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Electro-thermal Simulation and Performance
Comparison of 1.2 kV, 10 A Vertical GaN MOSFETs

Introduction — Need for Vertical GaN

Gallium Nitride (GaN) as compared to Si, SiC and GaAs has
been shown to exhibit superior material properties attractive to
semiconductors, especially relating to high-power applications.
Traditionally, GaN has been used to develop lateral high electron
mobility transistors (HEMTs) built on non-native substrates,
however, these substrates can limit device performance. It is only
recently that the prospect of vertical GaN devices through the
development of bulk GaN substrates has become possible.
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Device Design & Simulation Model
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GAN SIMULATION PARAMETERS AND VALUES

Symbol Quantity Value
Es Bandgap 3.44 eV
Es Relative Permittivity 9.7
T Temperature 300 K
p Hole Mobility 11 cm?/Vs
n Electron Mobility 1200 cm?/Vs
~0.28
k Thermal Conductivity 1.3 (L) W
300K cm-K
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» Both devices are capable of achieving 1.2 kV blocking and 10 A curtrent capacity
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Increasing thermal resistance significantly
reduces electrical performance due to
enhanced carrier scattering and reduced

mobility

» T-MOSFET breakdown must be over designed in order to compensate for field crowding

» D-MOSFET design allows for reduced power dissipation for a given gate width

» From a thermal and power handling capability it appears the D-MOSFET performs better
» The D-MOSFET requires a difficult etch and regrowth or double implantation to fab, whetreas the T-MOSFET does not

» Device fabrication and test structures to determine dielectric breakdown and channel mobility are currently underway
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