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ABSTRACT 
We have created a demonstration permissioned Distributed Ledger Technology (DLT) 
datastore for the UF6 cylinder tracking safeguards use-case utilizing the Ethereum DLT 
framework and using Solidity for smart contract code. Our demonstration creates a simulated 
dataset representing tracking of 75,000 UF6 cylinders across 11 example nuclear facilities 
worldwide. Our DLT system allows for easy input and reading of shipping and receiving data, 
including a Graphical User Interface (GUI). Sandia’s Emulytics capability was leveraged to 
help create the DLT node network and assess performance. We find that our DLT prototype 
can easily handle to ~150,000 UF6 cylinder shipments per year worldwide, without any 
excessive computational or storage burden on the IAEA or Member States. Next steps could 
include a demonstration to the IAEA and potentially demonstrating integration with 
TradeLens, a DLT in use by a consortium of international shipping companies representing 
over half of world shipping trade. 
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ACRONYMS AND DEFINITIONS 
 

Abbreviation Definition 
CoK Continuity of Knowledge 

DLT Distributed Ledger Technology 

IAEA International Atomic Energy Agency 

GUI Graphical User Interface 

KMP Key Measurement Point 

MBA Material Balance Area 

NMA Nuclear Material Accountancy 

UID Unique Identification 
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1. INTRODUCTION 
For the past several years there has been considerable enthusiasm regarding the potential of 
Distributed Ledger Technology (DLT), often simply referred to as Blockchain. As with many 
emerging, potentially disruptive technologies, there can be an associated “hype cycle” where initial 
enthusiasm fades after enhanced expectations, followed by the “trough of disillusionment”. Gartner 
releases a yearly hype cycle graph illustrating the stage of industry acceptance of such technologies, 
as shown below in  

. As observed, blockchain as of 2018 has entered the phase of disillusionment, but that does not 
mean it has failed as an emerging technology. Rather, reality is setting in, and industries now must 
grapple with actual implementations of blockchains and develop valid business cases. Note that 
blockchain is not listed on the Gartner 2019 hype cycle graph, but Gartner does provide an entire 
article in 2019 on the business merits of blockchain going forward.1 

 
Figure 1. Gartner’s 2018 “Hype Cycle” graph illustrating industry acceptance of potentially 
disruptive emerging technologies. 
 

 
1 Kasey Panetta, “The CIO’s Guide to Blockchain”, https://www.gartner.com/smarterwithgartner/the-cios-guide-to-
blockchain/ (September 23, 2019). 
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The International Atomic Energy Agency (IAEA) has expressed interest in DLT. Applicability of 
DLT for IAEA purposes seems obvious since the IAEA relies heavily on Nuclear Material 
Accountancy (NMA), which in large part relies on counting of items and recording numbers on 
separate ledgers (i.e. the IAEA ledger and the Member State’s ledger). Much time and expense are 
required to reconcile these ledgers if a defect is detected (a gross defect means a large, bulk amount of 
material is missing, such as a uranium hexafluoride (UF6) cylinder; whereas a partial defect refers to a 
small fraction of material). Before the IAEA can implement DLT for its purposes, it would need to 
be certain of its efficacy at NMA for safeguards purposes, including practical issues such as code 
sustainability, authentication standards, cost, storage requirements, etc., but the IAEA itself is 
unprepared to undertake this testing and development effort on its own. 

Pacific Northwest National Laboratory (PNNL) has been studying the applicability of DLT for 
IAEA safeguards purposes since 2016 [1], [2]. These studies provided a metric to judge the value of 
DLT in various IAEA safeguards scenarios. Some safeguards scenarios showed a strong applicability 
for DLT whereas other use-cases showed less applicability. One safeguards use-case that scored 
highly is the safeguards problem of UF6 cylinder tracking. The nuclear industry commonly handles 
standardized steel cylinders containing UF6 across many stages of the nuclear fuel cycle. Previous 
reports [3] have discussed aspects of the current tracking system that could be improved to reduce 
the risk of material diversion by increasing continuity of knowledge (CoK). As the former Director 
of Safeguards at the IAEA, Olli Heinonen, explains [4] 

“About 100,000 UF6 cylinders are currently in worldwide use. Most of them are used to 
store depleted uranium, but there are annually about 15,000 movements of cylinders 
containing low- enriched or natural uranium. These cylinders move from country to country 
often overseas between uranium conversion, enrichment and fuel fabrication plants on 
journeys and voyages, which last several weeks. While industry is good at tracking valuable 
materials, it may take several weeks before missing cylinders are detected and the cylinders 
are located.” 

Continuing, Heinonen states, 

“Cylinders in transit or stocks can be diverted by a state or obtained by subnational groups 
or black market vendors. There are several diversion scenarios including diverting a known, 
declared cylinder for uranium enrichment in a clandestine facility, or misusing a declared 
cylinder without reporting to the regulatory body or the IAEA in a declared, safeguarded 
facility, or using an undeclared cylinder at a safeguarded facility.” 

To address the UF6 cylinder tracking issue, various techniques are being explored to minimize the 
chance of accountancy defects, such as the Global ID concept of a applying a unique ID to cylinders 
to facilitate cylinder tracking [3]. But even assuming a unique and counterfeit-safe technology can be 
applied to UF6 cylinders, the problem remains for accurately tracking ownership and physical 
location worldwide of ~100,000 items potentially holding accountable nuclear material.  The 
number of digital transactions each year is estimated to total approximately 150,000 [2], and multiple 
ledgers are used by various parties (e.g. shipper, receiver, storage facility, IAEA, etc.) in an attempt 
to keep an accurate ongoing tally. 

