
DeepFreeze: Towards Scalable Asynchronous
Checkpointing of Deep Learning Models

Bogdan Nicolae∗, Jiali Li†, Justin M. Wozniak∗, George Bosilca†, Matthieu Dorier∗, Franck Cappello∗
∗Argonne National Laboratory, USA

Email: {bnicolae,woz,mdorier,cappello}@anl.gov
†University of Tennessee, Knoxville, USA

Email: jli111@vols.utk.edu,bosilca@icl.utk.edu

Abstract—In the age of big data, deep learning has emerged
as a powerful tool to extract insight and exploit its value, both
in industry and scientific applications. One common pattern
emerging in such applications is frequent checkpointing of the
state of the learning model during training, needed in a variety of
scenarios: analysis of intermediate states to explain features and
correlations with training data, exploration strategies involving
alternative models that share a common ancestor, knowledge
transfer, resilience, etc. However, with increasing size of the
learning models and popularity of distributed data-parallel
training approaches, simple checkpointing techniques used so far
face several limitations: low serialization performance, blocking
I/O, stragglers due to the fact that only a single process is
involved in checkpointing. This paper proposes a checkpointing
technique specifically designed to address the aforementioned
limitations, introducing efficient asynchronous techniques to hide
the overhead of serialization and I/O, and distribute the load over
all participating processes. Experiments with two deep learning
applications (CANDLE and ResNet) on a pre-Exascale HPC
platform (Theta) shows significant improvement over state-of-art,
both in terms of checkpointing duration and runtime overhead.

Index Terms—checkpointing; deep learning; fine-grain asyn-
chronous I/O; multi-level data persistence

I. INTRODUCTION

Deep learning applications are rapidly gaining traction both
in industry and scientific computing. A key driver for this trend
has been the unprecedented accumulation of big data, which
exposes plentiful learning opportunities thanks to its massive
size and variety. Unsurprisingly, there has been significant
interest to adopt deep learning at very large scale on super-
computing infrastructures in a wide range of scientific areas:
fusion energy science, computational fluid dynamics, lattice
quantum chromodynamics, virtual drug response prediction,
cancer research, etc.

To keep up with this trend, learning models are becoming
increasingly more complex and exhibit deeper structures,
prompting the need to employ more scalable training tech-
niques. Such techniques involve the evaluation of several neu-
ral network (NN) architectures and their configurations, several
potential data representations, and multiple workflows to train,
evaluate, and analyze results. In this context, checkpointing is
emerging as a key building block.

Traditionally, checkpointing has been used by HPC appli-
cations for defensive purposes, i.e., to survive failures that
happen frequently at large scale using fault tolerance strategies

based on checkpoint-restart. By capturing the state of learning
models at regular intervals, checkpoint-restart is also a viable
strategy in the context of deep learning for far more than
resilience. Indeed, beyond resilience, checkpoints of learning
models are increasingly being used for productive purposes:
taken at regular intervals during training, they provide rich
information about intermediate states. This facilitates further
analytics to understand the evolution of training (used NN
architecture optimization, configuration and evaluation), to
identify correlations between training data and weight updates,
and, in general, to explain why a model produces correct
results, which is considered one of the grand challenges of
deep learning.

Another particularly prominent use case for checkpointing
is in the context of transfer learning, which involves partial
training of a model, capturing its state and retraining/using it
in a different context. This can done either to avoid retraining
a model from scratch for a similar problem, or to design
new search strategies that explore many alternatives in parallel
starting from common ancestors. For example, a scientific use
case for these capabilities is found in the Cancer Deep Learn-
ing Environment (CANDLE) Benchmarks [1], a collection
of deep learning -based, cancer-relevant applications. These
include the analysis of drug response data, molecular dynamics
data, and clinical text data. An ongoing CANDLE study is the
analysis of training data, in which partially trained NN models
are duplicated and retrained on different data, potentially in a
recursive fashion.

Although emerging as a critical building block, checkpoint-
ing has seen relatively little attention in the deep learning
community. Current state-of-art approaches are rudimentary:
they work on single machines and involve single files that
emphasize portability over performance and scalability. On
the other hand, checkpointing has been studied in-depth in
the HPC community, where multi-level techniques that scale
on supercomputing infrastructures and leverage heterogeneous
storage are common. However, such techniques are not de-
signed to handle the specific I/O patterns and scalability
requirements that are involved in the checkpointing of deep
learning models, which means they cannot be simply used
as a drop-in replacement of the the rudimentary techniques.
This problem is further complicated by the increasing size of
the models and the complexity of training techniques, which



aim for both horizontal scalability (e.g., synchronized data-
parallel training) and vertical scalability (e.g., fine-grain layer-
wise parallelism).

