

Stereoscopic high-speed microscopy to understand transient internal flow processes in high-pressure nozzles

J. Manin^{a,b,*}, L.M. Pickett^a, K. Yasutomi^{a,c}

^a*Sandia National Laboratories, 7011 East Ave, Livermore, CA*

^b*Artium Technologies, 740 Lakeside Dr, Sunnyvale, CA*

^c*Hino Motors Ltd., Hino-Shi, Tokyo, Japan*

Abstract

The flow and cavitation behavior inside fuel injectors is known to affect spray development, mixing and combustion characteristics. While diesel fuel injectors with converging and hydro-eroded holes are generally known to limit cavitation and feature higher discharge coefficients during the steady period of injection, less is known about the flow during transient periods corresponding to needle opening and closing. Multiple injection strategies involve short injections, multiplying these aspects and giving them a growing importance as part of the fuel delivery process. In this study, single-hole transparent nozzles were manufactured with the same hole inlet radius and diameter as the Engine Combustion Network Spray D nozzle, mounted to a modified version of a common-rail Spray A injector body and needle. Needle opening and closing periods were visualized with stereoscopic high-speed microscopy at injection pressures relevant to modern diesel engines. Time-resolved sac pressure was extracted via elastic deformation analysis of the transparent

*Corresponding Author.

Email address: jmanin@artium.com (J. Manin)

nozzles. Sources of cavitation were observed and tracked, enabling the identification of a gas exchange process after the end of injection with ingestion of chamber gas into the sac and orifice. We observed that the gas exchange contributed widely to disrupting the start of injection and outlet flow during the subsequent injection event.

Keywords:

Transparent nozzles, Diesel injection, Internal flow, Cavitation, Microscopy.

¹ 1. Introduction

² Spray formation and mixing are crucial phenomena for combustion sys-
³ tems, especially those featuring direct injection technology. In reciprocating
⁴ engines, the processes of direct fuel injection into the cylinder is highly tran-
⁵ sient and closely tied to efficiency and potential for pollutant formation.
⁶ Although our understanding of high-pressure sprays is progressing, a miss-
⁷ ing component is the linkage between flows inside the nozzle and the effect
⁸ on the emerging spray. Several studies have linked internal flow hydraulic
⁹ characteristics to spray development and mixing [1, 2], through correlation of
¹⁰ injection mass flow rate or momentum flux to spray penetration and disper-
¹¹ sion. Hydraulic characterization under the appropriate operating conditions
¹² is valuable to understand the flow behavior of the injection system and nec-
¹³ essary to provide the correct boundary conditions to computational fluid
¹⁴ dynamic (CFD) simulations. However, these measurements fail to capture
¹⁵ the detailed physics of the phenomena occurring within the injector, namely
¹⁶ the inception and development of cavitation, as well as the highly important
¹⁷ transient processes.

18 Taking advantage in material science and improving machining capabil-
19 ies, researchers have been able to manufacture transparent fuel injector
20 nozzles with real-size holes, despite typical diameters of only a fraction of a
21 millimeter, to permit study of internal flow at practical conditions. Prototype
22 nozzles made of various materials such as acrylic or quartz, have permitted
23 the application of optical diagnostics to scrutinize the flow behavior inside
24 micro-orifice [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. These studies have made
25 substantial progress in our understanding of hydraulic and cavitation behav-
26 ior in high-pressure flow and spray processes.

27 On the other hand, there has been less focus on the transient periods
28 of the injection event in this emerging field. High temporally resolved tech-
29 niques, with repeatable control, are necessary to capture the fast, transitory
30 processes driving global hydraulic characteristics, spray development and
31 mixing processes. This aspect becomes particularly important in modern
32 diesel engines, where injection strategies rely on multiple injections per cy-
33 cle. In most cases, quasi-steady quantities are not representative of the flow,
34 as the needle valve moves throughout the entirety of the injection, requiring
35 study of the entire transient process of each injection and of multiple succes-
36 sive injections. With the progress made in high-speed digital imaging, as well
37 as manufacturing techniques, recent studies employed high-speed microscopy
38 to track the evolution of the inside flow and injected spray at relevant injec-
39 tor and ambient operating conditions. Hayashi and coworkers [11] have even
40 used a quartz nozzle featuring three side-located, 0.14-mm orifices injecting
41 into a reacting combustion environment prepared in an optically-accessible
42 rapid compression machine. Swantek et al. [15] visualized the injection pro-

43 cesses in real-size metal nozzles in detail using x-ray phase-contrast imaging.
44 They observed left-over gas bubbles in the sac of high-pressure diesel injectors
45 after the end of injection, which they believed came from ingested chamber
46 gas. The lack of temporal resolution did not allow them, however, to explain
47 the origin of the presence of gas in the sac following the end of injection.

48 Parallel to the experimental efforts, CFD modeling of the internal flow is
49 needed to develop more predictive models about spray breakup and mixing
50 processes. However, one weakness in this area is that the state of the nozzle
51 sac, defined as the volume between the needle valve and the holes, is often
52 unknown and undefined. The transient, in-nozzle processes and the status of
53 the sac in high-pressure diesel injectors was numerically studied by Battistoni
54 et al. [16], whose simulations predicted cavitation and the presence of gas
55 in the sac after the end of injection. Building on the experimental results of
56 Swantek et al. [15], they also concluded that the residual gas in the sac comes
57 from ingested chamber gas, but did not propose a physical explanation. This
58 aspect is particularly significant for highly-resolved volume-of-fluids simula-
59 tions, where high computational costs limit the simulation time to only the
60 early transient period. Consequently, if boundary conditions, such as the
61 amount of gas present in the sac before injection, are unknown, the relevance
62 and universal conclusions of these simulations should be questioned. Mi-
63 croscopic visualization of starting spray from metal fuel injectors at engine
64 conditions already showed evidence of gas injection leading liquid injection
65 [2, 17] with collateral effects on initial flow characteristics and spray develop-
66 ment. For example, recent measurements showed that once liquid is injected,
67 the initial flow velocity exiting the injector does not ramp up from zero, thus

68 affecting transient rate of injection used in CFD [18, 19].

69 In this work, we designed real-size optically transparent nozzles match-
70 ing the Engine Combustion Network (ECN) Spray D geometry (see exact
71 surface geometry at ecn.sandia.gov). A cylindrical, sharp-edged version
72 of the nozzle was also tested to observe the effect of cavitation on the tran-
73 sient phenomena. Based upon availability, the nozzles were mounted on a
74 modified ECN Spray A injector. Experiments were performed in an optically-
75 accessible pressure chamber able to emulate pressurized ambient conditions,
76 typical of modern Direct-Injection (DI) diesel engines. We performed stereo-
77 scopic high-speed microscopy to visualize the internal flow and cavitation, as
78 well as the near-nozzle spray formation. The remaining of the manuscript
79 is organized as follows. The experimental methods are described, detailing
80 the constant-flow, high-pressure optical chamber, the stereoscopic high-speed
81 imaging arrangement, and the transparent nozzle, including advanced geom-
82 etry characterization. The results section presents the temporally-resolved
83 needle lift and sac pressurization process, followed by the end of injection gas
84 exchange, leading to particularities of the start of injection.

85 2. Experimental methods

86 All the work on real-size, transparent nozzles introduced earlier paved the
87 way to the experiments conducted in this work. Because of the high pressures
88 involved in diesel injection, the priority was to design and manufacture op-
89 tically transparent nozzles that would withstand pressures above 100 MPa.
90 In addition to finite element analysis, extensive stress testing was carried
91 out to evaluate the elastic and plastic deformation characteristics of the noz-

92 zles. More details about these tests are provided in Ref. [20]. The fast and
93 highly transient nature of the processes involved in internal flow, especially
94 cavitation, are favorable to high-speed microscopy. While challenging, our
95 experience in such diagnostic helped take the technique to new levels. We
96 developed a spatially and temporally correlated stereoscopic high-speed mi-
97 croscopy system to visualize the internal flow processes from two orientations
98 and extract near-3-D information.