Therefore, it is suggested that DLT may be an effective solution to the UF6 cylinder tracking 
problem for nuclear safeguards. To take a step towards testing this hypothesis, we have 
implemented a prototype UF6 cylinder tracker in a private Ethereum ledger. Executing this work is 
consistent with the opinion [5] that now is an appropriate time for prototyping potential DLT 
applications to better understand how purported potential reconciles with implementation realities. 
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Our prototype demonstrates that Ethereum is more than sufficient to support the data requirements 
of such a system, achieving 150,000 events per year with no perceived difficulty. 



 

12 

2. BACKGROUND 
There are multiple safeguards use-cases where a DLT solution may improve NMA for the IAEA, 
such as UF6 cylinder tracking, nuclear material transit matching (matching reports of domestic and 
international shipments and receipts), or as a resource for the noncompliance process when there is 
a disputed irregularity [2]. This list is not comprehensive, and has analogies with other industries and 
concerns, such as improving international shipping manifest procedures, combating counterfeit 
parts, or healthcare data. Thus, we can learn from developments in other arenas beyond IAEA 
needs, and there is a vibrant open-source community of developers that can also be leveraged.  

 
 
Figure 2. Illustration of a permissioned DLT, where a Central Authority (Certificate Authority) 
allows access to the DLT, but has the consensus network of a decentralized DLT. 

Likewise, there are a variety of DLT development platforms, including Ethereum, Hyperledger, 
Bitcoin, and many for fintech (e.g. Ripple). We divide DLT approaches into two general categories: 
Decentralized (also called Public) and Permissioned (also called Private).  Perhaps the most widely 
known decentralized DLT is the Bitcoin blockchain, where anyone can join and all parties have full 
access to all the transaction history (not necessarily the underlying data). A permissioned (private) 
DLT is distinguished from a decentralized DLT with the additional concept of a Central Authority. 
A Central Authority provides permissions through “memberships” for access to the network. The 
permissioned DLT concept is illustrated in Figure 2. The permissioned DLT still maintains the 
consensus node network of a decentralized DLT, but the Central Authority (Certificate Authority in 
Figure 2, which is nomenclature used for internet authentication purposes) has overarching authority 
over the memberships. We believe the permissioned DLT is the best approach since the IAEA 
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would be the Central Authority, yet is also viewed internationally as a trusted 3rd party (indeed, the 
IAEA is part of the United Nations).  While having some central control is somewhat contrary to 
the purist view that a blockchain should be completely decentralized (like Bitcoin), this can lead to 
questions of who is in charge of fixes, etc., and for our purposes we believe the IAEA should be 
such a Central Authority. 
 
A key aspect of DLT is the ability of participants to achieve consensus on transactions, as well as to 
have access to the DLT transaction history. The consensus process for a simple majority is 
illustrated in Figure 3. There are a variety of consensus mechanisms available, and one needs to 
determine which version is most appropriate for a given DLT solution. 

 

Figure 3. Illustration of a DLT consensus process. Here, the majority decides on the correctness of 
the data, whereupon a consensus achieves a permanent entry into the DLT. 

For this project, we will utilize the Ethereum framework in a Permissioned Ledger implementation. 
We will use the UF6 cylinder tracking use-case as a relevant problem to the IAEA that could be 
improved with such a Permissioned DLT, as described below. 

2.1. UF6 Cylinder Tracking State of Practice 
The IAEA utilizes the concept of Material Balance Areas (MBAs) to designate a physical space 
where certain operations take place, and where accountancy measurements should occur upon 
crossing a boundary between MBAs, known as a Key Measurement Point (KMP). Figure 4 illustrates 
a likely scenario for shipment of UF6 cylinders from the fuel enricher to the fuel fabricator. 
Cylinders leave the enrichment MBA and measurements to verify contents are done at the KMP and 
verification of the cylinder ID are entered into the ledger of the enrichment facility as having left the 
MBA. The shipper likewise should enter the ID of the cylinders into its ledger, which may actually 
be the shipping manifest. The cylinders are then conveyed towards the fuel fabrication destination. 
Although a ship is illustrated in Figure 4 as the mode of transportation, for the case of out-of-
country enrichment services, the transportation mode could also be a truck, train, or combination of 
all of the above. Not shown in Figure 4 are the possible ports of call of the ship, which depending 
on the country may involve an inspection of contents and thus another ledger. Eventually the 
cylinder shipment arrives at its final destination and is offloaded to the receiver entity. This receiver 
may be a port authority, or could be the entrance to the fuel fabrication facility. In either case, the 
UF6 cylinders would now undergo counting and at least ID verification and entered into a ledger. 
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Prior to entering the fuel fabrication MBA, measurements can be made to verify contents and once 
again the cylinder IDs noted in a ledger. There may be further accounting done within the fuel 
fabrication facility, but the above details illustrated by Figure 4 provides a sense for the need of a 
better ledger system. It is therefore not surprising that the IAEA, as echoed by Olli Heinonen above, 
has serious concerns regarding continuity of knowledge for the vast numbers of UF6 cylinders in 
transit all over the world at any given time. 

 
Figure 4. Illustration of transshipment of UF6 cylinders from an enrichment facility to a fuel 
fabrication facility. 

While there are standards [6] and working groups [7] for UF6 transportation, including applying 
unique identification (UID), there is still much effort underway at creating UID technologies, such 
as the Global ID project [3] and consistent tracking of cylinders [8]. For this project, however, we 
will assume a UID exists for each cylinder and that it can be read and entered into our DLT system. 
That said, if other potentially identifying information is also entered into the DLT, such as tare 
weight, origin and destination, for example, then one may be able to utilize the DLT data to infer 
the identity of a missing cylinder or one that arrives with no readable ID. 

