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Abstract— This paper presents a comprehensive scheduling 
framework for residential demand response (DR) programs 
considering both the day-ahead and real-time electricity markets. 
In the first stage, residential customers determine the operating 
status of their responsive devices such as heating, ventilation, and 
air conditioning (HVAC) systems and electric water heaters 
(EWHs), while the distribution system operator (DSO) computes 
the amount of electricity to be purchased in the day-ahead 
electricity market. In the second stage, the DSO purchases 
insufficient (or sells surplus) electricity in the real-time electricity 
market to maintain the supply-demand balance. Due to its 
computational complexity and data privacy issues, the proposed 
model cannot be directly solved in a centralized manner, especially 
with a large number of uncertain scenarios. Therefore, this paper 
proposes a combination of stochastic programming (SP) and the 
alternating direction method of multipliers (ADMM) algorithm, 
called SP-ADMM, to decompose the original model and then solve 
each sub-problem in a distributed manner while considering 
multiple uncertain scenarios. The simulation study is performed 
on the IEEE 33-bus system including 121 residential houses. The 
results demonstrate the effectiveness of the proposed approach for 
large-scale residential DR applications under weather and 
consumer uncertainties.

Index Terms—Demand response (DR), home energy 
management system (HEMS), electric water heater (EWH), 
HVAC, distribution system operator (DSO), stochastic 
programming based alternating direction method of multipliers 
(SP-ADMM), uncertainty.

Abbreviations
EWH Electric water heater.
HEMS Home energy management system.
HVAC Heating, ventilation, and air conditioning. 

Sets and Indices
d Index of iterations.
NM / j, k Set/index of buses (aggregators).
Ck Set of child buses of bus k.
NN / i Set/index of residential customers.
Ns / s Set/index of scenarios.
NT / t Set/index of time.

Constants
a / b Electricity cost coefficients.
cwater Specific heat capacity of water (J/(kg·℃)).

Thermal capacitance of house i (J/℃).
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Thermal capacitance of the EWH in house i 
(J/℃).
Hot water consumption of house i at time t in 
scenario s (kg).
Real/reactive power rating of the HVAC in 
house i (kW).
Real load of the non-responsive devices in 
house i at time t in scenario s (kW).
Maximum contracted load limit at the PCC 
(kW).
PV generation of house i at time t in scenario s 
(kW).
Real/reactive power rating of the EWH in house 
i (kW).
Resistance/reactance of the distribution line 
connecting bus j and bus k (Ω).
Thermal resistance of house i (℃/kW).
Thermal resistance of the EWH in house i 
(℃/kW).
Minimum/maximum indoor temperature limit 
of house i (℃).
Indoor temperature setpoint of house i (℃).
Outdoor temperature forecast at time t in 
scenario s (℃).
Minimum/maximum water temperature limit of 
the EWH in house i (℃).
Hot water temperature setpoint of house i (℃).
Voltage magnitude at the PCC.
Weight factors ($/℃).
Primary/secondary tolerance value.
Length of the time interval.
Electricity purchasing/selling price in the real-
time market ($/kW).
Peak load violation rate ($/kW).
Penalty factor of the augmented Lagrangian 
term.

Continuous Variables 
Indoor temperature discomfort of customer i at 
time t in scenario s (℃).
Water temperature discomfort of customer i at 
time t in scenario s (℃).
Power flow of line j-k at time t in scenario s.
Real/reactive load of house i at time t in scenario 
s (kW / kVar).
Real/reactive load of aggregator j at time t in 
scenario s (kW/kVar).
Real/reactive power flowing from node j to 
node k at time t in scenario s (kW/kVar).
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The amount of electricity purchased from the 
day-ahead market at time t in scenario s (kW).
Actual load at the PCC at time t in scenario s 
(kW).
The amount of electricity purchased from/sold 
to the real-time market at time t in scenario s 
(kW).
The maximum amount of load that exceeds the 
contracted load limit in scenario s (kW).
Primal residual of ADMM at time t in scenario 
s.
Secondary residual of house i at time t in 
scenario s.
Indoor temperature of house i at time t in 
scenario s (℃).
Water temperature of the EWH in house i at 
time t in scenario s (℃).
Voltage magnitude of bus j at time t in scenario 
s.
Dual variable associated with the power balance 
equation at time t in scenario s.

Binary Variables 

Operating status of the HVAC in house i at time 
t.
Operating status of the EWH in house i at time 
t.

I. INTRODUCTION

HE ever-increasing electric load and growing renewable 
integration pose severe threats to the secure and economic 

operations of power grids [1]. One solution to address this 
challenge is implementing the demand response (DR) [2]. 
Existing DR programs are primarily designed for industrial and 
commercial customers, who tend to have larger electric loads 
that are more easily targetable [3]. However, residential loads 
account for 38% of the total energy consumption in the United 
States, indicating the significant potential in this sector [4]. 
Since residential loads are composed of numerous low-capacity 
home appliances, it is imperative to have an effective algorithm 
that can coordinate the operating schedules of residential 
components and devices at scale to improve the DR impact and 
performance [5].

In recent years, advances in communication technologies 
have provided tremendous opportunities for grid operators to 
send messages to (or receive messages from) residential 
customers through secured two-way communication channels 
[6]. With the support of home energy management systems 
(HEMSs), distribution system operators (DSOs) can connect 
with customers to realize system-wide control objectives, e.g., 
DR. Existing control structures for residential DR programs are 
categorized into centralized and distributed [7]. In [8]-[9], 
residential DR management problems are formulated as 
centralized models, where the control actions are computed and 
executed by the control center according to the measurements 
from sub-systems. Centralized approaches are straightforward 
and applicable to small-scale networks with customers sharing 
common goals. However, in a centralized approach, end-users 
may have to release their device operation information and 

allow the utility to control their appliances. Moreover, as the 
number of customers grows, the computational complexity will 
increase significantly. In [10]-[11], distributed residential DR 
models are proposed, where customers independently conduct 
local optimizations to determine the optimal scheduling of 
devices. The major part of the calculation is performed by local 
HEMSs, distributing intelligence and reducing the centralized 
computational requirements. Since each HEMS is independent, 
calculations are all run in parallel, reducing the needed 
computational time. Meanwhile, privacy can also be better 
protected, as only minimal information is shared with the 
electric utility company.

