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Why is there an interest in using thermoset materials for
2 additive manufacturing?

More resistant against high
temperatures

Thermosets

Can not be recycled

Hard and rigid Can not be remolded/reshaped

Excellent dimensional stability

Thermoplastics

Can be recycled Soften when heated

Can be remolded/reshaped Not a liquid at room temperature

Can be crystalline

•

credit: https://www.modorplastics.com/plastics-learnind-center/thermoset-vs-thermoplastics/ Center 1800: Material, Physical and Chemical Sciences



Why is there an interest in using thermoset materials for
3 additive manufacturing?

Thermosets

More resistant against high
temperatures

Hard and rigid

Excellent dimensional stability

Can not be recycled

Can not be remolded/reshaped

•

Thermosets are more dimensionally, thermally, and mechanically robust compared to thermoplastic materials

I hermoplastics

Can be recycled

Can be remolded/reshaped

Soften when heated

Not a liquid at room temperature

Can be crystalline

credit: https://www.modorplastics.com/plastics-learning-center/thermoset-vs-thermoplastics/ Center 1800: Material, Physical and Chemical Sciences



Additive manufacturing offers the ability to design low-
4 volume, high complex geometric parts

Fused Filament Fabrication Stereolithography

• Thermoplastic materials
• Strengths: material $, print speed
• Disadvantages: Accuracy, porous, anisotropic

mechanical properties

Selective Laser Sintering 

• Metals, thermoplastic polymers
• Strengths: accuracy, material $ and flexibility
• Disadvantages: amount of material

Melchels et al. Biomaterials, vol. 31, no. 24, pp. 6121-30, Aug 2010
Dizon et al. Additive Mantiftecturing, vol. 20, pp. 44-67, 2018.

Feeney et al. sd3d. FFF vs SLA vs SLS 3D printing. 2013.
Lewis et al. Materials Today. July/August 2004

• Any photocurable polymer freely flowing at
room temperature

• Strengths: dimensional accuracy, Disadvantages:
material flexibility, print speed

Direct Ink Writing 

• Ceramic and/or metal suspensions, thermosets
• Strengths: material flexibility, minimal porosity
• Disadvantages: print speed, printer limitations

based on viscosity range

Center 1800: Material, Physical and Chemical Sciences
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Additive manufacturing offers the ability to design low-
volume, high complex geometric parts
Fused Filament Fabrication Stereolithography
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• Any photocurable polymer freely flowing at
room temperature

• Strengths: dimensional accuracy, Disadvantages:
material flexibility, print speed

Direct Ink Writing 

• Ceramic and/or metal suspensions, thermosets
• Strengths: material flexibility, minimal porosity
• Disadvantages: print speed, printer limitations

based on viscosity range

Center 1800: Material, Physical and Chemical Sciences
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Additive manufacturing offers the ability to design low-
volume, high complex geometric parts
Fused Filament Fabrication Stereolithography
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Selective Laser Sintering Direct Ink Writing 

• Metals, thermoplastic polymers
• Strengths: accuracy, material $ and flexibility
• Disadvantages: amount of material

Melchels et al. Biomaterials, vol. 31, no. 24, pp. 6121-30, Aug 2010
Dizon et al. Additive Manuftecturing, vol. 20, pp. 44-67, 2018.

Feeney et al. sd3d. FFF vs SLA vs SLS 3D printing. 2013.
Lewis et al. Materials Today. July/August 2004

• Ceramic and/or metal suspensions, thermosets
• Strengths: material flexibility, minimal porosity
• Disadvantages: print speed, printer limitations

based on viscosity range

Center 1800: Material, Physical and Chemical Sciences
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Additive manufacturing offers the ability to design low-
volume, high complex geometric parts
Fused Filament Fabrication Stereolithography
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Selective Laser Sintering Direct Ink Writing 

X-Y axis laser beam

Leveling drum

Powder
surface

Formed
object

Z axis Z axis

Melchels et al. Biomaterials, vol. 31, no. 24, pp. 6121-30, Aug 2010
Dizon et al. Additive Manufacturing, vol. 20, pp. 44-67, 2018.

Feeney et al. sd3d. FFF vs SLA vs SLS 3D printing. 2013.
Lewis et al. Materials Today. July/August 2004

• Ceramic and/or metal suspensions, thermosets
• Strengths: material flexibility, minimal porosity
• Disadvantages: print speed, printer limitations

based on viscosity range

Center 1800: Material, Physical and Chemical Sciences
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Additive manufacturing offers the ability to design low-
volume, high complex geometric parts
Fused Filament Fabrication Stereolithography
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Melchels et al. Biomaterials, vol. 31, no. 24, pp. 6121-30, Aug 2010
Dizon et al. Additive Mantiftecturing, vol. 20, pp. 44-67, 2018.