This paper aims to address the aforementioned challenges
by proposing a novel checkpointing framework for deep learn-
ing models that is designed from scratch to take advantage of
the I/O patterns and specific properties of synchronous data
parallel-training and layer-wise parallelism. In doing so, it acts
as a bridge to advanced techniques employed by state-of-art
multi-level HPC checkpointing approaches, thereby unlocking
the potential to scale on supercomputing infrastructures. We
summarize our contributions as follows:

• We introduce a series of design principles that enable
efficient fine-grain asynchronous checkpointing of deep
learning models. In particular, we emphasize the impor-
tance of combining lightweight serialization, sharding and
augmentation of the execution graph to asynchronously
mask the overhead of capturing weights from tensors
without using a separate execution context (Section IV).

• We show how to materialize these design principles in
practice as a transparent checkpointing solution on top of
the VeloC (Very Low Overhead Checkpoint-Restart) run-
time, which is a representative multi-level HPC solution.
To this end, we introduce an architecture (Section IV-B)
and present a reference implementation (Section IV-C).

• We evaluate our approach in a series of experiments
conducted on Theta, one of the pre-Exascale systems
hosted at Argonne National Laboratory. We use two deep
learning applications: one is a popular benchmark used in
the machine learning community (ResNet-50), the other
is a real-life cancer deep learning research framework
(CANDLE). Compared with state-of-art approaches, our
proposal shows significantly better scalability and an
order of magnitude less checkpointing overhead. (Sec-
tion V).

II. RELATED WORK

Multi-level checkpoint-restart is a popular approach to lever-
age multiple storage levels in the context of HPC checkpoint-
ing. Works representative of this approach include (SCR) [2]
and FTI) [3], which introduce support for local storage, partner
replication, erasure coding (XOR and Reed-Solomon [4])
and finally external storage (parallel file systems). Recent
efforts such as VELOC can take advantage of heterogeneous
storage for each level and introduce advanced asynchronous
techniques that leverage synergies between the levels [5] and
predictions of application behavior to mitigate interference [6].

Exploiting local storage as a write cache layer to flush the
application data to external storage asynchronously has been
proposed before in the context of node-level aggregation of
I/O from multiple cores [7], or I/O forwarding [8]. However,
such efforts use a single level of caching, placing the em-
phasis on the aggregation. Other efforts such as [9] focus on
smart ordering of asynchronous flushes from memory to local
storage, which eliminate the need for blocking writes and are
complementary to our approach.

Regarding the issue of I/O and storage for deep learning,
both the HPC and deep learning communities have, so far,
dedicated most efforts to access large training datasets effi-
ciently [10], [11], [12], [13], while leaving the problem of
optimized checkpointing of learning models largely ignored.
TensorFlow checkpoints model to files in its SavedModel for-
mat,1 or in HDF5 files through Keras.2 Pytorch uses Python’s
Pickle module to serialize its model into files.3 These file-
based methods, while simple and adapted to training on a
single machine, are becoming a bottleneck when scaling to
a large number of compute nodes.

In ensemble model training [14], [15] and in hyperparameter
search workflows [16], [17], we can expect each node to
periodically checkpoint the neural network it trains, leading to
I/O pressure in the order of typical scientific HPC applications
that rely on a file-per-process approach. Hence improving
model storage will become more critical. One step in the
direction of improving model checkpoint is the CANDLE
Model Cache [18], which proposes to use DataSpaces [19]
as a distributed, remotely accessible cache instead of the
parallel file system. The authors however do not rely on
sharding neural network nor on asynchronous I/O to improve
performance. Such a caching service is orthogonal to our own
work and could be used in conjunction with it.

Compression is another technique that can be used to reduce
the overhead of checkpointing by reducing the size of the
models. To this end, lossy compression methods are partic-
ularly promising and have been designed specifically for deep
neural networks. DeepSZ [20] determines appropriate error
bounds for each of the neural network layers and assesses the
loss of inference accuracy due to compressed layers. Weights
quantization [21], [22] is another technique that reduces the
precision of network parameters to gain space. Another class
of data reduction techniques based on de-duplication of identi-
cal content across groups of processes [23] may be promising
for deep learning models, especially if relaxed to look for
similar instead of identical content. Once again, these data
reduction techniques can be used to complement our own
work.