In addition to the scalability and privacy issues, residential 
DR programs may also confront the challenges of handling 
uncertain parameters, e.g., weather and consumer uncertainties. 
The conventional approaches treat the uncertain parameters as 
fixed values. However, as the forecasting technology is still 
immature, extra spinning reserve capacity and supplemental 
reserve have to be ensured, which increases the electricity cost. 
To address this challenge, attention has been paid to 
optimization methods that model uncertainty and fluctuation as 
non-constant values [12]. In [13], a robust optimization model 
is proposed to shave the system peak load and save residential 
customers’ electricity bills while considering weather and 
occupancy uncertainties. The results indicate that the 
aggregator can still reduce the peak load even in the worst case 
where none of the customers agree with the system-level 
objectives. Generally, the inputs for robust optimization are the 
bounds of the uncertain parameters. This allows robust 
optimization to avoid the risks of constraint violations in 
extreme conditions. In [14], a stochastic programming (SP) 
model for HEMSs is presented, which aims to save customers’ 
electricity costs while considering the uncertainties of both the 
availability of electric vehicles (EVs) and renewable generation. 
The results demonstrate that residential customers can save up 
to 31% of their electricity costs as compared to the deterministic 
approach. Unlike robust optimization, SP assumes that the 
uncertain parameters comply with certain probabilistic 
distributions, such that it can be converted to an equivalent 
deterministic problem. In [15], SP and robust optimization are 
applied to solve a real-time price-based DR management 
problem. The results suggest that both approaches can mitigate 
the financial risk introduced by price uncertainty.

The literature includes additional works that also target 
residential DR solutions using home appliances. In [16], an 
asynchronous bottom-up scheme is presented to coordinate the 
operations of distributed energy resources, including EVs, 
thermostat-controlled loads, and energy storage systems. This 
approach couples a device’s dynamic state to a stochastic 
request rate for electricity services, and it perturbs the 
responsive devices’ ON/OFF transition rates to create 
flexibility for the virtual power plant operator. In [17]-[18], a 
linear time-invariant thermal energy storage model, which is 
equivalent to a virtual battery state-of-charge model, is 
proposed to capture the dynamics of aggregated thermostat-
controlled loads. This approach significantly reduces the 
computational burden, and it allows constraints that couple 
system-level and house-level variables. However, a lookup 
table that relates the thermal energy storage model to 
measurement conditions has to be developed. Moreover, if a 
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new condition is encountered in the future, the parameters of 
the thermal energy storage model must be re-identified. In [19], 
a bi-level optimization model is used to flatten the system-level 
load curve and minimize the cost of residential customers. The 
problem is converted to an equivalent single-level problem and 
then solved with an iterative distributed algorithm. However, 
this approach does not consider the network losses and the 
temperature dynamics for thermostat-controlled loads (e.g., 
heating, ventilation, and air conditioning (HVAC) systems and 
electric water heaters (EWHs)). In [20], the mathematical 
models of major home appliances (e.g., fridge, freezer, 
dishwasher) are formulated. A mixed-integer linear 
programming model is developed to minimize the energy 
consumption, energy cost, emissions, and peak load of the 
residential energy hubs in smart grids. The deficiencies of this 
work are that the proposed approach is not scalable, and the 
impact of uncertain parameters (e.g., weather and consumer 
behaviors) on system performance is not considered. In [21], a 
two-stage optimization model is presented to optimize the 
customers’ energy consumption patterns and improve grid 
operational efficiency. Again, the uncertainties introduced by 
renewable and customer activities are ignored. In [22], a 
scalable and distributed algorithm is developed for managing 
the operating schedules of home appliances. However, the 
weather and customers’ uncertainties are not considered.

In summary, even though existing research has already 
explored residential DR problems, there is still a lack of a 
comprehensive scheduling framework considering the weather 
and consumer uncertainties while coordinating the operating 
schedules of numerous home devices at scale. To bridge this 
gap, a two-stage SP model is formulated to maximize 
community social welfare. Then it is decomposed into DSO-
level and house-level sub-problems with the alternating 
direction method of multipliers (ADMM) algorithm. The 
proposed approach is thus called the SP-ADMM approach. 
Instead of formulating an aggregated thermal energy storage 
model as suggested in [17]-[18], the proposed approach handles 
the scalability problem from another perspective by 
decomposing the original model into sub-problems and solving 
it in a distributed manner. By doing so, the requirement for 
building the lookup table is eliminated. Further, if compared 
with [20]-[22], the proposed model takes the weather and 
consumers’ uncertain behaviors into consideration. The 
performance improvement is verified by the case study in the 
later sections of this paper. To conclude, the main contributions 
of this paper are as follows:

1) A comprehensive scheduling framework that considers 
both the day-ahead and real-time electricity markets is proposed 
to mitigate the impacts of weather and consumers’ behavior 
uncertainties on residential DR performance;

2) A limited information exchange mechanism is developed 
among the DSO, load aggregators (LAs), and end-consumers to 
better protect residential customers’ privacy; 

3) A new algorithm called the SP-ADMM is proposed, which 
combines SP and the ADMM algorithm. The proposed 
approach decomposes the original model into sub-problems to 
ensure its feasibility for large-scale applications while 
considering a large number of uncertain scenarios; and

4) A comparison study is conducted to evaluate the 
performance of the conventional approach, the deterministic 

approach, and the proposed SP-ADMM approach. The outcome 
can serve as benchmarking results for future works in 
residential DR.