99 *2.1. Stereoscopic imaging diagnostic*

100 A stereoscopic system was developed to acquire detailed high-speed visu-
101 alizations of the internal flow and near-nozzle spray from optically-transparent
102 nozzles (Fig. 1). To maximize the stereoscopic effect in three dimensions,
103 the systems were arranged orthogonal to one another. Each imaging system
104 is composed of a long-working-distance microscope objective (Infinity K2-
105 DistaMax or Infinity KV), a high-speed CMOS camera (Phantom v2512 or
106 Photron SA-X2) and a custom-built illumination system.

107 Optical resolution is of primary importance when performing visualiza-
108 tion at microscopic scales. The resolution of a microscope imaging system is
109 generally referred to as the diffraction limit [21]. Criteria such as the Abbe
110 or Rayleigh resolution limits are often used to theoretically assess an imag-
111 ing system's performance. They provide a relationship between fundamental
112 optical parameters, namely the illumination wavelength and numerical aper-
113 ture of the receiving optics, a parameter equivalent to the collection angle
114 in photography. In this context, short illumination wavelength and large
115 numerical aperture contribute to achieving high-resolution images. The nu-
116 matical aperture of the system for the primary configuration was 0.15, while

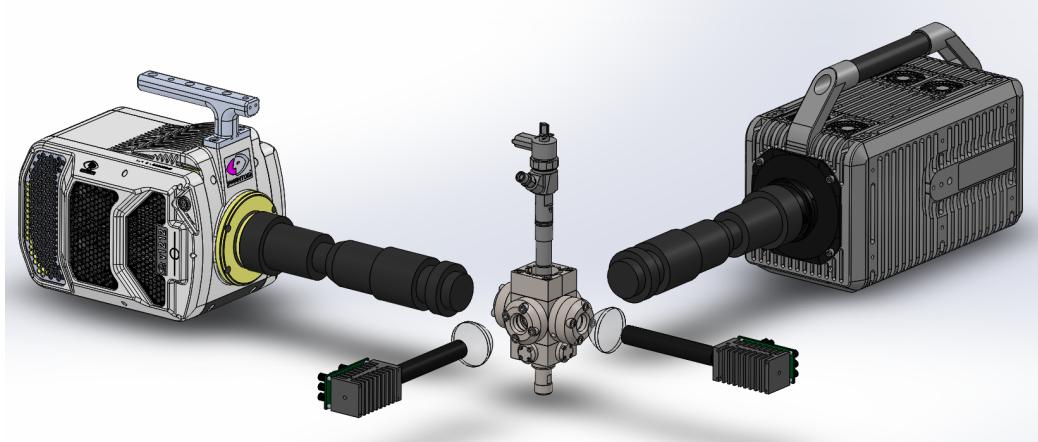


Figure 1: Schematic of the experimental arrangement, showing both high-speed cameras and illumination sources. The pressure vessel is located in the center of the sketch, between the two systems.

117 it was 0.10 for the secondary system. For both configurations, the Rayleigh
 118 resolutions are less than half a pixel, meaning that the systems' are not
 119 considered diffraction-limited, in part due to the relatively large working dis-
 120 tance, limiting optical magnification, but also to the large pixels used in
 121 high-performance, high-speed camera sensors [22].

122 The high velocities involved in internal and near-nozzle flow in high-
 123 pressure injection systems make for stringent requirements to capture the
 124 flow features motionlessly, or with no velocity-induced image blur. The effec-
 125 tive optical resolution of the system and flow velocities set the pulse duration
 126 requirements. The illumination systems rely on a custom blue LED emitter
 127 centered on 455 nm (22 nm bandwidth) for the primary system, and a red
 128 LED chip (620 nm, 19 nm bandwidth) for the secondary arrangement. At
 129 the core of each LED illumination source is an ultrafast, high-current driver,
 130 capable of producing pulses shorter than 10 ns at megahertz repetition rates.

131 For these experiments, the pulse duration was set to 30 ns for the primary
132 system and 100 ns for the secondary.

133 The primary system operated at frequencies between 120 and 380 kHz,
134 while the secondary system acquired at 270 kHz throughout the experiments.
135 Although the cameras exposure times were set to 2 and 2.5 μ s for the pri-
136 mary and secondary systems, respectively, the illumination pulse durations
137 determined the exposure timescales. By synchronizing the two systems, the
138 dual-camera arrangement allows simultaneous stereo or three-dimensional vi-
139 sualization of the needle motion, internal flow and spray dynamics. To assist
140 in the description of the systems and to allow the reader to become famili-
141 iar with the configurations of each system, we labeled them primary and
142 secondary systems. The primary corresponds to the Phantom v2512 cam-
143 era, with the Infinity K2-DistaMax objective, while the secondary system is
144 composed of the Photron SA-X2 and the Infinity KV lens. The microscope
145 objectives were configured to provide magnification levels of 8 \times for the pri-
146 mary system and 3 \times for the secondary one, resulting in digital resolutions
147 of 3.5 and 7 μ m/pixel, respectively. More information about the cameras
148 and their performance under general scientific application is available in Ref.
149 [22].

150 *2.2. Pressure chamber and transparent nozzles*

151 Experiments were conducted using an optically-accessible chamber de-
152 signed specifically for internal flow visualization and measurements in optically-
153 transparent nozzles, as shown in Fig. 2. The vessel is equipped with four
154 25.4-mm (1-in) diameter fused silica windows, providing dual or stereoscopic
155 line-of-sight optical access to the transparent nozzle. The geometry of the

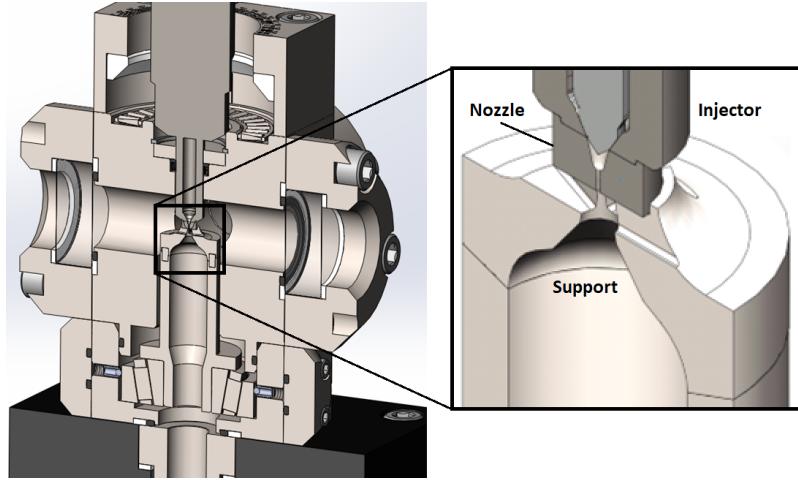


Figure 2: Schematic of the purposely-designed and built pressure vessel to optically access the internal flow processes of high-pressure transparent nozzles. The zoomed-in area shows the acrylic tip replacing the metal nozzle mounted on a modified Spray A injector, as well as geometric details of the nozzle support with cutouts to allow air entrainment and visualize the near-field spray.

156 chamber was tailored to allow short working distances and large numeri-
 157 cal apertures for microscope imaging to perform optimally. The nozzle is
 158 placed on a pedestal with open slots on four sides, allowing direct visualiza-
 159 tion of the flow exiting the transparent nozzle as well as within the nozzle.
 160 The open slots also permit air entrainment into the spray. The orifice is
 161 vertically-aligned and a modified ECN Spray A solenoid-actuated injector is
 162 mounted atop the transparent nozzle. More details on the nozzle geometries
 163 and assemblies are provided in a later section. The chamber operates with
 164 N₂ gas at constant-pressure. A flow is typically maintained to scavenge the
 165 chamber internal volume, limiting the likelihood of window contamination
 166 during repeated spray operation.