Feeney et al. sd3d. FFF vs SLA vs SLS 3D printing. 2013.
Lewis et al. Materials Today. July/August 2004
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Approaches to DIW printing thermosets
9 1

Approach 1: Incorporation of fillers 

Plot of log-log apparent viscosity vs. shear rate of
DGEBPA epoxy (EPON 826) + Garamite 7305

clay
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Hmeidat et al. Compos. Sci. & Tech. 2018. vol. 160

Limitations:
• Requires high zero shear viscosity
• Property anisotropy

• Dependent on filler type
• Clogging
• lnterlayer inhomogeneity

Center 1800: Material, Physical and Chemical Sciences
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Approach 1: Incorporation of fillers 

Plot of log-log apparent viscosity vs. shear rate of
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11 1 Approaches to DIW printing thermosets
Approach 2: Dual-cure networks 

L'
Photo Cure

•• I f.-;-• •

Key:

• Silica

• Photoinitiator

• Thermal cure agent

_r BA

E8402

Epoxy826 :WS

Thermal
Cure

Photo cure cross-
linked network

Thermal curc cross-

linked network

interpenetrating

pols mer netssurks

Chen et al. Soft Matter. 2018. Vol 14.

Limitations:
• Photocurable acrylates 
• May require ex-situ UV individual Iayer cure

Center 1800: Material, Physical and Chemical Sciences



12 1 Approaches to DIW printing thermosets
Approach 2: Dual-cure networks 
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*-166.•

Key:

• Silica

• Photoinitiator

• Thermal cure agent
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Chen et al. Soft Matter. 2018. Vol 14.
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Tensile stress-strain curves of dual-cure photopolymer-epoxy samples with varying amounts
of epoxy after 1st stage (green part) and 2nd stage (fully cured) cure exposures

Limitations:
• Photocurable acrylates 
• May require ex-situ UV individual layer cure
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Kuang et al. Macromol. Rapid. Commun. 2018. vol 39
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Temperature, °C

Variable temperature DMA of fully cured resins ranging from 0-100% acrylate

Chen et al. Soft Matter. 2018. Vol 14.

Center 1800: Material, Physical and Chemical Sciences



13 1 Approaches to DIW printing thermosets
Approach 2: Dual-cure networks

Photo Cure

••I

Key:

• Silica

• Photoinitiator

• Thermal cure agent
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Chen et al. Soft Matter. 2018. Vol 14.

Limitations:
• Photocurable acrylates 
• May require ex-situ UV individual Iayer cure

Shrinkaqe 

Pre-UV Post-UV

46)
Due to formation of
covalent bonds

Aging 

• Degradation of mechanical properties

Mechanical properties 

• Variable degree of cure
• Oxygen inhibition could be an issue

• Tend to be brittle
• Low Tg's

1

Center 1800: Material, Physical and Chemical Sciences



1 Using functionalized fillers in dual-cure networks
1 4

Approach 2: Dual-cure networks

Key:

• Silica

• Photoinitiator

• Thermal cure agent

BA
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Photo Cure

aNtokt
mayole

Thermal
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Photo cure cross-
linked network

Thermal cure cross-
linked network

Interpenetrating
polymer networks

Chen et al. Soft Matter. 2018. Vol 14.
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•
Surififfee
Med fillOr

Solution:
• Addition of acrylate-functionalized fillers to decrease overall amount of acrylate necessary to

form a stable structure while printing
• Addition of dual-functionalized fillers to tether networks together in a dual-cure system

This project is working towards understanding the impact of functional additives on the
cure kinetics and mechanical properties of dual-cure formulations for direct ink write of

thermosets
Center 1800: Material, Physical and Chemical Sciences



15 1
Functionalized Fillers

R': epoxy or acrylate
functional group

Goals:

• Replace acrylate resin with acrylate-functionalized fillers

• Add epoxy-functionalized fillers to help form epoxy network

• Dual-functionalized particles to link epoxy and acrylate networks
Center 1800: Material, Physical and Chemical Sciences



16 I UV-assisted Direct-Ink Write Capability

Constant volume
Allows for better extrusion control of resins
having varying rheology

2 x 365nm Dymax BlueWave MX150 LED UV
light sources

Controllable UV intensity (0-100%)
Intensity: -200-20,000 mW/cm2

Print nozzle diameter from 0.15mm to 1.55mm

Table speed from 0.01mm/s to 50mm/s

Print volume of 300x300x200mm
Printer Acknowledgement:

Adam Cook & Derek Reinholtz

•

I

I
1
I

Center 1800: Material, Physical and Chemical Sciences i



DIW dual-cure formulations
17

H2C

MW= 188/epoxy, n=0.2
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1-ethyl 3-methyl imidazolium dicyanamide
(latent curing agent)

TPO (photoinitiator)

Structure of MMT clay

Asgari et al. 2018. Applied Clay Science

O CP

• AP', or Fe

• Si4*

• OH

e Exchangeable cations (Ng or Ca2.)