The rest of this paper is structured as follows: Section II 
presents the architecture of the residential distribution networks, 
Section III formulates the proposed comprehensive framework 
for residential DR, Section IV discusses the solution algorithm, 
Section V conducts the case studies, and Section VI concludes 
the paper.

Notation conventions: superscript hvac refers to HVAC, 
superscript wh refers to EWH, superscript cus refers to residential 
customers, superscript agg refers to LAs, and superscript line 
refers to distribution lines.

II. RESIDENTIAL DISTRIBUTION NETWORK ARCHITECTURE

The proposed residential distribution network has a 
hierarchical architecture, including the DSO, LAs, and 
residential customers, which are the top, middle, and bottom 
levels, respectively. The reason for introducing LAs is that the 
flexible load resource of a single residential customer is far less 
than the DSO’s minimum capacity threshold. LAs can collect 
the small load resources for the DSO and help residential 
customers to participate in the electricity market [23]-[24]. 
Moreover, LAs reduce the DSO communication requirements 
since communication needs are now decreased to a single entity 
instead of many assets.

In this work, it is assumed that LAs are profit-neutral entities. 
The revenue of LAs comes from those customers who 
participate in the DR program. Each customer is required to pay 
a fixed amount of membership fee to its corresponding 
aggregator to access the electricity market. Moreover, any 
excess payment will be refunded, and deficiency will be repaid 
at the end of each month, which is similar to the business model 
of independent system operators (ISO). However, since the 
operation cost of aggregators is out of the scope of this work, 
the details can be explored in future works.

Also, residential customers are assumed to be clustered by 
their geographical locations and interconnected to the 
distribution system through LAs. In real-world applications, 
LAs may have customers subscribed from different locations of 
the distribution network. However, the cost of implementing a 
DR aggregator is associated with the distances from the central 
aggregation point to individual flexible resources. So, although 
each LA may have different customers subscribed, we can 
always model and cluster DR loads based on locations (nodes). 
This practice of clustering DR loads based on locations is 
aligned with [25]-[26]. The authors of [26] solve the distributed 
flexible resources aggregation problem by minimizing the sum 
of distances from the central aggregation point to individual 
flexible resources. Therefore, it is usually more economical for 
aggregators to cluster residential customers based on their 
geographical locations. From the power flow viewpoint, LAs 
are viewed as buses and interconnected to form a distribution 
network.

At the house level, HEMSs are responsible for receiving data 
from the LAs and local weather service centers to perform 
optimization and decision-making on behalf of customers. The 
responsive devices considered are HVAC systems and EWHs.



III.MATHEMATICAL FORMULATION

Four types of uncertain parameters are studied in this paper, 
including 1) outdoor temperature, 2) solar generation, 3) non-
responsive load, and 4) hot water consumption. To reduce the 
impact of uncertain parameters, a two-stage scheduling model 
has been formulated. In the first stage, residential customers 
determine the operating status of responsive devices, while the 
DSO computes the amount of electricity needed to be purchased 
in the day-ahead market. In the second stage, the DSO 
purchases insufficient (or sells surplus) electricity in the real-
time market to maintain the supply-demand balance. A graph 
illustrating this process is provided in Fig. 1.

Fig. 1.  The proposed two-stage residential management process.

A. Objective function
The objective of the residential DR program is to maximize 

the community social welfare, as described by:

                             (1)

                           (2)

   (3)

where f(x) represents the first-stage objective, Q(x, ξ) represents 
the second-stage objective, (2) calculates the DSO’s electricity 
purchasing cost in the day-ahead market represented by a 
quadratic function [27], (3) calculates the sum of peak load 
violation charge, electricity trading cost in the real-time market, 
and customers’ discomfort cost.

Note that in (3), the peak load violation charge is defined as 
the product of a peak load violation rate and the maximum 
amount of load that exceeds the contracted load limit at the 
point of common coupling (PCC) [28]. The load violation 
amount can be calculated from (4) and (5).

                      (4)

                      (5)

In practical application, the discomfort weight factors may 
vary from case to case, and they should be determined by the 
DR participants. If customers prefer comfort over saving 
money, then larger values should be assigned, whereas if 
customers prefer to save more money, then smaller values 
should be chosen. In other words, this paper is a methodology 
paper, and we provide a technical approach to scheduling DR 
while the decision makers (i.e., DR participants) may select 
weight factors based on their own preferences. 

B. HVAC model
The input parameter for the HVAC model is the forecasted 

outdoor temperature in each scenario. The details of the HVAC 
model are available in the Appendix. The discrete-time form of 
the HVAC model is represented by:

(6)

 (7)

 (8)
where (6) calculates the indoor temperature of house i at each 
time in different scenarios, (7) is the minimum/maximum 
indoor temperature limit constraint for each house, and (8) 
calculates customers’ discomfort due to indoor temperature 
deviating from the setpoint in different scenarios. 

C. EWH model
The input parameter for the EWH model is the indoor 

temperature and the amount of hot water consumption in each 
scenario. The discrete-time form of the EWH model is 
represented by:

(9)

                            (10)
                          (11)

where (9) calculates the water temperature of house i at each 
time in different scenarios, (10) is the minimum/maximum 
water temperature limit constraint for each house, and (11) 
calculates customers’ discomfort due to water temperature 
deviating from the setpoint in different scenarios.

D. Load model
In this work, the power output of the solar photovoltaic (PV) 

is viewed as a negative load. Therefore, the load of each house 
is equal to the sum of the responsive load (including HVAC and 
EWH) and the non-responsive load minus the solar generation. 
The load model is given by:

           (12)
                 (13)

where (12) calculates the real power load of each house in 
different scenarios, and (13) calculates the reactive power load 
of each house in different scenarios.