167 We used n-Dodecane fuel in the injection system for these experiments.
168 The fuel was pressurized by a high-pressure syringe pump, and injection
169 pressure was varied between 25 and 150 MPa, but repeated nozzle failures at
170 150 MPa convinced us to set the upper injection pressure target to 100 MPa.
171 It should be noted that the fuel was not degassed for these tests, and that
172 a trace amount of air should be expected to dissolve under the conditions
173 kept in the laboratory. This is reasonable as dissolved gas is also expected in
174 regular diesel fuel tanks. The ambient conditions tested in this work ranged
175 from atmospheric to 2.0 MPa, while the temperature was kept constant at
176 20°C, resulting in a peak ambient density condition of 22.8 kg/m³, matching
177 the ECN Spray A target density condition.

178 Real-size, optically-transparent nozzles were designed to be mounted at
179 the end of a modified solenoid-actuated ECN Spray A injector. The process
180 is similar to the one described by Liverani et al. [9], where the tip of a
181 production injector nozzle is machined out and replaced by the transparent
182 model. The transparent nozzles were made from cast acrylic, and significant
183 time and effort has been spent to ensure that the nozzle shape was made as
184 specified. Cast acrylic was selected above quartz to avoid brittle material
185 problems, and over sapphire to more closely match the refractive index of
186 the fuel and the nozzle [10]. The ECN Spray D metal nozzle was chosen as
187 the target nozzle. Spray D, is a conical orifice nozzle, with a target nominal
188 diameter of 0.186 mm, a k – factor of 1.5 and hydro-grinding was performed
189 to achieve a flow number of 188 g/min with 10 MPa pressure drop. The
190 measured mean exit nozzle diameter for Spray D is about 0.189 mm. Spray
191 D internal 3-D nozzle geometry and hydraulic characterization at realistic

192 diesel injection conditions have been performed by ECN participants and are
193 available to download (ecn.sandia.gov).

194 The transparent acrylic tips were micro-machined using custom tools for
195 the sac and undersized drills for the hole, and then hydro-eroded to match
196 the flow number of Spray D. Hydro-erosion rounded the inlet and produced
197 an overall geometry that is an excellent match to Spray D, as shown in Fig.
198 3. The upstream region of the sac is not that of Spray D, because an extra
199 metal injector with the same dimensions as Spray D was not available for
200 modification at the time. Instead, a complete Spray A injector was modified
201 to be mated with the acrylic nozzle. Since the acrylic nozzle was designed
202 to mate and seal with a modified Spray A injector (with support from the
203 bottom and clamping forces from the injector above), as shown in Fig. 2, the
204 sac (and needle) reflect that of the Spray A nozzle, which is slightly smaller
205 than the Spray D sac. The acrylic tips were characterized by microscopic
206 imaging while submerged in a liquid fluid which refractive index was close to
207 the acrylic, proving to be the most reliable way to optically detect and locate
208 internal geometries. Note that perfectly matching refractive indices reduces
209 sensitivity, making it difficult to properly determine the location of nozzle
210 sac and orifice boundaries. The measured metal Spray D (red) and Spray A
211 (blue) profiles are overlaid on the photograph for comparison in Fig. 3.

212 The characteristic geometrical features of the target Spray D nozzle ap-
213 pear well-represented by the transparent equivalent, with a good match be-
214 tween orifice entrance curvature and overall dimensions. The measured out-
215 let diameter of the acrylic tip under operating conditions was within a few
216 micrometers of the target geometry, at 0.189 mm, effectively matching the

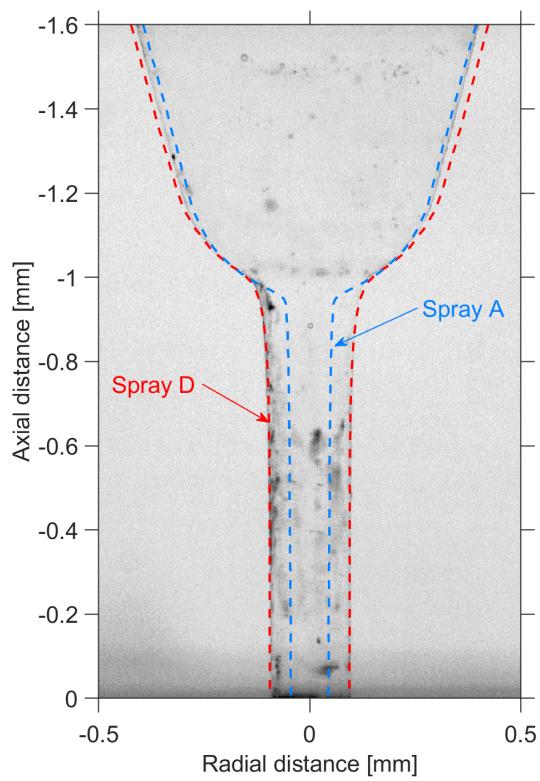


Figure 3: Optical microscopy photograph of the transparent nozzle with comparison to metal nozzle target geometries for ECN Spray A (blue profiles) and Spray D (red profiles).

217 measured metal Spray D nozzle outlet diameter. It can be noted that many
218 acrylic nozzles of the same geometry were manufactured, and that geometri-
219 cal characterization via pin gauge insertion or optical analysis showed excel-
220 lent repeatability. The set of analyzed and used nozzles showed less than 2.5
221 μm via the pin gauge method (corresponding to the pin gauge diameter reso-
222 lution), which matched the maximum dispersion from the optical microscopy
223 measurements exactly, equivalent to 1.3 % total variation in outlet diameter.
224 Such small nozzle-to-nozzle geometrical differences are noticeably better than
225 what was observed for Spray A and Spray D metal injectors [23, 24]. Table 1
226 summarizes parameters relevant to the experiments conducted in this work,
227 including nozzle geometry, operating conditions and flow characteristics.

228 Surface quality is another important parameter because cavitation has
229 been observed to be sensitive to surface roughness [25]. Because of the dif-
230 ferent machining methods used to manufacture the transparent nozzles, com-
231 pared to EDM or laser-drilled metal injectors, variation in surface quality is
232 expected. The surface quality of the nozzle was imaged directly with opti-
233 cal microscopy, with resolution on the order of 0.3 μm . The images showed
234 left-over machining marks, as well as the effects of abrasive flow machin-
235 ing. Images acquired in the region between the sac and the orifice entrance
236 highlighted the effects of abrasive flow machining, effective in the orifice, but
237 apparently not in the sac, transitioning from relatively large non-oriented
238 geometrical features to smaller ridge-looking geometries oriented along the
239 orifice, on the order of a few micrometers in size.

240 Several nozzles were also investigated under a scanning electron micro-
241 scope (SEM) after one half of the nozzle was removed by high-precision ma-

Parameters	Quantities
Nozzle type	Mini-sac
Orifice diameter	0.186 mm (0.189 mm)
Orifice geometry	Converging
k-factor	1.5 (1.0)
Flow rate (at 10 MPa)	188 g/min
Injected fuel	n-dodecane
Injection pressure	25 - 100 MPa
Ambient gas	N ₂
Ambient pressure	0.1 - 2.0 MPa
Ambient temperature	20°C
Theoretical outlet velocity	253 - 527 m/s
Cavitation number (Ca)	1.0002 - 1.004
Reynolds number (Re)	5.97×10^4 - 1.24×10^5
Weber number (We)	4.36×10^5 - 1.89×10^6

Table 1: Parameters relevant to the nozzle, injection, ambient gas, and flow characteristics for the various conditions tested in this work. The orifice diameter and *k-factor* in parentheses indicate measured quantities.

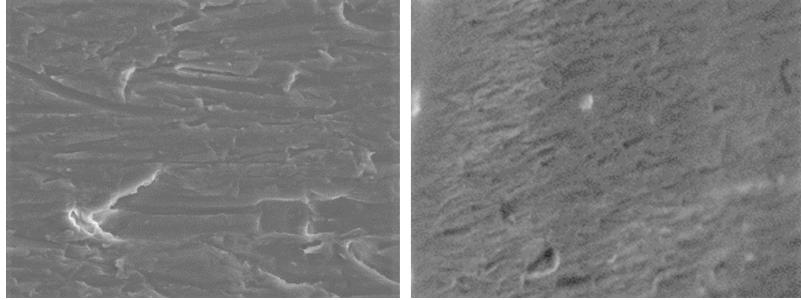


Figure 4: SEM imaging of the geometrical details observed near the orifice exit of a sample transparent nozzle used in this work on the left, and a Spray A injector on the right showing noticeably smaller geometric features. Images are approximately 16 μm in length and 12 μm in height.