2.2. Ethereum Concepts 
There are many resources to understand Ethereum at any desired level of detail [9]. For the 
purposes of this effort, Ethereum can be thought of as an immutable and audit-friendly 
decentralized datastore, where not only the data itself can be audited, but so can the application of 
business logic applied to the data in order to calculate the global state (e.g. the location/status of all 
UF6 cylinders worldwide). 

The decentralization of data arises from not relying on any particular organization to host a 
datastore, but rather by having a community of organizations each host copies of the datastore. The 
organizations are connected to each other via a peer-to-peer network, and the network protocol by 
which organizations communicate ensure that data consensus is achieved across the redundant 
datastores. 

Figure 5 shows a notional permissioned (private) Ethereum peer-to-peer network whereby 
shipping/receiving facilities for UF6 cylinders each run an Ethereum node. Each nuclear facility 
interacts with its local node to attest to cylinders being shipped and received from their facility, and 
their Ethereum node gossips with all other Ethereum nodes to reconcile a consistent global state of 
the shipping network. Consensus in this Ethereum DLT is achieved through the proof-of-work 
algorithm. 
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Figure 5. A notional Ethereum permissioned overlay topology, consisting of 7 interconnected 
nodes. 
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3. RESULTS 
To evaluate and demonstrate the concepts as described thus far, we have built a rudimentary 
shipping/receiving information system, with data backed by an Ethereum private ledger. This 
primarily consists of: 

- An Ethereum smart contract (see Appendix A) which accepts shipping event data, and 
reflects the up-to-date state and location of all known cylinders 

- A web application which displays the data that has been written to the contract thus far in a 
user-friendly fashion (see Figs. 7-10). 

Additional minimal effort was spent on building an automated pipeline for producing simulated 
cylinder data and coordinating the submission of that data to the Ethereum contract from a 
population of agents (computer programs representing nodes where shipping data is produced). 
This can readily be packaged up in experiment containers compatible with Sandia’s FIREWHEEL 
network analysis capability, to enable automated deployment for demonstration and test.  

As such, we have produced a repeatable and automated environment for deploying a fresh private 
Ethereum network, publishing the UF6 inventory repository smart contract mechanism to the 
private Ethereum network, simulating the movement of cylinders (which gives rise to events that are 
submitted to the contract), and visualizing the real-time state of the system at any point in time. The 
configurable parameters to this environment are: 

- the number of Ethereum nodes/agents 
- the number of distinct UF6 cylinders in play 
- the number of UF6 cylinder events that will be submitted to the contract 

3.1. The DLT Contract 
The Ethereum Solidity contract, called UF6InventoryRepo.sol (and listed in full form in 
Appendix A), is a notional inventory tracking contract containing minimal, but sufficient, 
functionality for ledgering shipping events. The workhorse function is insertEvent, as shown in 
Figure 6, which is called to indicate that a cylinder has been shipped or received by/at a facility. 
 
The remainder of the contract provides convenience methods for efficiently examining the body of 
submitted data. The contract as written efficiently supports  

- Retrieving a count of all known cylinders (constant time lookup) 
- Iterating over all known cylinders (linear time lookup in number of cylinders) 
- Iterating over all events concerning a specific cylinder (linear time lookup in number of 

events) 
- Retrieving a count of all known facilities (constant time lookup) 
- Iterating over all known facilities (linear time lookup in number of facilities) 
- Retrieving a count of cylinders AT REST at a specific facility (constant time lookup) 
- Retrieving a count of cylinders IN TRANSIT (constant time lookup) 

 
The contract could easily be extended to capture different attributes of shipping events or efficiently 
provide different views of the data (e.g. return all cylinders in a specific geographic region). The 
implemented functionality is sufficient for assessing high level properties of systems like this. 
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contract UF6InventoryRepo { 
 
function insertEvent ( 
           string memory action, //e.g. SHIPPED or RECEIVED 
           string memory reporter, //the organization reporting the 
event (the shipper/receiver) 
           string memory cylinderID, //the UID for the cylinder 
           string memory lat, //geographical latitude 
           string memory long, //geographical longitude 
           string memory flag, //state with accountability for 
cylinder 
           string memory timestamp //unix timestamp for event 
    ) 
 
Figure 6. Code snippet of Ethereum Solidity contract UF6InventoryRepo.sol which captures 
cylinder data upon entry by a user. 

3.2. The DLT User Interface 
Using command line tools to interact with smart contracts and inventory data can be cumbersome 
(akin to a database administrator interacting with data via the console). Any realistic enterprise 
deployment of a smart contract will likely contain a user interface layer, such as a graphically 
oriented user interface (GUI), via which typical users will interact with the system, which we assume 
will be the desired interface for the IAEA.  

We have built a simplistic but functional user interface layer based on Tabulator 
(https://tabulator.info) to explore data that has been submitted to an UF6InventoryRepo 
contract. This interface is implemented as a web application using modern javascript components 
for data reactivity and design cleanliness. But whereas typical web applications query data from a 
database or other web pages, our web application relies on a plugin called metamask 
(https://metamask.io/, which “brings Ethereum to your browser” that enables web pages to call 
smart contracts, and use the returned data to populate web page data elements. 

For example, Figure 7 shows a web page displaying high level summary information about a 
deployed UF6InventoryRepo contract, as retrieved by metamask. Figures 8-10 show varying 
views of the contract-managed data including a list (with current state) of all known cylinders, a 
cylinder-specific listing of all historical events involving that cylinder, and a facility-centric view  
showing counts of cylinders at various facilities, respectively. With this prototype, we have 
demonstrated the essence of a full shipment tracking system. It would be a matter of 
implementation effort to mature this minimal web application into a fully functional operational 
solution. 
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Figure 7. A webpage that leverages the metamask plugin to call a deployed UF6InventoryRepo 
contract and disply high level information about the data state of the contract. 
 