E. Network model
The DistFlow equations in [29] are applied to solve the 

network flow problem in the distribution network. The 
mathematical formulations for a distribution network flow are 
given as follows:

                    (14)

    (15)

𝑝𝑙𝑖𝑛𝑒
𝑗 ― 𝑘,𝑡,𝑠 = ∑∀𝑘―𝐶𝑘 𝑝𝑙𝑖𝑛𝑒

𝑘―𝐶𝑘,𝑡,𝑠 + 𝑟𝑙𝑖𝑛𝑒
𝑗 ― 𝑘 ⋅ 𝐼𝑙𝑖𝑛𝑒

𝑗 ― 𝑘,𝑡,𝑠
2

+
𝑝𝑎𝑔𝑔

𝑘,𝑡,𝑠              (16)

𝑞𝑙𝑖𝑛𝑒
𝑗 ― 𝑘,𝑡,𝑠 = ∑∀𝑘―𝐶𝑘 𝑞𝑙𝑖𝑛𝑒

𝑘―𝐶𝑘,𝑡,𝑠 + 𝑥𝑙𝑖𝑛𝑒
𝑗 ― 𝑘 ⋅ 𝐼𝑙𝑖𝑛𝑒

𝑗 ― 𝑘,𝑡,𝑠
2

+
𝑞𝑎𝑔𝑔

𝑘,𝑡,𝑠               (17)
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|𝑉𝑘,𝑡,𝑠|2 = |𝑉𝑗,𝑡,𝑠|2 ― 2 𝑟𝑙𝑖𝑛𝑒
𝑗 ― 𝑘 ⋅ 𝑝𝑙𝑖𝑛𝑒

𝑗 ― 𝑘,𝑡,𝑠 + 𝑥𝑙𝑖𝑛𝑒
𝑗 ― 𝑘 ⋅ 𝑞𝑙𝑖𝑛𝑒

𝑗 ― 𝑘,𝑡,𝑠

                        + 𝐼𝑙𝑖𝑛𝑒
𝑗 ― 𝑘,𝑡,𝑠

2
⋅

𝑟𝑙𝑖𝑛𝑒
𝑗 ― 𝑘

2
+ 𝑥𝑙𝑖𝑛𝑒

𝑗 ― 𝑘
2

(18)

𝑝𝑙𝑖𝑛𝑒
𝑗 ― 𝑘,𝑡,𝑠

2
+ 𝑞𝑙𝑖𝑛𝑒

𝑗 ― 𝑘,𝑡,𝑠
2

≤ 𝑉𝑗,𝑡,𝑠
2

⋅

𝐼𝑙𝑖𝑛𝑒
𝑗 ― 𝑘,𝑡,𝑠

2
             (19)

                                    (20)
where (14) calculates the net real load at aggregator j in 
different scenarios, (15) calculates the reactive load at 
aggregator j in different scenarios, (16) and (17) respectively 
represent the net real and reactive branch power flow of line j-
k at time t in different scenarios, (18) calculates the voltage 
magnitude of each bus k at each time in different scenarios, 
(19)is the branch flow constraint, and (20) is the power balance 
constraint at the PCC.

Note that if (Vj,t,s)2
, (Vj,t,s)2 and (Iline j-k,t,s)2 are viewed as 

variables, constraints (16)-(18) are linear, and (19) becomes a 
second-order cone constraint after relaxing the “equal” sign to 
the “less than or equal” sign.

IV.SOLUTION ALGORITHM

The above model involves a large number of variables if a 
centralized optimization algorithm is applied. For example, in 
the next section of case studies, the IEEE 33-bus system 
including 121 residential houses will be used as the test system, 
where the optimization problem has 887,040 continuous 
variables, 23,232 binary variables, 654,720 equality constraints, 
and 1,059,168 inequality constraints. 

Due to the massive problem size, it would be difficult to 
directly solve this model with available solvers. Therefore, the 
ADMM is introduced to decompose the original problem into a 
DSO-level problem and a set of house-level sub-problems to 
reduce the computational complexity. Meanwhile, there are 
multiple uncertain scenarios in the residential DR behavior, so 
a mathematical model considering such uncertainties must be 
addressed as well. Therefore, we propose a solution algorithm 
called the SP-ADMM, which combines SP and the ADMM 
algorithm to solve the proposed model in Section III. The 
proposed SP-ADMM algorithm for solving comprehensive DR 
scheduling is illustrated next. 
A. Decomposing the centralized model with the ADMM

The ADMM is a robust iteration-based algorithm that solves 
arbitrary-scale optimization problems and supports distributed 
computation. More details on the ADMM algorithm are 
available in [30]. In this work, the DSO and customers have 
separable objectives. The coupling constraint is the supply-
demand balance constraint in (20), which contains variables 
from both the utility-level and house-level. Therefore, the 
proposed centralized model can be decomposed into a utility-
level optimization problem and a set of house-level 
optimization problems for efficient computation.

The primary residual and the secondary residual in the 
ADMM algorithm are calculated by (21) and (22), respectively:

                        (21)

                    (22)

The dual variable associated with the coupling constraint is 
calculated by:

                      (23)
Note that the iteration number in the ADMM is related to the 

value of penalty factor ρ. Generally, a smaller ρ yields better 
optimization results, but it comes with the risk of convergence 
issues. On the other hand, a larger ρ may give a sub-optimal 
solution, but it makes the algorithm easier to converge. 
Therefore, the value of ρ may differ from case to case in 
practical applications.
1) House-level sub-problem

The customers’ objectives are to minimize indoor and hot 
water discomfort costs. The decision variable includes the 
operating schedules of HVACs and EWHs for the next day. 
Therefore, the deterministic equivalent of the house-level 
optimization problem can be represented by:

(24)

where the first two terms minimize the customers’ discomfort 
cost, and the remaining terms present the penalty for violating 
the power balance constraints.