To summarize, state-of-art checkpointing used by the deep
learning community is rudimentary, while state-of-art check-
pointing used by the HPC community is not designed to
address the I/O patterns and scalability challenges emerging in
modern deep learning applications, which limits their applica-
bility. Our approach aims to fill this gap, taking advantage of
such patterns to deliver high performance and scalability. To
our best knowledge, we are the first to explore this problem
in-depth.

III. BACKGROUND

Deep learning (DL) algorithms are a class of machine
learning algorithms that are based on complex neural networks
with a large number of layers (hence called deep). They

1https://www.tensorflow.org/guide/saved model
2https://www.tensorflow.org/guide/keras/save and serialize
3https://pytorch.org/tutorials/beginner/saving loading models.html



have have been successfully applied in a wide range of
tasks: image recognition, machine translation, forecasting [6].
Such algorithms have increasingly gained attention in high
performance computing as a complement to simulations (e.g.,
identify regions of interest, select promising initial conditions,
etc.).

DL algorithms primarily use gradient descent to update the
weights, an iterative technique that works as follows. First,
the forward propagation step, where a training sample is used
as the input of first layer of the neural network to compute
its output, which is then propagated layer by layer, until a
prediction of the result is obtained at the last layer. Then, the
difference (gradients) between the predicted and actual result
(“ground truth”) is used to update the weights layer by layer
up to the first layer. This step is called back-propagation. The
goal is to converge to a minimum that is representative of all
training samples and acts as an interpolation function for the
whole problem. An important type of gradient descent is mini-
batch gradient descent, where multiple training samples are
used in the forward pass and the resulting average gradients is
used for back-propagation. This speeds up the training process,
both because fewer iterations are needed, and because there
are fewer abrupt changes to the descent due to biased samples,
which reduces the noise of finding the best direction to take.

Gradient descent is a computationally expensive technique.
The explosion of available training data and the need to solve
more complex problems have led to the introduction of deeper
structures with more layers (e.g., complex residual networks
that can be built with 1000+ layers, such as ResNet [24]).
Therefore, gradient descent became not only more expensive to
run because it needs to process more batches, but also because
each batch itself is now more expensive to process. To solve
this problem, distributed DL algorithms have been developed,
capable of scaling horizontally on multiple compute nodes.

Fig. 1: Synchronous data-parallel training.

The most widely used such technique is synchronous data-
parallel training. It leverages the idea of creating replicas
of the learning model on multiple nodes and training each
replica in parallel with a different batch. We denote as rank
a process responsible for training an individual replica (which
is the usual terminology in high performance computing).

Fig. 2: An example of tensor fusion obtained from the Horovod
timeline for the CANDLE-NT3 benchmark.

Forward propagation can be done in an embarrassingly parallel
fashion. However, during back-propagation, the weights are
not updated with the local gradients, but with global average
gradients computed across all ranks using all-reduce opera-
tions. This process is illustrated in Figure 1.

DL algorithms take advantage of multi-core and hybrid
architectures (e.g., CPUs + GPUs) to parallelize the gradient
computation and weight updates. Specifically, once a rank
has finished computing the local gradients for a layer, it
immediately proceeds to compute the local gradients of the
previous layer. At the same time, it waits for all other ranks to
finish computing their local gradients for the same layer, then
updates the weights based on the average gradients obtained
using all-reduce. This is called layer-wise parallelism. An
example is depicted in Figure 3 as a DAG (directed acyclic
graph): the local gradient of each layer is a dependency for
both the previous layer and the rest of the operations (all-
reduce and weight updates; for now the reader can ignore shard
extraction, which will be explained later). Once the local gra-
dients are computed, both paths in the DAG can be executed in
parallel. Over time, several runtimes that implement such ideas
have become popular, such as Tensorflow [25], Caffe [26] and
Torch [27].