 

Figure 8. A view of UF6InventoryRepo data where all cylinders are listed in a table. The table 
uses progressive loading such that data is only retrieved in batches as a user scrolls the table. 
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Figure 9. Clicking on a specific cylinder in the previous view yields a cylinder centric view whereby 
all shipping events (in history) for that particular cylinder are shown. 
 

 

Figure 10. UF6InventoryRepo affords efficient querying of a data in a facility-centric fashion, 
exhibited here. The contract could be easily extended to efficiently provide other views of the 
underlying data (e.g. retrieve all cylinders currently residing in a particular region). 
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3.3. The UF6 Transit Data Simulator 
To test and demonstrate the capacity of our prototype we wrote a simplistic UF6 cylinder shipment 
simulator relevant to safeguards. The simulator accepts two parameters: number of cylinders C, and 
number of events to produce E. With these two parameters, our simulator generates a randomized 
stream of events as follows: 

1. Create C random cylinder IDs, and assign each cylinder to be AT REST at a random facility (the 
simulator currently has a list of 11 facilities) 

2. Set T=0 (i.e. simulated time) 

3. Repeat until E events are produced 

3.1. With some small probability (e.g. 10%), pick a random AT REST cylinder, and pick a 
random destination facility. Produce a shipping event indicating SHIPPED, and mark the 
cylinder IN TRANSIT. Estimate the amount of time the transit will take (based on a naïve 
distance calculation between facilities), and add to a receiving queue data structure the 
scheduled arrival time  

3.2. Check the receiving queue data structure and for any cylinder IN TRANSIT for which 
arrival time has been reached, mark cylinder AT REST at destination facility, and produce a 
shipping event indicated RECEIVED 

3.3. Increment T+=1 (advance simulated time) 

This simulated global routing of UF6 cylinders is used as the input into our private ethereum DLT. 

3.4. The DLT Agents 
To support automated, realistic, and repeatable submission of shipping events to a deployed 
contract, we created a pair of scripts, boss.py and worker.py, that automatically deploy a 
contract, and coordinate submission of events across a population of Ethereum nodes. This is 
achieved by running boss.py on a single node, which registers event queues with a rabbitmq 
server (an open-source messaging broker which in this case is just used for coordination between 
boss and workers), and then waits for the population of workers to check in. Then, worker.py is 
run on each node, resulting in a check-in message per node. Once all nodes are checked in, 
boss.py deploys an instance of UF6InventoryRepo, and distributes the resulting contract 
address to all workers. Then boss.py program proceeds to distribute each shipping event to the 
appropriate worker in sequence (and waiting for confirmation before proceeding to the next), for 
which worker.py in turn takes and submits the corresponding insertEvent Ethereum 
transaction. For example, if we have 11 instances of worker.py, each of which corresponds to the 
11 facilities in our event simulator as nodes, boss.py can direct shipping and receiving events 
involving a specific facility to arise specifically from the Ethereum node playing the role of that 
facility. 

3.5. FIREWHEEL 
FIREWHEEL is a Sandia-developed experiment orchestration framework that assists an 
experimenter in building, controlling, observing, and analyzing repeatable experiments of distributed 
systems at any scale. Typically, experiments are instantiated via emulation, but fundamentally 
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FIREWHEEL is an experiment orchestration tool that is agnostic as to how the experimental 
definition is converted into a running experiment and on to which execution platform(s) an 
experiment actually runs (i.e. bare metal, emulation, simulation, or a combination). Most users of 
FIREWHEEL will be using emulation to launch experiments; however it is important to note that is 
only one way in which FIREWHEEL can provide value in an Emulytics experiment. 
 
FIREWHEEL is a collection of tools that build upon several mature, open source virtualization and 
data management technologies. FIREWHEEL enables a researcher to: 

• Define an experimental topology programmatically. 
• Manipulate an experimental topology programmatically. 
• Scalably “compile” the topology to a configured and running set of virtual machines and 

associated networks in a cluster. 
• Manage the execution of in-experiment events and their data inputs and outputs. 
• Pervasively instrument the virtual machines and networks involved in an experiment. 
• Centrally collect, analyze, and display experimental data. 
• Archive an experimental description and reliably repeat an experiment. 

FIREWHEEL also includes a growing library of model component objects that ease construction of 
common topology components like Linux and Windows hosts, routers, Internet services, windows 
services, client and server applications, and a variety of example topologies ranging from small and 
simple to large and complicated that can be adapted or extended. 
 
An emulation-based experiment consists of a collection of virtual machines running operating 
system and application software connected by communications networks. The configuration of 
machines, software, and networks is driven by the design of the experiment, which in turn, is driven 
by the question the experiment has been designed to answer. FIREWHEEL enables users to define 
models of network topologies, as well as any time-scheduled actions they want performed on them. 
At run-time, FIREWHEEL first represents a topology abstractly, using a graph data-structure, and 
then instantiates the topology across a Firewheel Cluster of network-connected servers and triggers 
the execution of scheduled actions at their appointed times. 
 

 
Figure 11. Simple example topology for emulytics across 10 PCs. 