The constraints for the house-level optimization problem are 
(6)-(13), and (22).
2) LA-level calculation

The aggregator-level calculation collects local real and 
reactive load information and reports it to the DSO, as given by 
(14)-(15).
3) DSO-level sub-problem

The utility’s objectives are to minimize the contracted load 
violation charge plus the electricity purchasing cost in both the 
day-ahead and real-time electricity markets. The decision 
variables are the amount of electricity purchased from and sold 
to the electricity markets. The deterministic equivalent of the 
DSO-level objective function becomes:

(25)

where the first two terms represent the electricity purchasing 
cost in the day-ahead market, the third term is the peak load 
violation charge, the fourth and fifth terms are the cost/revenue 
for trading electricity in the real-time electricity market, and the 
rest represents the penalty terms for violating the power balance 
constraints.

The constraints for the DSO level optimization problem are 
(4)-(5), (16)-(19), (21), and (23).
B. Information exchange between agents

The messages sent from the DSO through LAs to all the 
customers are arrays that contain the primary residuals in the 
ADMM algorithm and the dual variables associated with the 
power balance equation in each scenario (i.e., R(d) s and λ(d) 
s). The messages sent from customers to their corresponding 
LAs are arrays that contain the total real and reactive load usage 
data in each scenario (i.e., pcus i,t,s and qcus i,t,s). Finally, the 
messages sent from LAs to the DSO are the total real and 
reactive power consumption within their service region in each 
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scenario (i.e.,  pagg i,t,s and qagg i,t,s). As such, the 
information exchange between the aggregator/DSO and the 
load is minimal to best maintain the data security of the 
consumers.
C. Flowchart of the proposed algorithm

The flowchart of using the ADMM algorithm to solve the 
two-stage residential DR management problem is given in Fig. 
2. During the iteration process, the house-level HEMS receives 
the arrays of the primal residual in the ADMM and the dual 
variables associated with the power balance equations in each 
scenario. Then each HEMS locally updates the real/reactive 
load consumption data in each scenario accordingly. The 
aggregator is responsible for calculating the total load within its 
service region and passing the information to the DSO. Finally, 
the DSO receives the real/reactive load information from each 
aggregator and updates the primal residuals and dual variables 
associated with the coupling constraints in each scenario. The 
iteration will stop when both ||R(d) s||2 and ||S(d) i||2 satisfy the 
tolerance criteria.

Fig. 2.  Flowchart of the proposed algorithm.

V. CASE STUDY

The proposed algorithm is tested on the IEEE 33-bus system 
including 121 residential houses. As mentioned in Section IV, 
the optimization model has 887,040 continuous variables, 
23,232 binary variables, 654,720 equality constraints, and 
1,059,168 inequality constraints. This level of complexity, as 
well as privacy protection and the uncertain scenarios, are the 
motivation for proposing the SP-ADMM approach. The 
simulation is conducted through a hybrid platform: MATLAB 
and GAMS. The hardware environment is a laptop with 
1.90GHz CPU and 16.00GB RAM. The utility-level sub-
problem is solved by MINOS, and the house-level sub-
problems are solved by SCIP.

A. Parameter settings
The time resolution of the case study is 15 minutes, and the 

total time horizon is 24 hours. The total number of houses is 
121. The number of residential houses allocated to different 
LAs are based on the original load at each bus in the IEEE 33-
bus system [31]. 

Fig. 3. Configuration of the IEEE 33-bus test system.

There are 31 houses that have HVAC systems, EWHs, and 
PVs installed, while the other 90 houses only have HVAC 
systems and EWHs installed. The discomfort weight factor for 
indoor temperature is $0.05/℃, and the discomfort weight 
factor for water temperature is $0.01/℃. The peak load 
violation rate is $10/kW.

The outdoor temperature and standard solar output forecast 
information data for generating the test scenarios are plotted in 
Fig. 4, and the non-responsive load data for generating the test 
scenarios is shown in Fig. 5. Moreover, Monte Carlo sampling 
is employed to provide variation and uncertainty in different 
scenarios. The ranges of the uncertain parameters are given in 
TABLE I. Consequently, 100 samples are generated according 
to the probability distribution function of the uncertain 
parameters.

Fig. 4.  Outdoor temperature and solar generation data for generating samples.

Fig. 5.  Non-responsive load data for generating samples.
TABLE I. RANGE OF UNCERTAIN PARAMETERS.

Parameter Lower range Upper range
Outdoor temperature -20% +20%

Solar output -20% +20%
Non-responsive load -20% +20%

Water consumption -20% +20%
Since it is computationally intensive to include all the 

samples into our considerations, a scenario reduction technique 
is conducted to reduce the computational burden [32]. The crux 
of this technique is to exploit a certain probability distance of 
the original and the reduced probability measure, and combine 
those scenarios that are close or have low probabilities [33]. 
Details on scenario reduction are available in [34]-[35]. In this 
work, the min-max normalization is first applied to preprocess 
different uncertain parameters [36]. Then the SCENRED tool 
in GAMS is employed as a black box to reduce the number of 
scenarios. The inputs to the SCENRED tool are the original 

HEMS determines the operation 
schedule in each scenario

HEMS sends the total load 
information to its aggregator

Aggregator sends aggregated load 
information to DSO

DSO solves the sub-problem and 
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uncertain scenarios and their associated probabilities. The 
outputs from the SCENRED tool are the reduced uncertain 
scenarios and their new probabilities. Finally, the initial 100 
samples are decreased to 10 scenarios considering the tradeoff 
between accuracy and computational time. The resulting 
probabilities of the reduced scenarios are given in TABLE II. 
Note, according to [37]-[38], there is no guarantee that 

increasing the number of scenarios will yield better results, 
since after passing a certain “sweet point”, selecting more 
scenarios does not necessarily bring performance improvement 
on modeling the scenario distribution (i.e., performance 
improvement is saturated). The impact of scenario reduction on 
system performance will be further discussed in Section V.C.1 
of this paper. 