242 chining and a thin coat of gold was applied to the samples for electron con-
243 duction. The left image of Fig. 4 shows an example of SEM results for a
244 transparent nozzle acquired about 100 μm from the orifice exit. The right
245 picture is a similar example of SEM imaging acquired near the orifice exit of
246 an ECN Spray A nozzle, to provide a comparison to the geometrical features
247 observed in the transparent nozzle. Both images represent equivalent areas
248 approximately $16 \times 12 \mu\text{m}^2$, with the long dimension aligned with the orifice
249 axis.

250 The SEM images of the transparent and metal nozzles show apparent
251 differences, with visually larger geometrical features resembling ridges and
252 crests, extending about half the length of the imaged area, or between 5 and
253 10 μm long for the transparent nozzle (left image of Fig. 4). These long
254 marks contrast with the comparably small features observed on the right
255 example for the metal nozzle, with the largest feature in this image only a
256 couple of micrometers, with most features below 1 μm .

257 **3. Results and discussions**

258 *3.1. Needle-lift and sac pressurization*

259 The tip of the needle can be observed in the sac of the transparent noz-
260 zles, thereby offering a direct measurement of needle lift and motion. While
261 needle motion has been reported by other groups, whether via Foucault sen-
262 sors attached to the rod, or x-ray phase contrast imaging [15], needle motion
263 is system-dependent and such measurements are valuable to understand the
264 impact of needle throttling during opening and closing transient periods. The
265 needle profile is the result of complex hydraulics initiated as the solenoid is
266 energized, a control volume above the needle is depressurized, and hydraulic
267 force on the other side overcomes the force exerted by the spring keeping the
268 needle closed under non-energized conditions (e.g., see [26]). Visualization
269 within the transparent nozzle permits visualization of this needle movement
270 along with flow and fuel pressure indicators to better understand the open-
271 ing and closing stages of the fuel injector. The needle profiles as function
272 of time measured during operation under different injection and chamber
273 pressure conditions are plotted in Fig. 5. The traces were averaged over
274 five repetitions and are reported with respect to the time after the start of
275 injection (ASOI), therefore accounting for the hydraulic delay corresponding
276 to the time between the start of energizing and the actual start of injec-
277 tion. The light-colored areas around the profiles report the total error of the
278 mean, combining bias (experimental) and statistical uncertainties, with a 95
279 % confidence interval [27].

280 The needle lift profiles of Fig. 5 show that, as observed by others previ-
281 ously on similar injectors, the lift rate is pressure-dependent, with the 100



Figure 5: Needle lift as function of time at 50 and 100 MPa injection pressures into 0.5 and 2.0 MPa chamber pressure conditions. The lighter shade areas represent the total error of the mean for these measurements.

282 MPa injection pressure producing faster lift, approximately twice as fast as
 283 the 50 MPa injection pressure. In both cases, the needle rises for over 250
 284 μ s, to reach peak lifts on the order of 65 and 125 μ m from the initial po-
 285 sition, respectively for the 50 and 100 MPa injection pressure cases. We
 286 should add that even though energization time was kept constant at 795 μ s
 287 for both conditions, total injection duration is substantially shorter for 50
 288 MPa compared to 100 MPa, as observed in previous works [26, 28]. The rel-
 289 atively large error-bands are mostly the result of experimental uncertainty,
 290 as opposed to event-to-event dispersion, and despite the limited number of
 291 repetitions. Needle motion has been observed to be a fairly repeatable pro-
 292 cess, in both lift and radial oscillations, as demonstrated by Kastengren et
 293 al. via x-ray radiography on Spray A injectors [28].

294 The physical properties of the transparent nozzles, namely the slight elas-
295 tic deformation of the acrylic nozzles under pressure, allowed correlating the
296 deformation in the sac with pressure as function of time. The sac only de-
297 forms by a few micrometers, but the highly-resolved imaging systems could
298 measure the change in sac diameter, treating the measured elastic deforma-
299 tion of the acrylic as an indirect measure of fuel pressure. A calibration for
300 fuel pressure was taken at no sac pressure, and at the time of peak needle lift
301 at different injection pressures, therefore assuming that the sac reaches the
302 upstream pressure during the quasi-steady period of long injections. This
303 calibration process showed the linear relationship between deformation and
304 pressure, as expected under elastic deformation. Sac diameter measurements
305 were taken orthogonal to the injector axis at the sac location of the tip of the
306 needle (needle position before energization). It should be noted that pres-
307 sure across the sac is assumed constant at a given time. This assumption is
308 supported by wave propagation calculations, indicating that pressure waves
309 travel across the sac filled with n-dodecane in about 0.54 μ s at 0.1 MPa sac
310 pressure (speed of sound increases with pressure [29]), when the minimum
311 interframe time for these experiments was 5 μ s. The measurement estimates
312 of the sac pressurization process as a function of time are reported in Fig.
313 6 under the different conditions of Fig. 5. These profiles are the results of
314 averaging over five injection events, and the total error of the mean is also
315 reported for these measurements, via the light-colored areas around the mean
316 profiles. It is important to note that these results were extracted with the
317 sac and orifice filled with liquid, and that sac pressurization has been found
318 to be significantly slower when the sac and orifice contain large amounts of

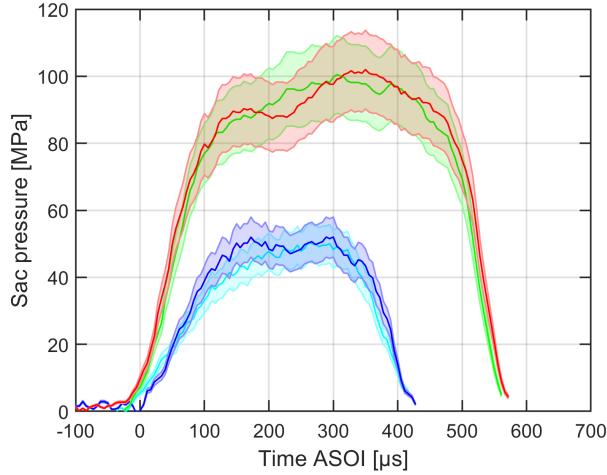


Figure 6: Pressure in the sac estimated as the amount of deformation exhibited by the transparent nozzle as function of time. The light-colored areas represent the total error of the mean for these experiments. Same conditions and style as in Fig. 5.

319 gas.

320 By contrast to the needle lift measurements, the estimated sac pressure
 321 rises and reaches a steady value, and does so much faster than the needle
 322 lift. Note that the sac pressure measurement is admittedly sensitive to noise
 323 because of the slight sac displacement, but the behavior is still quite clear.
 324 For either injection pressure, stable sac pressures are obtained within 100
 325 μ s. Note that this behavior is expected if the needle lifts high enough such
 326 that the throttling restriction is no longer in the needle-seat area, but within
 327 the hole. An analysis of the flow areas at the needle seat compared to the
 328 orifice area shows that the needle-seat flow area exceeds the orifice area with
 329 only 0.020 mm lift. This requirement is met by 100 μ s for either injection
 330 pressure. Even though the needle lift is higher at 100 MPa, additional time
 331 to pressurize the sac may be expected because of frictional losses through

332 the small-passage seat area and the inertia associated with pressurizing all
333 fluid already in the sac to a higher pressure. The transient rate of depressur-
334 ization appears to be faster than the pressurization ramp up. As noted for
335 the needle lift, the magnitude of the total error is mostly attributed to ex-
336 perimental uncertainty, rather than injection-to-injection variation. Higher
337 resolution imaging experiments would be needed to understand sac pressur-
338 ization repeatability. The end of injection dynamics are discussed in the
339 following section, bringing supporting evidence for pressure oscillations after
340 the needle closes. In summary, the needle lift and sac pressure measurements,
341 obtained together, offer new opportunities to understand injector transient
342 opening and closing effects.

