optimal controls of responsive
devices.

For HVAC systems, the input parameters are the day-ahead
forecasted outdoor temperature in different scenarios. The
HVAC model is represented by (26), and its discrete-time
version is represented by (6). Similarly, the discrete-time
version of the EWH model is described in (9).

- C?ouseddLE% — (Tttyut _ Tﬁ B 1)/Rﬁlouse _ bmﬂac .
pioee (26)

The parameter settings of the HVAC system are given in
TABLE XII, and the power factor of the HVAC is set to 0.81.
The parameter settings of the EWH are given in TABLE XIII,
and the power factor of the EWH is set to 1.

TABLE XII. HVAC PARAMETER SETTINGS.

Chou o Rhous o
S uno,espaee | TP Ur6.4,9.613°C
Pfj“ 3.5kW Tinsi | U[21,23]°C
Tini Tins i-1°C Tin i Tins i+1°C
TABLE XIII. EWH PARAMETER SETTINGS.
Cvl.“h U[0.1, 0.15] J/°C va.”h U[48.0, 72.0] J/°C
P Vl.”h 2.5kW TS Wl.h U[55.0, 57.5] °C
Twhi Twhs i-5°C hT?} Twhs i+5°C
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