TABLE II. PROBABILITY OF EACH SCENARIO.
Scenario 1 2 3 4 5 6 7 8 9 10

Probability 0.08 0.11 0.04 0.16 0.11 0.07 0.13 0.16 0.07 0.07
TABLE III. PEAK LOAD IN DIFFERENT CASES.

Scenarios 1 2 3 4 5 6 7 8 9 10 avg.
Case1 (kW) 407.18 389.67 430.41 431.84 386.58 419.25 440.00 418.93 399.05 445.50 416.97
Case2 (kW) 405.17 421.09 394.31 387.78 413.54 407.80 376.09 407.27 413.44 396.79 401.36
Case3 (kW) 372.21 377.47 388.76 379.12 382.96 354.19 387.08 365.33 371.44 385.28 376.17

TABLE IV. PEAK LOAD VIOLATION IN DIFFERENT CASES.
Scenarios 1 2 3 4 5 6 7 8 9 10 avg.

Case1 (kW) 17.18 0 40.41 41.84 0 29.25 50.00 28.93 9.05 55.50 27.38
Case2 (kW) 15.17 31.09 4.31 0 23.54 17.80 0 17.27 23.44 6.79 13.52
Case3 (kW) 0 0 0 0 0 0 0 0 0 0 0

TABLE V. AVERAGE DISCOMFORT COST IN DIFFERENT CASES.
Scenarios 1 2 3 4 5 6 7 8 9 10 avg.
Case1 ($) 5.73 5.66 5.72 5.66 5.71 5.63 5.61 5.61 5.68 5.64 5.66
Case2 ($) 3.90 3.78 3.87 3.69 3.80 3.72 3.59 3.57 3.66 3.74 3.71
Case3 ($) 3.72 3.63 3.70 3.53 3.65 3.57 3.46 3.44 3.51 3.57 3.56

TABLE VI. AVERAGE ELECTRICITY COST IN DIFFERENT CASES.
Scenarios 1 2 3 4 5 6 7 8 9 10 avg.
Case1 ($) 5.93 4.50 7.84 8.01 4.56 6.85 8.64 6.86 5.27 9.16 6.78
Case2 ($) 5.67 6.99 4.77 4.23 6.37 5.92 4.45 5.82 6.41 4.98 5.51
Case3 ($) 4.29 4.29 4.29 4.29 4.33 4.25 4.33 4.32 4.38 4.40 4.32

Three test cases are designed to compare the performance of 
different DR management approaches. In Case 1, the 
responsive devices do not change their operating status unless 
the indoor/water temperature falls out of the pre-specified 
boundaries (i.e., conventional basic rule-based thermostat 
control). In Case 2, the DSO treats uncertain parameters as fixed 
values and applies the deterministic ADMM to coordinate the 
operating schedule of responsive devices. Finally, Case 3 
implements the SP-ADMM to manage the operating schedules 
of residential components.

B. Simulation results
TABLE III compares the resulting load profiles in different 

cases. In Case 1, the peak load of the DSO is 445.50 kW and 
appears in Scenario 10 after the scenario reduction. The 
weighted average peak load of the DSO for all the scenarios is 
416.97 kW. Therefore, both the peak and average loads exceed 
the 390-kW contracted load limit. In Case 2, the peak load of 
the DSO is 421.09 kW and appears in Scenario 2 after the 
scenario reduction. The weighted average peak load of the DSO 
for all the scenarios is 401.36 kW. In Case 3, the peak load of 
the DSO is further reduced to 388.76 kW, and it appears in 
Scenario 3 after the scenario reduction. The weighted average 
peak load of the DSO for all the scenarios is 376.17 kW.

TABLE IV provides the peak load violation in different 
cases. It is observed that the highest peak load violation appears 
in Case 1, which is 27.38 kW. By applying the deterministic 
ADMM approach, the peak load violation is decreased to 13.52 
kW. The proposed SP-ADMM algorithm can further reduce the 
peak load charge to 0 kW. From Fig. 6 and the tables, it can be 
concluded that the SP-ADMM approach can significantly 
reduce the peak load and peak demand violation charge as 
compared to the conventional and deterministic ADMM 
controls. Under the SP-ADMM control mode, the DSO can 

coordinate the operating schedules of responsive devices 
through pre-cooling/pre-heating and avoid the situation where 
responsive devices are switched on at the same time, leading to 
performance improvement. The impacts of uncertainties are 
also considered, which further contributes to improved 
performance.

TABLE V and TABLE VI provide the average discomfort 
cost and electricity cost of each house in different scenarios. It 
is observed that the customers in Case 1 are expected to have 
more discomfort and pay higher costs than the customers in the 
other two cases. The sum of discomfort and electricity cost in 
Case 1 is $12.43. In Case 2, either the discomfort or electricity 
cost is lower than that in Case 1. The total cost is reduced to 
$9.22, which is only about 74.18% of the cost in Case 1. In Case 
3, the sum of the discomfort and electricity cost is $7.87, which 
is 63.31% of the cost in Case 1. Therefore, Case 3 gives the best 
performance.

(a) Case 1

0 10 20 30 40 50 60 70 80 90 100

time/(15minutes)

50

100

150

200

250

300

350

400

450

lo
ad

/(k
W

)



(b) Case 2

(c) Case 3
Fig. 6.  Load profiles in different cases.

(a) Case 1

(b) Case 2

(c) Case 3
Fig. 7.  Indoor temperature of house 1 in different cases.

(a) Case 1

(b) Case 2

(c) Case 3
Fig. 8.  Water temperature of house 1 in different cases.