343 *3.2. End of injection gas exchange*

344 At first sight, it may seem odd to describe the end of the injection pro-
345 cesses before the start of injection. But to establish the conditions that exist
346 within the injector at the beginning of injection, it is important to understand
347 the dynamics and processes occurring at the end of previous injections. The
348 status of the injector sac and holes will change if created by short, multiple
349 injections, or after expansion and compression in an engine. Recent experi-
350 ments [12, 13, 15] observed that gas bubbles were present in the sac after the
351 end of injection. Mitroglou et al. [12] suggested that these vapor bubbles
352 originate from the end of injection cycle, while Swantek and coworkers [15]
353 hypothesized that the bubbles come from ambient gas, rather than fuel va-
354 por. They found that the presence of gas depends on operating conditions,
355 injection and chamber pressures. At the same time, CFD simulations with
356 different initializations showed that the presence of gas in the sac and orifice

357 affects initial spray development, vaporization rate and liquid penetration
358 [16].

359 The high-speed visualizations help understand the phenomena happening
360 at the end of injection. The two sequences presented in Fig. 7 show examples
361 of an end-of-injection processes. The top sequence corresponds to the end of
362 injection when the injection pressure is set to 50 MPa, and the chamber is set
363 at 2.0 MPa ambient pressure. The bottom sequence features a similar event,
364 but with a chamber pressure set to atmospheric (approximately 0.1 MPa).
365 A high-speed video showing a side-by-side comparison of the two events of
366 Fig. 7 is available as supplemental material (M1). The images show the
367 transparent injector tip, with the needle inside the sac, located at the top
368 of the images. The spray exiting the orifice is visible at the bottom of the
369 frame. The imaging focus is on the sac, needle, and hole, while the emerging
370 sprays outside of the nozzle are not in focus. Because of the different object
371 planes caused by whether there is or is not acrylic and fuel along the ray path,
372 and the limited depth of field of the microscope setup, one must choose best
373 focus for internal-flow features or the emerging spray. Fortunately, with our
374 two-camera setup, one camera can be setup for best focus in the sac, and the
375 other for best focus on the spray, if desired. The time reported in the top of
376 the frames is taken with respect to the end of injection, or when the needle
377 closes. No treatment has been applied to these movies, as they come from
378 the raw data acquired by the high-speed camera of the primary system.

379 The appearance of gas bubbles after the end of injection is clear from
380 the bottom sequence of Fig. 7, as marked by the darker regions due to a
381 different refractive index with the fuel (and nozzle material). Comparing the

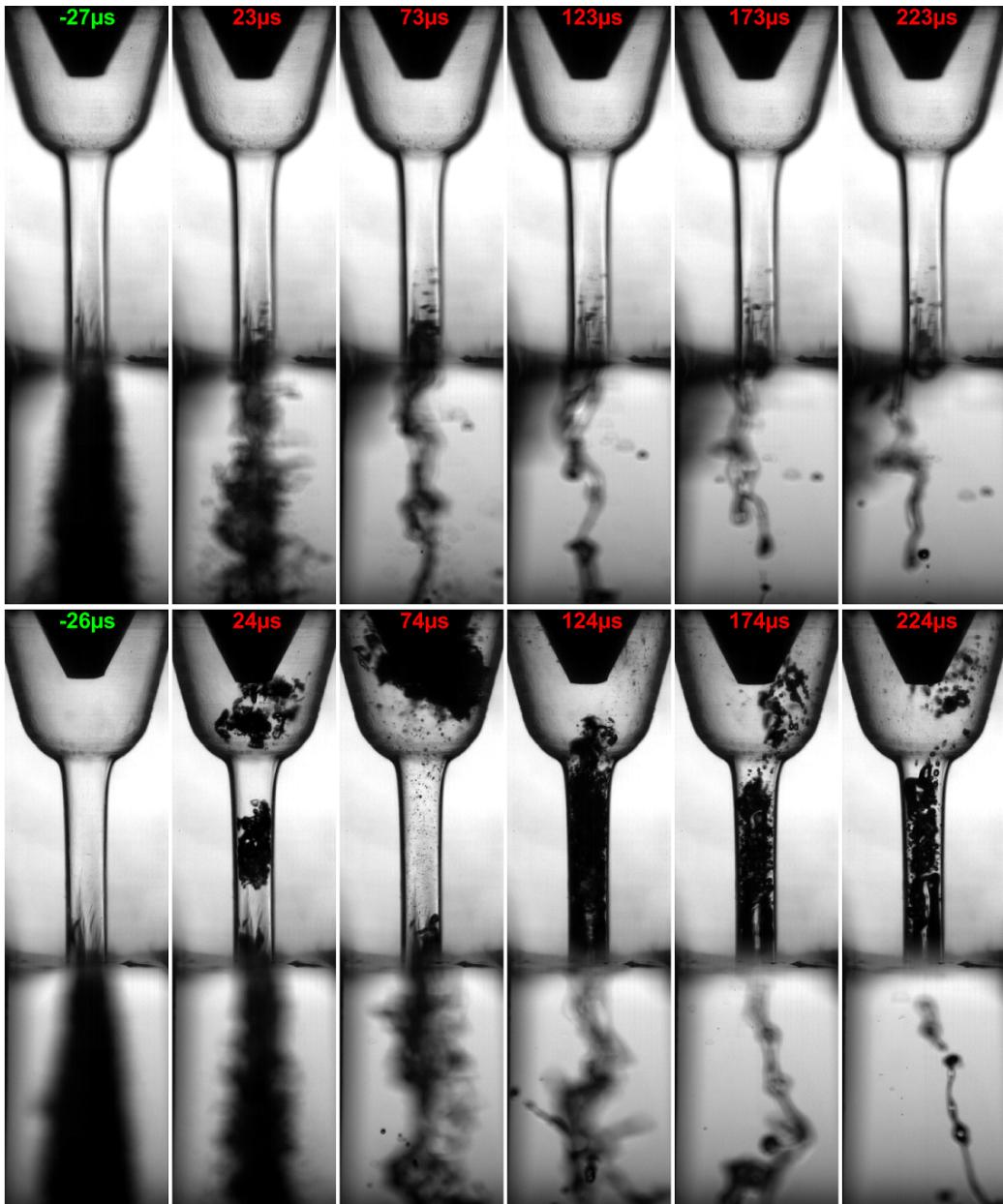


Figure 7: Sequences showing the end of injection processes at two chamber conditions. Top: 50 MPa into 2.0 MPa, no gas exchange is observed; Bottom: 50 MPa into 0.1 MPa, shows bulk cavitation and gas exchange. The top half of all images is the nozzle, where the tip of the needle can be seen, while the chamber is at the bottom. Transparency in the nozzle indicates liquid, with gaseous regions in black, while transparency indicates gas in the chamber, with dark region as liquid.²² The time indicated at the top refers to the time with respect to needle closing.

382 low-pressure sequence to the higher chamber pressure condition, where the
383 sac remains filled with liquid fuel, a large amount of gas can be observed in
384 the sac after the injection ends. This low-pressure chamber operating point
385 was chosen as an example condition to enhance the differences and slows
386 down the process such that the phenomena are clearly identified. The low-
387 pressure experiments show that when the needle closes, cavitation forms near
388 the needle seat and moves downstream closer to the tip of the needle (from
389 needle closing to 24 μ s). Cavitation may also occur in the orifice, as shown
390 by the bubbles present in the hole at the same time. A short time later (74
391 μ s), the fuel vapor region has grown to almost fill the sac visually. The phase
392 change occurs in the bulk of the sac, and it does not appear to be connected
393 to fast moving sections of fluid. This bulk cavitation process can occur if
394 there is an intense pressure drop throughout all of the fluid, analogous to
395 a fluid-hammer effect in piping systems, where fuel flowing at high-speed,
396 carrying inertia and momentum, is suddenly throttled. For a brief instant,
397 the pressure locally drops below the vapor pressure of the fuel, inducing
398 the fuel to change phase into vapor. The fluid in the sac quickly relaxes
399 back to higher pressures (above the vapor pressure point), thus changing
400 the vaporized fuel back into liquid, collapsing the vapor fuel bubbles. The
401 volume change in the nozzle sac region induced by the collapse rapidly pulls
402 gas from the chamber into the orifice and sac (124 μ s and forward), leaving
403 the orifice and sac with chamber gas.