 

22 

 
For example, imagine an extremely simple experiment consisting of a collection of 10 PCs, running a 
variety of operating systems and applications, connected via a simple routed network as shown in 
Figure 11. To implement this experiment, we can run a set of virtual machines (VMs) distributed 
across three physical hosts as shown in Figure 12. Lastly, we can execute some actions on those 
VMs which enable answering our research question. For this simple experiment, it would be feasible 
to manually create and configure the virtual machine disk images, distribute them to the appropriate 
physical host machines, create the necessary virtual networks, start the virtual machines, and install, 
configure, and run software applications, but FIRWHEEL provides automations and optimizations 
easily that can save the manual user’s time. 
 

 
 
Figure 12. Virtual machines scheduled across a cluster for the simple topology example of Figure 
11. 
 
FIREWHEEL was designed to overcome several important shortcomings of manually configuring 
experiments, such as: 
 
Scalability: While configuring 10 virtual machines connected to a few networks manually is no great 
chore, if an experiment required hundreds or thousands of virtual machines connected to a similar 
number of virtual networks, the task would quickly become overwhelming. Such a large number of 
nodes could easily be the case for a DLT network. 
 
Diversity: If our question of interest requires us to test many variants of our initial configuration, 
for example to test the sensitivity of a system to a range of environmental parameters, manually 
managing the experimental complexity quickly becomes untenable. 
 
Repeatability: If, months or years after we perform our experiments, we or other researchers wish 
to recreate our suite of experiments, a manual approach requires us to expend almost as much 
energy as during our original effort, even if excellent documentation is available. 
 
Coordination: Experiments rarely consist of configuring and observing collections of idle virtual 
machines. Arranging the experimental events of interest to occur repeatably at precisely defined 
times across all the components of a manually defined experiment, especially if that experiment is 
large, is a challenge. 
 
Instrumentation and data collection: Typically, the reason we run an experiment is to observe a 
system by collecting, storing, and analyzing detailed measurements. Reinventing this process anew 
for every manually constructed experiment is wasteful and error-prone. FIREWHEEL enables users 
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to conduct rigorous research to answer compelling questions about cyber environments while 
resolving the previously identified shortcomings of existing approaches. 
 
For our UF6 prototyping environment we leveraged a previously developed model component for 
deploying an arbitrarily sized Ethereum network. As such our work was limited to the three 
components previously described: the UF6InventoryRepo.sol contract, a notional web 
application, and a means for simulating and submitting data to the contract in a realistic fashion 
across the population of Ethereum nodes. Figure 13 displays one of the attributes that you get ‘for 
free’ when using FIREWHEEL, specifically an experiment-wide view of events occurring in virtual 
machines (in this case transaction events that are being submitted to the contract from various 
nodes). 
 

 

Figure 13. Screenshot of the Kibana elastic search visualization tool, here displaying a global view 
of events coming from a deployed FIREWHEEL instance simulating UF6 movement. 

3.6. More Detailed Walkthrough 
Our UF6 cylinder tracking DLT prototype consists of the following steps: 



 

24 

1) Any node on the private Ethereum network deploys a compiled UF6InventoryRepo 
contract to the blockchain, as illustrated in Figure 14. The contract script listed in Appendix 
A compiles to under 5,000 bytes (~5Kbytes). Once the contract is deployed to the 
blockchain, it can be interacted with by any node on the network via its contract address, e.g. 
0xbdcfcf211a273b67e7cad537f17501667958442c 
 

 

Figure 14. A depiction of the contract compile and deploy process. 
 

2) At this point nodes may start submitting shipping/receiving events to the contract, which 
will result in network-wide updates to the state. For example, if the contract has not been 
used, issuing a transaction with the following data will result in the subsequently shown data. 
 
> 
uir.insertEvent.sendTransaction("SHIPPED","URENCO","TNXA452809","
32.4330195","-103.0797433","US","8587", {from:eth.accounts[0], 
gas: 1000000, fee:web3.toWei("0.00047","ether")}) 
"0x10d0e237e14f87edddc00896e3c1a27b042974678b54bbcac84fe39b1b3e29
7b" 
> uir.getNumEvents() 
1 
 
> uir.getNumCylinders() 
1 
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> uir.getLatestEvent("TNXA452809") 
"SHIPPED,URENCO,32.4330195,-103.0797433,US,8587" 
 
> uir.getNumCylindersInTransit() 
1 
 

The above results indicate that a single cylinder has been shipped, and is IN TRANSIT. 
Subsequently a second “received” event is entered per below: 

> 
uir.insertEvent.sendTransaction("RECEIVED","AREVA","TNXA452809","
43.497161","-112.0755061","US","3305", {from:eth.accounts[0], 
gas: 1000000, fee:web3.toWei("0.00047","ether")}) 
> uir.getNumEvents() 
2 
 
> uir.getNumCylinders() 
1 
 
> uir.getLatestEvent("TNXA452809") 
"RECEIVED,AREVA,43.497161",-112.0755061,12234” 
 
> uir.getNumCylindersInTransit() 
0 
 

3) As an example of more realistic data conditions, we executed steps 1 and 2 above on a 
simulated dataset consisting of 20,000 unique cylinder identifiers, and 75,000 distinct 
shipping/receiving events (which is roughly six months of events per today’s system load). 
The process for generating the, e.g. 75,000 insertObservation events, is depicted in  
Figure 15. After the simulation has completed, the user can query any aspect of the various 
transactions as stored in the DLT, such as 
 
> uir.getNumEvents() 
75000 
> uir.getNumCylinders() 
16957 
> uir.getLatestEvent ("TNXA452809") 
"RECEIVED,Westinghouse Columbia USA,33.882558,-
80.921731,US,7261131" 
> uir.getNumCylindersInTransit() 
106 
> 



 

26 

 

 

Figure 15. A depiction of the process to generate simulated UF6 movement events, and submit 
them to a deployed UF6InventoryRepo contract. 