Fig. 7 shows the impact of uncertainties on indoor 
temperature. The minimum and maximum indoor temperature 
limits for house 1 are 20.50℃ and 22.50℃, respectively. In 
Case 1, the indoor temperature range of house 1 in all the 
scenarios is from 19.91℃ to 22.80℃. In Case 2, the indoor 
temperature range of house 1 in all the scenarios is from 20.51℃ 
to 22.69℃. In Case 3, the indoor temperature range of house 1 
in all the scenarios is from 20.51℃ to 22.47℃. From Fig. 7, it 
is observed that the indoor temperature deviation in Case 1 is 
much larger than that in the other two cases. Furthermore, due 
to the outdoor temperature uncertainty, the indoor temperature 
in Case 2 may violate the temperature constraints. In contrast, 
the indoor temperature in Case 3 is always within the pre-
defined limits.

Fig. 8 shows the water temperature of house 1 in different 
cases. The minimum and maximum water temperature limits 
for house 1 are 45.50℃ to 55.50℃, respectively. In Case 1, the 
water temperature range of house 1 in all the scenarios is from 
44.30℃ to 58.90℃. In Case 2, the water temperature range of 
house 1 in all the scenarios is from 45.71℃ to 55.28℃. In Case 
3, the water temperature range of house 1 in all the scenarios is 
from 45.66℃ to 55.27℃. Therefore, the water temperature in 
Case 2 and Case 3 satisfy the pre-defined limits.
C. Discussions
1) Impact of scenario reduction

This sub-section studies the impact of scenario reduction on 
optimization results. First, three test cases are created, with each 
case having a different number of scenarios. Then the optimal 
HVAC and EWH operating schedules for these cases are solved 
and substituted back to the original 100 samples to evaluate the 
system performance. The results are given in TABLE VII. The 
table shows that the average peak load in all three cases falls 
below the 390-kW contracted limit, and the average load 
violations in the three cases are 5.09 kW, 5.18 kW, and 5.16 
kW, respectively. Moreover, when the number of scenarios is 
10, residential customers would pay less money for electricity 
but are also expected to have more discomfort than other cases. 
From the results, it is concluded that the difference among the 
results in the three cases is not significant, and therefore setting 
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the number of scenarios to 10 does not much affect the system 
performance.

TABLE VII.  IMPACT OF SCENARIO REDUCTION ON RESULTS.
No. of scenarios 10 15 20

Avg. peak load (kW) 388.05 380.93 384.63
Avg. load violation (kW) 3.22 0.36 1.08
Avg. discomfort cost ($) 4.45 4.17 4.21
Avg. electricity cost ($) 5.09 5.18 5.16

2) Energy imbalance between day-ahead purchase and actual 
load in different scenarios

TABLE VIII shows the energy imbalance between the day-
ahead purchase and actual load in different scenarios due to the 
weather and customer behavior uncertainties. From the table, it 
is observed that the weighted average daily energy surplus is 
96.03 kWh, and the weighted average daily energy deficiency 
is 148.53 kWh. Therefore, only 4.78% of the electricity is 
cleared in the real-time market, and the effectiveness of the 
proposed method is justified.

TABLE VIII. ENERGY IMBALANCE BETWEEN DAY-AHEAD PURCHASE AND 
ACTUAL LOAD.

Scenario 1 2 3 4 5 6
Surplus (kWh) 76.22 92.95 103.09 109.72 92.95 103.67

Deficiency (kWh) 146.37 145.97 133.65 130.20 135.96 133.45
Scenario 7 8 9 10 avg.

Surplus (kWh) 93.72 103.17 100.98 86.38 96.03
Deficiency (kWh) 150.43 159.44 180.54 179.77 148.53

3) Worst-case scenario
TABLE IX presents the worst-case scenarios under the 

conventional control (i.e. basic rule-based thermostat control), 
deterministic ADMM control, and SP-ADMM control, 
respectively. First, the optimal operating schedules in the three 
different approaches are solved and then substituted back to the 
original 100 samples to identify the worst-case scenario. In this 
work, the worst-case scenario is defined as the scenario with the 
largest objective function value. As shown in the table, the 
worst-case scenarios are different under the three control modes, 
and the SP-ADMM approach has the best performance in all 
categories since it has the least electricity cost, discomfort cost, 
and load violation. 

TABLE IX. WORST CASE SCENARIO UNDER DIFFERENT CONTROL MODES.
Conventional Deterministic SP-ADMM

Worst scenario number 48th 21st 38th
Avg. electricity cost ($) 9.52 7.61 5.64
Avg. discomfort cost ($) 5.66 3.83 3.68

Load violation (kW) 61.98 38.39 16.57
In addition, TABLE X compares average costs and load 

violations of the different approaches in the worst-case scenario 
for the SP-ADMM approach (i.e., scenario no. 38). Still, the SP-
ADMM approach has the best performance of the three. 
However, it is observed from the table that the peak load in the 
SP-ADMM approach exceeds the desired maximum load limit 
in the worst-case scenario. This is reasonable because the SP-
ADMM approach does not intend to guarantee the performance 
for the worst case, and the load violation is a soft constraint and 
is added to the objective function as a penalty term (i.e., 
occasional small violations can be tolerated). If the load 
violation is a hard constraint indeed, other models like robust 
optimization or hard constraints should be applied. This may be 
an area of research for future works.

TABLE X. COMPARISON OF DIFFERENT APPROACHES IN THE WORST-CASE 
SCENARIO FOR SP-ADMM.