404 The high-speed movies and movements of the vapor regions seen in the
405 supplemental material can be used as tracers to understand the pressure
406 behavior in the nozzle during the end of injection and gas exchange processes.

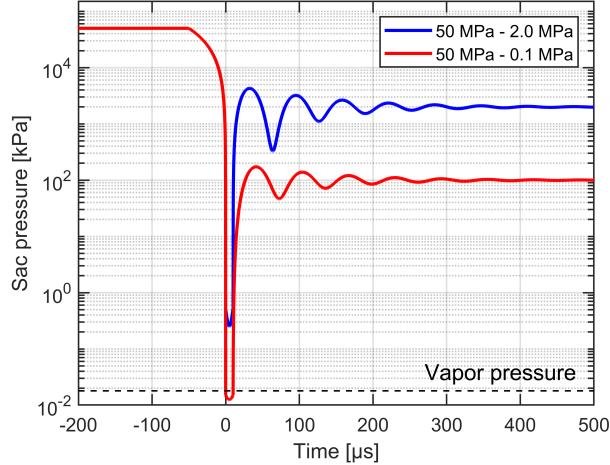


Figure 8: Damped harmonic oscillator model representing the pressure in the sac around the end of the injection period, when the needle closes the fuel passage at the seat immediately upstream of the sac for the two conditions shown in Fig. 7.

407 Figure 8 offers a depiction of the process from the perspective of the pressure
 408 in the sac, comparing the two sequences of Fig. 7. Initially high during
 409 injection, the sac pressure quickly drops as the needle makes contact with
 410 its seat, momentarily reaching values below the vapor pressure of the fluid
 411 under certain conditions. The pressure goes back up in an oscillatory manner
 412 until it stabilizes at the chamber pressure.

413 The model description provided in Fig. 8 was built based on the observa-
 414 tions made at various conditions, showing the oscillatory behavior regarding
 415 bulk cavitation following the closing of the fuel passage at the needle seat
 416 region, coinciding with the end of the injection. Though not shown here,
 417 certain conditions even showed bulk cavitation happening, then collapsing,
 418 and happening again at lower intensity, further providing supporting evidence
 419 of the oscillatory/periodic behavior shown in Fig. 8. Such observations were

420 made for cases with high injection pressure and low chamber pressure, fa-
421 voring both an intense fluid hammer and an already low sac pressure. The
422 elastic properties of the system composed of the transparent nozzle, the nee-
423 dle, and the injected fluid, drive the acoustic characteristics of the system,
424 which appears to behave like a damped harmonic oscillator [20]. The differ-
425 ent material used for the transparent nozzle is likely to modify the acoustic
426 characteristics compared to the metal nozzle target, increasing the damp-
427 ing properties of the system, meaning that higher bulk cavitation intensity
428 should be expected in metal nozzles.

429 Our findings support the experimental observations made by Swantek
430 et al. [15], as well as the numerical simulations by Battistoni et al. [16]
431 suggesting that ambient gas is ingested into the sac after the end of injec-
432 tion. However, with high-speed visualization, we were able to ascertain these
433 claims and clarify the underlying mechanism: Cavitation formed in the bulk
434 of the fluid, collapses to ingest gas into the injector. Note that while Bat-
435 tistoni et al. [16] predicted cavitation at similar operating conditions (0.1
436 MPa ambient pressure) at the end of injection, the cavitation was confined
437 to the needle-seat area, whereas our experiments at comparable conditions
438 show cavitation regions in the sac and orifice.

439 Recent experimental evidence by Abers and coworkers [30] using the same
440 experimental setup described earlier in this manuscript linked the gas trapped
441 in the sac to the fuel dribble observed after the end of injection during the
442 expansion and exhaust phases in diesel engines [31]. The decreasing pressure
443 inside the combustion chamber, or constant flow chamber, induces a volu-
444 metric expansion of the gas bubbles still in the sac, resulting in the left-over

Injection pressure	Chamber pressure			
	0.1 MPa (1 atm.)	0.5 MPa	1.0 MPa	2.0 MPa
25 MPa	✓	✓	✗	✗
50 MPa	✓	✓	✓	✗
100 MPa	✓	✓	✓	✓

Table 2: Summary of the observations made over various test conditions regarding bulk cavitation and the presence of gas left over after the end of injection. The tick mark corresponds to an operating condition where bulk cavitation and gas exchange in the sac is observed (Fig. 7, bottom), while a cross indicates no cavitation-induced gas exchange (Fig. 7, top).

445 liquid fuel to be expelled through the orifice(s).

446 The various experimental conditions tested in this work also correlate
 447 with the findings reported by Swantek et al. [15] about the presence or ab-
 448 sence of gas bubbles as function of ambient gas pressure. With increasing
 449 ambient gas pressure, fewer bubbles are found in the sac, a change more sig-
 450 nificant than just the expected change in gas volume with increasing pressure.
 451 Table 2 summarizes the observations made across the different test conditions
 452 within our transparent nozzles, which are consistent with the aforementioned
 453 results, suggesting that operating conditions, rather than nozzle geometry,
 454 dominate the phenomenon.

455 The table shows that, in general, higher injection pressure favors bulk
 456 cavitation, as shown in the bottom sequence of Fig. 7, due to a more-
 457 intense fluid deceleration at needle closing, resulting in a larger pressure drop
 458 in the sac and orifice. At the same time, higher ambient pressure reduces
 459 the likelihood of cavitation, either in the bulk, or in flow-separation regions
 460 within the injector. This is explained by the equilibrium pressure point in

461 the nozzle being higher above the vapor pressure of the fluid, making it more
462 difficult for the local pressure to drop as low as the vapor pressure point and
463 cause bulk cavitation of the fuel.

464 As anticipated, the rounded and tapered nozzle does not show signs of
465 significant cavitation at the inlet of the orifice during steady-state operation
466 under the range of conditions tested in this work. Other sharp-edge-inlet
467 nozzles that had no hydro-erosion operation (experiment performed but not
468 shown in this paper), did show signs of cavitation at the inlet, as has been
469 shown previously (e.g. [7]).

470 *3.3. Nozzle status and start of injection*

471 The experiments show that a significant amount of gas can be left over in
472 the sac and orifice after the end of injection, which, as explained earlier, can
473 affect the next injection. The residual gas present in the sac and orifice will
474 be entrained with the liquid flow at the start of the following injection event,
475 as shown numerically by Battistoni et al. [16]. Experiments were performed
476 with different sac status, from almost completely empty to completely full,
477 within what the experiments allow. Figure 9 presents two extreme examples,
478 with one injection starting with the sac and orifice nearly full of gas (no
479 liquid), and another similar injection condition, but with the sac and orifice
480 full of liquid (no gas). A high-speed video showing a comparison of the start
481 of injection between an event with the sac full of gas and another with the
482 sac full of liquid is available as supplemental material (M2).