 
We note that the above steps and terminal script snippets may not be convenient for an IAEA 
analyst. However, it is also straightforward to interact with the contract as a back-end datastore for a 
GUI approach as was illustrated in Figs. 7-10.  
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4. DISCUSSION 
We have developed a distributed ledger prototype for the UF6 cylinder tracking safeguards use-case 
utilizing Ethereum DLT technology in permissioned (private) mode that creates a simulated random 
sequence of UF6 cylinder events (e.g. shipping and receiving), stores all events in our DLT, and we 
provide a GUI mechanism to query all aspects of the blockchain data. We have written source code 
using the Solidity framework for DLT contracts, specifically the UF6InventoryRepo.sol code 
(see Appendix A). Further, we have used emulytics technology developed at Sandia to connect 
nodes of virtual machines of the DLT network utilizing the FIREWHEEL framework. We show 
examples of our DLT in action using the simulated data of 75,000 UF6 cylinder transactions, and 
find that the IAEA should easily be able to handle such a permissioned DLT for the UF6 cylinder 
tracking safeguards use-case, both from a code sustainability perspective (i.e. the code 
implementation utilizes user-friendly GUI interfaces) and from a data storage perspective (tracking 
150,000 UF6 cylinders is not an overwhelming data load for modest server requirements). 

4.1. UF6 Use-Case Value Proposition 
It is important and clarifying to realize that from a functionality perspective, DLT in the UF6 setting 
is essentially no different than what is achievable with a standard or distributed database. The major 
value of DLT is in the security and integrity properties of the stored data, specifically in reducing the 
opportunity for facilities to manipulate a shared database to hide cylinder diversion [2]. Additionally, 
DLT may aid in making progress on unifying UF6 data practices by a community of mutually 
distrusting data providers/writers. All Member States involved in the IAEA-managed DLT could 
have access to the DLT-stored immutable data, and the IAEA can restrict access as the Central 
Authority for any privacy concerns. 
 
In the nomenclature of [10], our prototype is a “DLT-backed database”, which is broader in scope 
than a traditional SQL database as the users cannot just use SQL tools but must also abide by DLT 
rules for writing data to the data-store and consensus mechanisms. If a DLT solution must interact 
with a legacy SQL database, then complications arise in the implementation, one solution for which 
is to create a cloud-based “DLT-backed table”. As this demo did not require integration with any 
known legacy solution, our DLT-backed database approach for this prototype is an acceptable 
choice. However, depending on the nature of the IAEA’s existing database for UF6 cylinder 
tracking, or other databases for different safeguards use-cases, this prototype may need further work 
to incorporate legacy data systems into a working DLT-backed database. 
 
Another system worth further exploring in this use case is TradeLens2, a partnership between IBM 
and Maersk, which has made headway in a DLT-backed approach to international shipping data 
provenance. An argument for UF6 relevance of TradeLens is argued in [11]. As of July 2019, Hapag-
Lloyd, Singapore-based Ocean Network Express (ONE), CMA CGM, and MSC Mediterranean 
Shipping Company have announced they are joining TradeLens. With these additions, the scope of 
the platform now extends to more than half of the world’s ocean container cargo. Members of 
TradeLens will have a comprehensive view of their data and can collaborate as cargo moves around 
the world, helping create a transparent, secured, immutable record of transactions. While the IAEA 
must have its own DLT for its purposes, it may be beneficial in the future to create a system for the 
IAEA that integrates with TradeLens. 
 

 
2 http://www.tradelens.com 
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The prototype described in this report is agnostic to whether the UF6 community adopts the 
concept of a global identifier, such as Global ID [7]. As long as cylinders have some unique 
identifier, our prototype applies. Further, as alluded before, the DLT data may provide means to 
extract cylinder identity when an ID is unavailable, since the DLT should immutable and all 
transactions are recorded.  

4.2. Pitfalls, and barriers to integration 
There are risks to deploying a DLT solution in any domain at the current point in time. For UF6 
cylinder tracking we assess the largest risks having to do with talent, development tools, regulation 
and teamwork, as described below: 
 

- Talent: There is a dearth of blockchain technical specialists, especially as compared with the 
relative abundance of database engineers and administrators 

- Standards: There is no DLT standard that would compel DLTs to work together 
- Development tools: it is still very early days for DLT and frameworks are varied such that it 

is very much a user choice of which technology to use, and how well these tools are 
supported 

- Regulation: while likely mostly applicable to other DLT use-cases (e.g. cryptocurrency), there 
is uncertainty regarding regulatory requirements for businesses leveraging DLT, and it is 
even less clear of the policy requirements for the IAEA to be allowed to implement DLT 
with Member States 

- Teamwork: one of the upsides of DLT is in not having to fully trust the various data writers 
to the network/ledger. That said, organizations will need to work together to the extent 
required to keep the peer to peer network operational. A good DLT has a consensus 
mechanism that works even when nodes are inoperable or malicious, but the IAEA needs to 
put in place a procedure for Member States to become part of its DLT and how to maintain 
their nodes.  

4.3. Data Privacy 
The prototype described in this report focuses on proof-of-concept and technical 
feasibility/scalability of a UF6 shipping/receiving tracker that leverages a distributed ledger. There is 
another important design requirement that is not explored, but which likely must be addressed as a 
prerequisite for adoption – specifically, data privacy/confidentiality. In other words, facilities worry 
about outsiders’ ability to infer proprietary information from shipping/receiving information. Alas, 
the current situation regarding UF6 shipping/receiving [2] is in large part due to facility reluctance to 
trust any single party with protecting this information. While we have not addressed this design 
dimension in our prototype, it is likely that this information is more straightforward to protect than 
it would be with a more traditional database approach. We now describe a few approaches for 
achieving this vision, of which further exploring is left as future work. 