Filler materials: fumed silica and Na+ montmorillonite
Center 1800: Material, Physical and Chemical Sciences



1 Silanes and filler materials investigated
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Silane grafting mechanisms
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Center 1800: Material, Physical and Chemical Sciences



20 
Silane grafting mechanisms
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21 Effect of silica functionalization on viscosity
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22 Effect of functionalized clay on viscosity 
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• Unlike silica, the clay filler does not induce shear-thinning behavior
• Functionalized clay also shows no-shear thinning behavior
• All formulations are printable using a higher UV intensity
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23 Studying acrylate cure kinetics and conversion
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24 Effect of functionalized MMT on UV-cure kinetics
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25 Effect of functionalized MMT on UV-cure kinetics
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• The total enthalpy is dependent upon formulation
• The methacrylate-functionalized MMT results in the lowest total enthalpy, this could

be due to vitrification
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26 Effect of functionalized MMT on UV-cure kinetics
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27 Effect of functionalized MMT on UV-cure kinetics
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28 Effect of functionalized Si02 on UV-cure kinetics
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29 Effect of functionalized SiO, on UV-cure kinetics
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• The total enthalpy is dependent upon formulation
• The methacrylate-functionalized Si02 results in the lowest total enthalpy, this could be

due to vitrification
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30 Effect of acrylate functionalization on conversion
Continuous Pulsed

Composition Enthalpy / mol acrylate
(kJ/mol ac)

Enthalpy / mol acrylate
(kJ/mol ac)

No filler 54.3 37.3 (<1)

5wt% Si02 52.4 41.5 (1)

10wt% Si02 58.9 42.0 (<1)

5wt% Methacryl-Si02 58.4 37. 6(1)

10wt% Methacryl-Si02 41.8 36.2 (<1)

Composition Enthalpy ol acrylate
(kJ/mol ac)

Enthalpy / mol acrylate
(kJ/mol ac)

No filler 54.3 37.3(<1)

5wt% MMT 56.8 40.7 (1)

10wt% MMT 54.4 39.4 (1)

5wt% Methacryl-MMT 45.4 33.7 (<1)

10wt% Methacryl-MMT 40.6 37.1 (1)

Heat of polymerization for dimethacrylate: 56.6 kJ/mol acrylate

• The addition of acrylate functionalized MMT and 10wt% acrylate functionalized Si02
decreased the total conversion

• The enthalpy values for pulsed UV exposure is much lower than that of the continuous
exposure Center 1800: Material, Physical and Chemical Sci nces
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I3-point bend it utilized to measure mechanical properties
•
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Impact of particle functionalization on mechanical •

Flexural Modulus '4E91 5wt% 1 Owt%

4.0 T SiO2 vol% 3.3 6.6

3.5 - MMT vol% 2.6 5.2

3.0 - T

2.5 = 7

2.0 =
-r

T T
1

1.5 =

1.0 =

0.5 =

0.0 =

• The presence of fillers alone increases the flexural modulus
• Epoxy functionalized fillers increases the flexural modulus, with the exception of 10wt%

epoxy MMT
• This is believed to be caused by aggregation

• Si02 has a greater impact on flexural modulus than MMT
• This could be due to better dispersion. SEM currentlycbTingninitpA if.edi

Physical and Chemical Sciences



Impact of particle functionalization on mechanical
properties

200.0 Flexural Strength
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• There are no statistically significant differences between fillers and surface
functionalization on flexural strength

Center 1800: Material, Physical and Chemical Sciences
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Conclusions 50
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i. i-unctionalizea particies exniDit low zero-shear 2. Methacrylsilane functionalized particles
viscosity and no shear- thinning behavior, but results in lower total enthalpy than unfilled and
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inks are printable at increased UV intensity

0
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Pulse

unfunctionalized fillers

3. The presence of fillers increases the flexural modulus of printed parts compared to
unfilled resins. Si02 has a greater impact than MMT, possibly due to dispersion
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36 Dosage calculations

Device
Wavelength
& Dosage

power %

0 20

Dual UV probes at AML
365nm 1.2 6.9 14.3 29 57.3 106.3

Measured intensity
(mW/cm2)

Dosage
(190s)

228 1,311 2,717 5,510 10,887 20,197

Bulk UV cure light at
AML

365nm 5.7

Dosage
(1800s)

10,260

Photocalorimetry DSC
365nm - 44.9 109.4 207.2 326.5 413.2

Dosage
(12s)

- 539 1313 2,486 3,918 4,958

Dosage: lntensitylime of exposure

UV probes: continuous coverage for 190s
Bulk UV: continuous coverage for 1800s
Photocalorimetry: 5 x 2.4s flashes

1

1
1
I
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I UV-DSC is repeatable, under the same conditions
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[Regardless of filler-type or acrylate used, the UV-DSC results are repeatableand reproducible across multiple samples and multiple days
Center 1800: Material, Physical and Chemical Sciences
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