483 The difference between these two movies (M2) is clear at the start of
484 injection. When filled with chamber gas, a substantial amount of time is
485 needed for the sac and orifice to be filled with liquid as it mixes with the gas

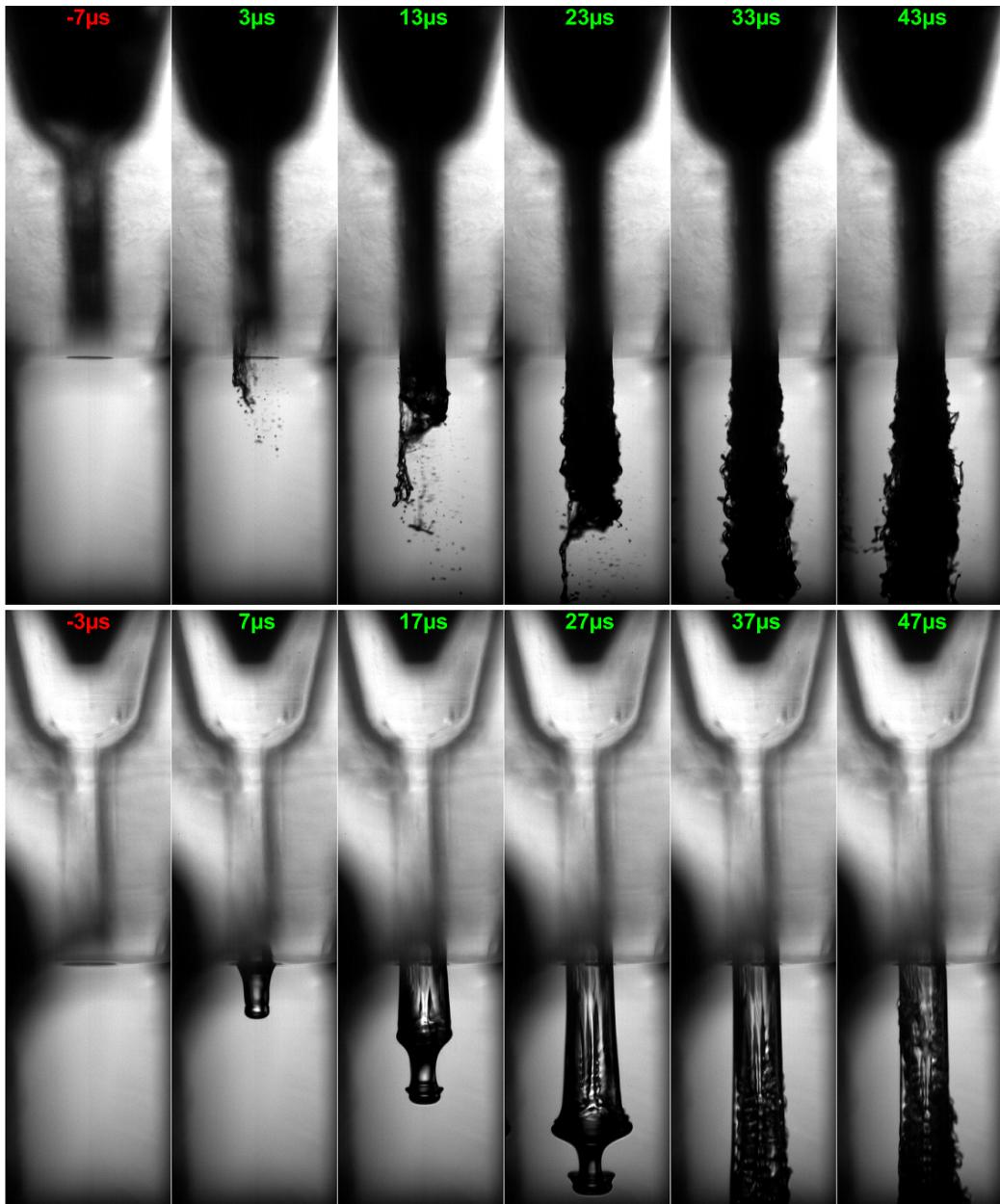


Figure 9: Sequences showing the start of injection with different sac status regarding the presence of gas. Top: 25 MPa into 0.1 MPa, sac and orifice full of gas; Bottom: 50 MPa into 0.1 MPa, nozzle full of liquid. The time indicated at the top refers to the time with respect to the start of injection.

486 present in the nozzle. Across the different sac and orifice conditions tested
487 during this campaign, it appeared that the time required for the flow to
488 clear the nozzle of gas depends, as expected, on the quantity of gas initially
489 present in the nozzle. This is indicated by the shadow produced by the
490 gas contained in the sac, as opposed to the relatively clear sac and orifice
491 when filled with fuel. Contrasting with the empty nozzle, the sac and orifice
492 initially full of liquid feature an intact liquid body flowing out of the hole.
493 Spray development, such as initial tip penetration or spray dispersion, also
494 appears to be affected by the initial status of the sac and orifice, whether gas
495 is present or not.

496 Another interesting aspect of the initially full sac and orifice is that a small
497 amount of gas is pulled from the ambient into the orifice prior to the start
498 of injection (as seen in the frame captured 3 μ s before the start of injection).
499 This is attributed to the slight needle lift following the opening of the control
500 volume [28], producing a volume change significant enough for some gas to
501 enter the orifice. With gas already in the orifice, the first liquid flowing out of
502 the orifice (7 μ s after the start of injection in the bottom sequence of Fig. 9)
503 already carries momentum as it accelerates through the orifice and exits the
504 nozzle at a non-zero velocity. An implication of this observation, either from
505 a sac initially or partially full of gas, or from the immediate gas ingestion at
506 the beginning of needle movement, is that the initial rate of injection at the
507 start should not be zero, as suggested by Manin et al. [18].

508 Detailed microscopic images of the initial flow exiting the orifice also
509 presents interesting features when the nozzle is initially full of liquid. As
510 shown in Fig. 9, geometrical aspects of the flow have been imaged by the

511 high-speed microscopic systems. These sample images show the first 10 to 20
512 μ s after the flow exits the nozzle. The near-field flow images at the start of
513 injection present smooth geometries and surfaces, as expected with laminar
514 flows, showing noticeable light transmission. With imaging inside the nozzle,
515 which showed ingestion of gas into the hole, we can see that the initial thin
516 section of liquid originates from liquid-gas interfaces formed within the hole,
517 not outside of the hole. Also, features such as the initial mushroom shape of
518 the spray head, surface ripples or thin liquid films and sheets can be observed.
519 The later timings have further time for sac pressurization and velocity in-
520 crease, as given in the rightmost photographs. The structures in these images
521 are signs that the flow is accelerating, inducing aerodynamic wave oscillations
522 on the flow surface. As expected due to the high flow velocities, subsequent
523 timings (not shown in Fig. 9 but available in supplemental material M2)
524 highlight the turbulent nature of the spray. The high-magnitude light atten-
525 uation is believed to be the result of the multiple droplets surrounding the
526 core of the sprays, as well as the highly-curved surfaces of the core. Another
527 aspect highlighted by the video sequence available in supplemental material
528 M2 is the filling process of the sac and orifice with liquid, when the sac and
529 orifice are initially contain gas. In this example, it takes about 200 μ s for
530 the gas to be completely evacuated, and the sac and orifice to be filled with
531 liquid. Considering the typically short injections performed in modern diesel
532 engines, the initial status of the sac and orifice with respect to gas content
533 appears to be of high importance.

534 **4. Summary and conclusions**

535 Stereoscopic high-speed microscopy was applied to investigate the internal
536 flow details of high-pressure injections. Transparent nozzles were designed
537 based on the well-studied Engine Combustion Network hydro-eroded Spray
538 D. The transparent nozzles were mated to a modified ECN Spray A solenoid-
539 actuated injector, and detailed high-speed visualizations were performed at
540 injection pressures upward of 100 MPa. The injector and transparent nozzles
541 were mounted inside an optically-accessible pressure vessel, with simulated
542 chamber pressure conditions up to 2.0 MPa in this work, matching the ECN
543 Spray A target ambient density. The geometries of the nozzles were investi-
544 gated in detail via optical microscopy and scanning electron microscopy to
545 ensure that the target nozzle geometries were closely matched.

546 The temporal information obtained using a synchronized and spatially-
547 correlated two-camera imaging system operating at speeds greater than 100
548 kHz allowed measurement of the needle motion, internal flow features, and
549 the emerging spray structure. The high spatial resolution of the system
550 enabled monitoring of the elastic deformation of the acrylic nozzle, which
551 was used to extract information about the sac pressurization process. Beyond
552 the typical cavitation behavior observed in cylindrical nozzles, the temporal
553 information obtained from the different injection events revealed that the end
554 of injection produces a fluid hammer responsible for bulk cavitation of the
555 fuel present in the sac under realistic conditions. The subsequent collapse
556 and volume change ingests gas from the chamber, thus leaving the sac and
557 orifice partly filled with chamber gas. The gas present in the sac greatly
558 affects the following injection, with gas being injected with the liquid fuel for

559 a substantial amount of time, thereby reducing fuel mass flow rate.