The combination of synchronous data-parallel training and
layer-wise parallelism has proven especially popular and many
deep learning approaches have introduced support for them:
Distributed Tensorflow, Distributed Torch, etc. Some of these
runtimes can use MPI as the underlying communication layer
that provides an optimized all-reduce implementation, which is
a natural fit for supercomputing architectures. A particular im-
plementation, Horovod [28], has gained significant traction in
production because it can leverage MPI to take advantage of an
optimized all-reduce implementation for high-end networking
infrastructures, while integrating seamlessly with the Python
ecosystem and the high-level machine learning libraries (such
as Keras [29]) that emphasize ease of use and convenience.

However, reconciling MPI with layer-wise parallelism is
non-trivial, because MPI was not designed to support multiple
parallel all-reduce operations that need to operate with poten-
tially small data sizes from within the same rank. Therefore,
optimizations such as tensor fusion have emerged that adopt a
producer-consumer model: all-reduce from individual tensors



are collected in a buffer while a separate thread continu-
ously runs MPI all-reduce, combining (“fusing” together) the
buffered all-reduce that have accumulated since the last MPI
all-reduce call into a single new call to be executed next. An
example is depicted in Figure 2.

It must be noted that the combination of layer-wise paral-
lelism and synchronous data-parallel training, although intro-
ducing significant complexity, also opens new opportunities,
which form the core of this work and will be discussed next.
Also, note that checkpointing is a broad primitive in the
context of deep learning: it is a basic building block for many
productive scenarios (as discussed in Section I), which are in
addition to fault tolerance. Therefore, in this paper we assume
the need to checkpoint frequently (potentially more often than
the optimal checkpoint interval needed to survive failures),
which simultaneously satisfies both aspects.

IV. SYSTEM DESIGN

This section introduces the design principles, architecture
and implementation of our approach.

A. Design principles

Our proposal is based on the following general design
principles:

a) Asynchronous multi-level checkpointing: We pro-
pose a multi-level approach that combines “lightweight” per-
sistence strategies (involving local storage of neighboring
nodes to perform replication and erasure coding) with “heavy”
persistence strategies (flushing to external storage such as a
parallel file system). Using this approach, checkpoints are
preserved in a reliable fashion for the duration of a job and
beyond. A key goal is to block the training for as little
as possible during checkpointing. To this end, we introduce
an asynchronous approach that captures a local copy of the
learning model, while applying both the lightweight and heavy
persistence strategies in the background, while the training
continues running. These background operations can run with
low priority to avoid negative impact on the application due to
interference. A key challenge that differentiates this approach
from traditional HPC multi-level checkpointing is the fact
that local copies can be expensive. We address this challenge
below.

b) Hidden complexity of heterogeneous storage: Stor-
age is becoming heterogeneous both at node-local (multiple
types of volatile and persistent memory, SSDs, etc.) and
external level (burst buffers, key-value stores, parallel file
systems). Many users are simply unaware of the various types
of storage available on the nodes where they need to run data-
parallel training. When they are aware of them, most do not
fully understand the performance characteristics. Even for the
minority of users that are both aware of heterogeneous storage
and understand their performance characteristics, leveraging
heterogeneous storage is problematic because state-of-art ap-
proaches were not designed to take advantage of them: most
are limited to single destinations (e.g., a single file on a
parallel file system). To address this problem, we propose

a transparent solution that automatically detects, mixes and
matches heterogeneous storage using vendor-specific APIs
when available for optimal performance. This is done in close
coordination with asynchronous multi-level checkpointing, in-
troducing awareness of fine-grain I/O operations and optimal
flushing strategies based on producer-consumer strategies that
rely on performance modeling [5].

c) Efficient serialization on local storage: Even when
advanced asynchronous techniques are employed for multi-
level checkpointing, serialization to local storage can still
incur significant overhead. This is due to the fact that the
models can have deep structures that involve many layers
and tensors and it is non-trivial to collect and consolidate
the necessary information. Despite this challenge, state-of-art
approaches often trade off performance for portability, using
self-descriptive formats for model checkpoints (e.g., HDF5)
that are expensive to produce. We argue in favor of lightweight
serialization approaches that prioritize performance. This is
based on the assumption that for the frequent checkpointing
scenarios we target in this paper, it is sufficient to capture
the weights of the model alone, because the structure of the
model changes less frequently and therefore can be captured
in a separate checkpoint on a per-need basis. Based on this
idea, we make use of a compact binary format that leaves out
unnecessary details (e.g. labels of tensors) and minimizes the
necessary I/O operations required to assemble a checkpoint.