A distributed ledger is replicated, and thus there is not reliance/trust placed on any single entity, i.e. 
a community need not decide/agree on an organization/platform to host/aggregate data. This 
attribute does not directly address facility worries about being able to infer proprietary information, 
but, rather than one external entity (the database provider) having sole control over the aggregated 
view of many facilities’ data, now many external entities have a common view over the aggregated 
view. An upside, however, is that all parties can see precisely how their own data is manifested in the 
datastore, i.e. it is not behind/managed by an opaque database provider. This enhances confidence, 
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on the part of each organization, in the integrity of the data regarding their facility, which represents 
a step forward in addressing data modification threats. 

Addressing the proprietary data inference threat, even under the replicated data (DLT) approach, is 
likely achievable via creative applications of cryptography, specifically via a combination of storing 
mostly encrypted data (for which only the facility owning the data can decrypt), along with select 
unencrypted derived metadata, of which the metadata is aggregated to achieve the improved global 
situational awareness covered by the rest of this report. The metadata is cryptographically reliant 
upon the encrypted facility data, such that facilities are effectively attesting to the accuracy of the 
metadata. An example may help illustrate this idea:  

For example, a facility ships a cylinder, and  

1. The facility encrypts the shipment information (details about contents of cylinder, weight, 
shipping destination, etc.); 

2. The facility publishes the encrypted data to the DLT;   
3. The facility cryptographically signs metadata consisting of the hash of the shipment data, 

along with e.g. an unecrypted statement such as ‘this is a shipment,’ 
4. The facility publishes the signed metadata to the DLT.  

Now all parties can confidently update their awareness of the number of cylinders in transit 
worldwide. Further, upon an incident, the shipping organization could selectively reveal underlying 
data to support audit, with the added benefit of strong integrity and authenticity properties of the 
reveald data. A draft standard, called encrypted data vaults (cite 
https://digitalbazaar.github.io/encrypted-data-vaults/), is one scheme which could likely support 
the approach described in this paragraph. 

Another data security avenue to consider is the addition of cryptographic secret-sharing protocols, 
such as secure Multi-Party Computation (MPC) [12] [13]. With MPC, the underlying raw data of 
parties is never revealed to any other party. Rather, each parties’ data is converted into random 
number “tokens” that represent the raw data, and these tokens are used in an agreed function to 
produce a result that all parties can see. The “function” can be any function that represents an 
outcome or goal, such as “do these ID’s match?”, and such an agreed-upon function can then be 
converted to a digital circuit for use with above-mentioned tokens in MPC protocols. Note that the 
function and the mechanics of the cryptographic procedures are completely transparent to all 
parties, keeping in-line with the transparency intent of a DLT. The blockchain and privacy-
preservation issue is a known issue to the commercial sector, so efforts are already ongoing to 
develop hybrid MPC-DLT solutions that may find applicability to IAEA use-cases [14]. 

In closing, achieving some of the ideas discussed in this section, specifically those addressing facility 
concerns about the inference of proprietary information, are likely achievable whether or not DLT is 
used as the datastore. For example, the encrypted but attested to scheme, could also be used in 
conjunction with a traditional database as the datastore. That said, using a traditional database would 
likely compromise some of the information integrity and authenticity benefits described above. 
Exploring this tradeoff space is also left as future work. 

4.4. Next Steps 
We believe a useful step forward will be to demonstrate this DLT prototype to the IAEA. We could 
provide a GUI for the IAEA to try and walk them through the code, which we believe will relax 
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many concerns regarding the sustainability of the DLT and code infrastructure. Pending the 
outcome of this demonstration, we could create other prototypes for other safeguards use-cases. 
 
We believe a logical next step if a working UF6 cylinder tracking DLT is deemed to be worthy of 
further pursuit is to engage TradeLens representatives on how to integrate an IAEA DLT with their 
DLT framework. This decision also depends on how much Member States rely on the international 
shipping industry to transport UF6 cylinders. Another avenue for in-country UF6 cylinder transport 
could be to demonstrate our DLT integration with the existing tracking mechanism of a willing 
Member State participant. This solution may require a DLT-backed table to bridge our DLT with 
legacy SQL databases that may be in use by the Member State. 
 
In short, we have developed a working private DLT applicable to IAEA needs and see no 
computational roadblocks to further utilization by the IAEA and Member States. Other DLT 
approaches of course can and should be considered beyond our specific implementation using 
Ethereum/Solidity, but we believe all approaches will arrive at a similar conclusion that a DLT 
solution for the IAEA makes sense and is practical. The next steps should involve the IAEA or at 
least a real-world scenario such as integration with the TradeLens DLT. 
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APPENDIX A. ETHEREUM SMART CONTRACT 
contract UF6InventoryRepo { 
 
    uint numEvents; 
 
    mapping(bytes32=>uint) numEventsByCylinder; 
    mapping(bytes32=>string[]) cylinderHistories; 
    mapping(uint=>string) cylinderIDs; 
    uint numCylinders; 
 
    mapping(bytes32=>int) numCylsByFacility; 
    mapping(uint=>string) facilityIDs; 
    uint numFacilities; 
 
    uint numInTransit; 
 
    bytes32 shippedStatic = keccak256(abi.encodePacked("SHIPPED")); 
    bytes32 receivedStatic = keccak256(abi.encodePacked("RECEIVED")); 
 
    function insertEvent ( 
           string memory action, //e.g. SHIPPED or RECEIVED 
           string memory reporter, //the organization reporting the event (the shipper/receiver) 
           string memory cylinderID, //the UID for the cylinder 
           string memory lat, //geographical latitude 
           string memory long, //geographica longitude 
           string memory flag, //state with accountability for cylinder 
           string memory timestamp //unix timestamp for event 
    ) public { 
             bool seencyl = true; 
             bytes32 cylinderBID = keccak256(abi.encodePacked(cylinderID)); 
             if(numEventsByCylinder[cylinderBID]==0){ 
               cylinderIDs[numCylinders] = cylinderID; 
               numCylinders+=1; 
               seencyl = false; 
             } 
             numEventsByCylinder[cylinderBID] += 1; 
             numEvents += 1; 
 