560 **Acknowledgments**

561 This study was performed at the Combustion Research Facility, Sandia
562 National Laboratories is a multi-mission laboratory managed and operated
563 by National Technology and Engineering Solutions of Sandia, LLC., a wholly
564 owned subsidiary of Honeywell International, Inc., for the U.S. Department
565 of Energys National Nuclear Security Administration under contract DE-
566 NA0003525. Funding for the project was provided by the Spray Combustion
567 Consortium of automotive industry sponsors, including Convergent Science
568 Inc., Cummins Inc., Ford Motor Co., Hino Motors Ltd., Isuzu Motors Ltd.,
569 Groupe Renault, and Toyoto Motor Co., with experimental facilities sup-
570 ported by the U.S. DOE Office of Vehicle Technologies.

571 **References**

572 [1] F. Payri, V. Bermdez, R. Payri, F. J. Salvador, The influence of cava-
573 tiation on the internal flow and the spray characteristics in diesel injection
574 nozzles, *Fuel* 83 (2004) 419–431.

575 [2] L. M. Pickett, J. Manin, R. Payri, M. Bardi, J. Gimeno, Transient rate
576 of injection effects on spray development, *SAE Paper* 2013-24-0001.

577 [3] H. Chaves, M. Knapp, A. Kubitzek, F. Obermeier, Experimental study
578 of cavitation in the nozzle hole of Diesel injectors using transparent
579 nozzles, *SAE Paper* 950290.

580 [4] C. Badock, R. Wirth, C. Kampmann, S. Tropea, Fundamental study of
581 the influence of cavitation on the internal flow and atomization of Diesel
582 sprays, ILASS-Europe 1997, Florence, Italy (1997) 53–59.

583 [5] N. Tamaki, M. Shimizu, K. Nishida, H. Hiroyasu, Effects of cavitation
584 and internal flow on atomization of a liquid jet, *Atomization Spray* 8 (2).

585 [6] H. Afzal, C. Arcoumanis, M. Gavaises, N. Kampanis, Internal flow in
586 Diesel injector nozzles: modelling and experiments, IMechE.

587 [7] M. Blessing, G. Konig, C. Kruger, U. Michels, V. Schwarz, Analysis of
588 flow and cavitation phenomena in Diesel injection nozzles and its effects
589 on spray and mixture formation, SAE Paper 2003-01-1358.

590 [8] H. Li, S. Collicott, Visualization of cavitation in high-pressure diesel fuel
591 injector orifices, *Atomization Spray* 16 (8) (2006) 875–886.

592 [9] L. Liverani, C. Arcoumanis, H. Yanagihara, i. Sakata, K. Omae, Imaging
593 of the flow and cavitation formation in a transparent real-size six-hole
594 nozzle under realistic conditions, The Seventh International Conference
595 on Modeling and Diagnostics for Advanced Engine Systems (COMODIA
596 2008) (2008) 453–460.

597 [10] A. J. Butcher, P. G. Aleiferis, D. Richardson, Development of a real-
598 size optical injector nozzle for studies of cavitation, spray formation
599 and flash-boiling at conditions relevant to direct-injection spark-ignition
600 engines, *Int. J. Eng. Res.* 14 (2013) 557.

601 [11] T. Hayashi, M. Suzuki, M. Ikemoto, Effects of internal flow in a diesel
602 nozzle on spray combustion, *Int. J. Eng. Res.* 14 (6) (2013) 646–654.

603 [12] N. Mitroglou, M. McLorn, M. Gavaises, C. Soteriou, M. Winterbourne,
604 Instantaneous and ensemble average cavitation structures in diesel
605 micro-channel flow orifices, *Fuel* 116 (2014) 736–742.

606 [13] M. Winterbourn, C. Soteriou, N. Mitroglou, M. Gavaises, C. Daveau,
607 Visualising injection events in a fully operational diesel injector with a
608 multi-hole transparent tip, THIESEL 2014 Conference on Thermo and
609 Fluid-dynamic Processes in Direct Injection Engines, Valencia, Spain.

610 [14] H. Watanabe, M. Nishikori, T. Hayashi, M. Suzuki, N. Kakehashi,
611 M. Ikemoto, Visualization analysis of relationship between vortex flow
612 and cavitation behavior in diesel nozzle, *Int. J. Eng. Res.* 16 (1) (2015)
613 5–12.

614 [15] A. B. Swantek, D. Duke, F. Z. Tilocco, N. Sovis, C. F. Powell, A. L.
615 Kastengren, End of injection, mass expulsion behaviors in single hole
616 diesel fuel injectors, ILASS-Americas 2014, Portland, OR.

617 [16] M. Battistoni, Q. Xue, S. Som, Large-eddy simulation (LES) of spray
618 transients: Start and end of injection phenomena, *Oil & Gas Science
619 and Technology* 71 (1).

620 [17] J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, J. C. Oefelein, Mi-
621 croscopic investigation of the atomization and mixing processes of diesel
622 sprays injected into high pressure and temperature environments, *Fuel*
623 134 (2014) 531–543.

624 [18] J. Manin, M. Bardi, L. M. Pickett, R. Payri, Boundary condition and

625 fuel composition effects on injection processes of diesel sprays at the
626 microscopic level, *Int. J. Multiphas. Flow* 83 (2016) 267–278.

627 [19] J. Manin, W. D. Bachalo, R. Karami, Combined scattering and imaging
628 diagnostics to detect and quantify fuel contaminants, *SAE Paper* 2019-
629 01-2347.

630 [20] K. Yasutomi, J. Hwang, J. Manin, L. M. Pickett, M. Arienti, S. Daly,
631 S. S. A., Diesel injector elasticity effects on internal nozzle flow, *SAE*
632 *Paper* 2019-01-2279.

633 [21] D. B. Murphy, *Fundamentals of light microscopy and electronic imaging*,
634 John Wiley & Sons, 2002.

635 [22] J. Manin, S. A. Skeen, L. M. Pickett, Performance comparison of state-
636 of-the-art high-speed video cameras for scientific applications, *Opt. Eng.*
637 57 (12) (2018) 124105.

638 [23] A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett,
639 R. Payri, T. Bazin, Engine Combustion Network (ECN): Measurements
640 of nozzle diameter and hydraulic behavior, *Atomization Spray* 22 (12)
641 (2012) 1011–1052.

642 [24] R. Payri, J. Gimeno, J. Cuisano, J. Arco, Hydraulic characterization of
643 diesel engine single-hole injectors, *Fuel* 180 (2016) 357–366.

644 [25] D. Li, Y. Kang, X. Wang, X. Ding, Z. Fang, Effects of nozzle inner
645 surface roughness on the cavitation erosion characteristics of high speed
646 submerged jets, *Exp. Therm. Fluid Sci.* 74 (2016) 444–452.

647 [26] J. Manin, A. Kastengren, R. Payri, Understanding the acoustic oscil-
648 lations observed in the injection rate of a common-rail direct injection
649 diesel injector, *J. Eng. Gas Turb. Power* 134 (12) (2012) 122801.

650 [27] R. J. Moffat, Describing the uncertainties in experimental results, *Exp.*
651 *Therm. Fluid Sci.* 1 (1) (1988) 3–17.

652 [28] A. Kastengren, Z. Tilocco, P. Powell, Initial evaluation of engine com-
653 bustion network injectors with X-Ray diagnostics, ILASS-Americas
654 2011, Ventura, CA.

655 [29] E. Lemmon, M. Huber, Thermodynamic properties of n-dodecane, *En-*
656 *erg. Fuel* 18 (4) (2004) 960–967.

657 [30] P. M. Abers, E. Cenker, K. Yasutomi, J. Hwang, L. M. Pickett, Effect
658 of pressure cycling on gas exchange in a transparent fuel injector, *SAE*
659 *Paper* 2019-01-2280.

660 [31] W. E. Eagle, M. P. B. Musculus, Cinema-stereo imaging of fuel drib-
661 ble after the end of injection in an optical heavy-duty diesel engine,
662 THIESEL 2014 Conference on Thermo and Fluid-dynamic Processes in
663 Direct Injection Engines, Valencia, Spain.