d) Sharding for data-parallel training: Synchronous
data parallel training approaches use the same gradients to
update the weights of each layer. Therefore, at the end of
each iteration (when it is safe to checkpoint the model), there
will be identical replicas of each layer available on the nodes
where the ranks are running. We exploit this property to further
reduce the I/O overhead of serialization to local storage as
follows: We slice each layer into a number of shards equal
to the number of ranks, then each rank writes a different
shard to local storage. Since the local storage is not shared,
this effectively distributes the I/O workload in a scalable
fashion across all ranks. Note that we decided to slice each
layer independently instead of grouping all layers together and
then slicing the resulting checkpoint. Although the latter may
reduce the required I/O operations (i.e., write a single large
shard instead of many smaller shards) it is also limiting with
respect to further optimizations, which is why we chose the
former. Such optimizations will be discussed next.

e) Asynchronous extraction of shards during back-
propagation: Modern machine learning frameworks are com-
posed of multiple layers of low-level and high-level libraries
that offer a trade-off between convenience and simplicity
vs. high-performance and fine-tuning. High-level libraries are
often implemented in high level languages (e.g. Python) and
do not have direct access to the data structures of low-level
libraries. Therefore, there are restrictions in terms of when and
how it is possible to access such low-level data structures. For
example, Tensorflow requires high-level libraries like Keras to
create a separate graph execution context in order to extract
the value of tensors as high-level Python data structures (e.g.,



Fig. 3: Example: fine-grain sharding during back-propagation,
including the pipeline between the shards.

numpy arrays). This can introduce high overhead by itself,
even before being able to perform sharding and lightweight
serialization. To address this challenge, we leverage the obser-
vation that during back-propagation, weight updates for higher
layers run in parallel with the gradient calculation and all-
reduce synchronization of the lower layers. Thus, we propose
to augment the execution graph by introducing an additional
slicing operation immediately after the weight updates in each
layer. An example of how this works is depicted in Figure 3,
where each computation of the local gradients activates the
previous layer, while in parallel advancing towards the weight
updates and sharing. Using this approach overlaps the access
to the tensors and the slicing with the rest of the operations
in the same execution context, which both avoids the need
to create a separate execution context and takes advantage of
fine-grain asynchronous parallelization opportunities.

B. Architecture

We adopt the design principles introduced in Section IV-A
into the architecture depicted in Figure 4.

It consists of three major components: VELOC, a low
overhead runtime specifically designed for scalable, high-
performance asynchronous multi-level checkpointing for HPC
applications [5], a checkpointing module responsible to cap-
ture tensors to local storage and a bindings library that
interfaces the checkpointing module with VELOC. Both the
checkpointing module and the bindings library are new com-
ponents written from scratch and integrated with VELOC.

Fig. 4: Architecture of our proposal based on the VELOC
(Very Low Overhead Checkpoint-Restart) runtime.

The checkpointing module encapsulates the main contribu-
tion of this work and exposes the ability to capture the weights
of the learning model by means of a Keras callback, which
needs to be added to the list of callbacks supplied to the
model.fit method, responsible to run the training process. From
the user perspective, this is the only action needed to activate
checkpointing support. All optimizations related to efficient
serialization of the weights, sharding and augmentation of the
execution graph for asynchronous extraction of shards are the
responsibility of the checkpointing module.

The library providing Python bindings is a thin intermediate
layer specifically optimized to efficiently pass numpy arrays,
the main data structures used in Python to represent the content
of tensors, to the VELOC client, which is responsible for
exposing a memory-oriented API to save contiguous regions
as a checkpoint into the local storage.

The VELOC engine is responsible for running the module
pipeline. The default modules perform post-processing on the
local checkpoints, which includes both collaborative resilience
(e.g. replication and erasure coding using partner compute
nodes) and optimized transfer support to heterogeneous ex-
ternal storage (e.g. parallel file systems, burst buffers, key-
value stores, etc.) using vendor APIs (where applicable). This
is where the assembly of the shards is happening to construct
a full checkpoint on external storage.

Two modes of operation are supported by VELOC: syn-
chronous and asynchronous. In the synchronous mode, the
client and the engine are linked together using a trivial control
plane in the same front-end library used by the application.
Both the local checkpointing and the post-processing are
blocking operations. In the asynchronous mode, the engine
instance is created only once per node and lives in a separate
active back-end. All clients connect to the same active back-
end using a configurable control plane that is based on shared-
memory or RPC libraries. In this mode, the clients do not need
to wait for the engine to finish and can resume the application
immediately after the local checkpoints were written and the
engine was notified about their existence. For the purpose of



this work, we use the asynchronous mode.