             //this may break if encodePacked changes in the future to not just do concatenation 
             string memory h =  
           string(abi.encodePacked(action,",",reporter,",",lat,",",long,",",flag,",",timestamp)); 
 
             cylinderHistories[cylinderBID].push(h); 
 
             bytes32 reporterBID = keccak256(abi.encodePacked(reporter)); 
             bytes32 actionBID = keccak256(abi.encodePacked(action)); 
             if(numCylsByFacility[reporterBID] == 0){ 
                facilityIDs[numFacilities] = reporter; 
                numFacilities += 1; 
                //see note below about weirdness 
                numCylsByFacility[reporterBID] = -1; 
             //this is a little weird, we need to use zero to indicate 
             //that we've not seen this location before, and so we use -1 as our zero 
             if(actionBID == receivedStatic){ 
                //increment receiving facility count (-1 and 0 => 1, everything else i+1) 
                if(numCylsByFacility[reporterBID] > 0){ 
                        numCylsByFacility[reporterBID] += 1; 
                } else { 
                        numCylsByFacility[reporterBID] = 1; 
                } 
                //decrement intransit 
                numInTransit -= 1; 
             } else if (actionBID == shippedStatic){ 
                //increment intransit 
                numInTransit += 1; 
                //decrement shipping facility count if we've seen it before  

 //(1 and 0 => -1, everything else i-1) 
                if (seencyl){ 
                        if(numCylsByFacility[reporterBID] > 1){ 
                                numCylsByFacility[reporterBID] -= 1; 



 

33 

                        } else { 
                                numCylsByFacility[reporterBID] = -1; 
                        } 
                } 
             } 
    } 
 
    function getNumCylinders() public view returns (uint) { 
             return numCylinders; 
    } 
 
    //index must be between 0 and getNumCylinders-1, and iterating 
    //through those indices will return all cylinderIDs 
    function getCylinder (uint index) public view returns (string memory){ 
        return cylinderIDs[index]; 
    } 
 
    function getHistoryLength (string memory cylinderID) public view returns (uint){ 
             bytes32 cylinderBID = keccak256(abi.encodePacked(cylinderID)); 
             return cylinderHistories[cylinderBID].length; 
    } 
 
    //index must be between 0 and getHistoryLength-1, and iterating 
    //through those indices will return all events for this cylinder 
    function getHistoryEntry (string memory cylinderID, uint index) public view returns (string   
       memory){ 
             bytes32 cylinderBID = keccak256(abi.encodePacked(cylinderID)); 
             return cylinderHistories[cylinderBID][index]; 
    } 
 
    //convenience method to retrieve latest event for given cylinder 
    function getLatestEvent(string memory cylinderID) public view returns (string memory){ 
             return getHistoryEntry(cylinderID, getHistoryLength(cylinderID)-1); 
    } 
 
 
    function getNumFacilities() public view returns (uint) { 
             return numFacilities; 
    } 
    //index must be between 0 and getNumFacilities-1, and iterating 
    //through those indices will return all facilities 
    function getFacility (uint index) public view returns (string memory){ 
        return facilityIDs[index]; 
    } 
 
    //total number of events received by system 
    function getNumEvents () public view returns(uint){ 
             return numEvents; 
    } 
 
    function getNumCylindersAtFacility(string memory facility) public view returns (uint) { 
             bytes32 facilityBID = keccak256(abi.encodePacked(facility)); 
             int n = numCylsByFacility[facilityBID]; 
             if(n < 0){ 
                return 0; 
             } else { 
                return uint(n); 
             } 
    } 
 
    function getNumCylindersInTransit() public view returns (uint) { 
             return numInTransit; 
    } 
 
} 
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APPENDIX B. DLT USE CASE CONSIDERATIONS 
The National Institute of Standards & Technology (NIST) provides a flowchart for “Do you need a 
blockchain” [15]. From the NIST documentation, they state that blockchain technology solutions 
may be suitable if the activities or systems require features such as:  

• Many participants  
• Distributed participants  
• Want or need for lack of trusted third party  
• Workflow is transactional in nature (e.g., transfer of digital assets/information between 

parties)  
• A need for a globally scarce digital identifier (i.e., digital art, digital land, digital property)  
• A need for a decentralized naming service or ordered registry  
• A need for a cryptographically secure system of ownership  
• A need to reduce or eliminate manual efforts of reconciliation and dispute resolutions  
• A need to enable real time monitoring of activity between regulators and regulated entities  
• A need for full provenance of digital assets and a full transactional history to be shared 

amongst participants 
 
We addressed the NIST criterion applied to the UF6 cylinder tracking safeguards use-case below in 
Figure 16, where green-shaded blocks indicate affirmative utility of blockchain technology, and 
yellow indicates dubious justification. In our opinion, which also confirms the previous work by 
PNNL [1] [2], the UF6 cylinder tracking safeguards use-case does warrant utilization of a DLT, or 
blockchain. 
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Figure 16. NIST flow chart for "Do you need a blockchain" as answered by the authors for the case 
of UF6 cylinder tracking. 
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