Conventional Deterministic SP-ADMM

Scenario number 38th 38th 38th
Avg. electricity cost ($) 8.34 5.92 5.64
Avg. discomfort cost ($) 5.69 3.84 3.68

Load violation (kW) 45.36 17.95 16.57

4) Switching frequency of the responsive devices
Another observation from the case study is that the switching 

frequency of the responsive devices in the conventional control 
mode is less than that in the SP-ADMM control mode (e.g., 11 
times/day versus 35 times/day in house 1). The reason is that 
under the conventional control mode, the responsive devices are 
not allowed to change their operating status until the 
temperature falls out of the set bounds. However, this limit does 
not hold in the SP-ADMM control mode. Since frequently 
switching on/off the devices may reduce the lifespan of HVAC 
systems and EWHs, the time interval is set to 15 minutes in this 
work, which is sufficiently long to avoid the short-cycling 
problem [39].
5) Computational time

The computational time of the proposed SP-ADMM 
approach is given in TABLE XI. The proposed approach takes 
eleven iterations to converge. Since the house-level 
optimization is run in parallel, the computational time of each 
iteration is determined by the house that has the largest 
computational time. Also, the house-level model is a mixed-
integer quadratic programming problem, and the first iteration 
has the longest computational time (for initializing the problem). 
For the utility-level, it only takes around 1.5 seconds to finish 
the calculation in each iteration. The total computational time 
for solving the residential DR problem with the SP-ADMM 
approach is 6 minutes and 32 seconds. As the communication 
delay among different agents is not considered in this paper, the 
time consumption in practical applications should be slightly 
longer than the times in TABLE XI. From the table, it is 
concluded that the proposed algorithm satisfies the 
computational time requirements for residential DR 
applications.

TABLE XI. COMPUTATIONAL TIME OF THE PROPOSED ALGORITHM.
Iteration 1 2 3 4 5 6

DSO (sec) 1.39 1.16 1.23 0.99 1.50 1.38
House (sec) 305.91 11.90 4.43 24.09 4.23 11.82

Iteration 7 8 9 10 11
DSO (sec) 1.45 1.43 1.47 1.37 1.40

House (sec) 3.25 3.30 3.17 2.91 2.69

VI.CONCLUSIONS

This paper presents a comprehensive scheduling framework 
for scalable residential DR programs considering day-ahead 
and real-time electricity market operations. Due to the 
computational complexity and privacy concerns, the model is 
not suitable to be solved by the DSO as a centralized 
optimization, especially when multiple uncertain scenarios 
must be considered in the DR programs. Therefore, this paper 
proposes a new algorithm combining stochastic programing and 
the ADMM to form the SP-ADMM approach, which can 
decompose the original centralized DR scheduling model to a 
utility-level problem and house-level sub-problems to distribute 
the computational complexity and to incorporate multiple 
uncertain scenarios.

The case study demonstrates that the proposed approach can 
reduce customers’ electricity bills, discomfort, and the peak 
load at the utility level. Also, since the optimization model is 



solved in a distributed manner, increasing the number of houses 
will not affect the number of variables in each sub-problem. 
Hence, it will not significantly impact the computing 
performance in large scale applications. The information 
exchange among the utility, LAs, and consumers is limited to 
the real and reactive power consumption and the primary 
residuals and dual variables in each scenario, which protects the 
customers’ privacy. Finally, the results show that the proposed 
SP-ADMM model can improve residential DR performance 
and reduce the chance of constraint violations as compared to 
the conventional and deterministic ADMM approaches.

In this work, the voltage magnitudes are always within the 
typically allowable range of [0.95, 1.05]. Therefore, the voltage 
magnitude constraints are not included in the problem 
formulation. However, distribution networks may suffer from 
low-voltage problems at the end of feeders in practical 
applications, especially when the system is heavily loaded, or 
the uncertainty is large. If the DSO has high requirements for 
maintaining the voltage levels, more conservative demand 
management approaches should be applied. We would like to 
address this problem in our future works.

APPENDIX: MODELING OF THERMOSTAT-CONTROLLED LOADS

A simplified version of the resistance-capacitance (RC) 
thermal model is applied to capture the temperature dynamics 
of thermostat-controlled loads in this work. The RC model is 
constituted with an electrical analog pattern with resistance (R) 
and capacitance (C), which are obtained from historical data by 
using linear regressions. It has a “visible” model structure and 
therefore can be used for optimal controls of responsive 
devices.

For HVAC systems, the input parameters are the day-ahead 
forecasted outdoor temperature in different scenarios. The 
HVAC model is represented by (26), and its discrete-time 
version is represented by (6). Similarly, the discrete-time 
version of the EWH model is described in (9).

 𝐶ℎ𝑜𝑢𝑠𝑒
𝑖

𝑑𝑇𝑖𝑛
𝑖,𝑡

𝑑𝑡
= (𝑇𝑜𝑢𝑡

𝑡 ― 𝑇𝑖𝑛
𝑖,𝑡 ― 1)/𝑅ℎ𝑜𝑢𝑠𝑒

𝑖 ― 𝑏ℎ𝑣𝑎𝑐
𝑖,𝑡 ⋅

𝑝ℎ𝑣𝑎𝑐
𝑖 (26)

The parameter settings of the HVAC system are given in 
TABLE XII, and the power factor of the HVAC is set to 0.81. 
The parameter settings of the EWH are given in TABLE XIII, 
and the power factor of the EWH is set to 1.

TABLE XII. HVAC PARAMETER SETTINGS.
Chou
se i U[1.0, 1.5] J/℃ Rhous

e i U[6.4, 9.6] J/℃

Phva
c i 3.5 kW Tins i U[21, 23] ℃

Tin i Tins i-1℃ Tin i Tins i+1℃

TABLE XIII. EWH PARAMETER SETTINGS.
Cwh 

i U[0.1, 0.15] J/℃ Rwh 
i U[48.0, 72.0] J/℃

Pwh 
i 2.5 kW Twh

s i U[55.0, 57.5] ℃

Twh i Twhs i-5℃ Tw
h i Twhs i+5℃
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