C. Implementation

We implemented the checkpointing module on top of Ten-
sorflow 2.0, which includes an optimized version of Keras
tightly integrated with it. In this context, we aim for two design
goals. First, we expose an API that is compatible with the
existing checkpointing mechanism in Keras, which enables
users to perform minimal changes to the code to integrate
our approach, therefore aligning to the overall design goal of
Keras, i.e. provide ease of use and convenience at high level.
Second, we isolate the modifications necessary to augment
the execution graph into Keras, which means our approach
works out of the box with an existing binary distribution of
Tensorflow. This is a very important aspect, because many
vendors adapt Tensorflow for their machines by integrating it
with custom low-level libraries (e.g. Intel MKL), making it
challenging if not impossible to modify, recompile and fine-
tune Tensorflow.

To achieve these goals, we adopt the following strategy.
In terms of API, we provide a Python class that extends
the Keras callback interface and overrides the on batch begin
and on batch end methods. This class can be configured to
checkpoint every K iterations, simply ignoring the batch events
when it is not time to checkpoint. Otherwise, at the beginning
of a batch after which a checkpoint is needed, it sets a boolean
tensor to True. This will activate the sharding embedded into
the execution graph, which otherwise is inactive. Then, after
the batch was completed, it uses the VELOC Python bindings
to checkpoint the tensor shards, resets the boolean tensor to
False and returns control to the main loop of model.fit. The
user simply needs to invoke model.fit with this class added to
the list of callbacks.

In order to augment the execution graph, we intercepted
the apply gradients method of the the base optimizer class
of Keras (keras.optimizer v2.OptimizerV2). This method is
responsible for building the execution graph for the weight
updates, into which we injected additional sharding code that
conditionally activates based on the boolean tensor defined
in the callback. The sharding itself is implemented in an
optimized fashion using Tensorflow’s own slice operator. Since
tensors can be multi-dimensional and slicing requires a single
dimension, we choose the largest dimension. This ensures the
best load balancing. Note that all overhead of calculating the
largest dimension and adding slice operations is performed
only once during initialization when the execution graph is
built.

The Python bindings were implemented using ctypes, which
facilitates easy integration with C and C++ external libraries.
It takes advantage of the fact that numpy arrays are internally
represented as contiguous memory regions, which enables it
to avoid any extra copies when calling the VELOC API.
We integrated the bindings with VELOC v.1.2, which has
a modular design that enables the user to configure which
plugins to activate that implement multi-level strategies. For
the purpose of this work, we activated only the transfer

module that is responsible for optimized background flushes
to external storage.

V. EVALUATION

A. Experimental Setup

For our experiments we use Theta, a 11.69 petaflops pre-
Exascale Cray XC40 system based on the second-generation
KNL Intel Xeon Phi 7230 SKU. The system is equipped
with 4392 nodes, each containing a 64 core processor (256
hardware threads) with 16 GB of high-bandwidth in-package
memory (MCDRAM, 300-450 GB/s), 192 GB of main mem-
ory (DDR4 RAM, 20 GB/s), and a 128 GB SSD (700 MB/s).
The interconnect topology is based on Dragonfly with a total
bisection bandwidth of 7.2 TB/sec.

For the purpose of this work, we configured KNL to
run in caching mode, which means the MCDRAM acts as
a cache (implemented in hardware) for the main memory.
This is the recommended configuration for deep learning
applications, since memory bandwidth has an important impact
on performance. The file-system used as local storage is
ext4, which is deployed on top of the SSD. The external
storage is provided by a Lustre parallel file system deployment
(aggregated bandwidth 250 GB/s), which is mounted using
POSIX.

In terms of deep learning software, we use Horovod v.0.18.1
and Tensorflow v.2.0. Note that Tensorflow v.2.0 comes with
its own optimized Keras library, which we use for our
experiments. Furthermore, all these libraries are compiled
with optimized support for the KNL architecture by taking
advantage of Intel’s Math Kernel Library (MKL) and Intel’s
own Python distribution. Our modifications to Tensorflow are
contained within Keras and concern Python code exclusively.
Therefore, our approach takes full advantage of the aforemen-
tioned optimizations.

B. Methodology

Our work focuses on scenarios where the state of the
learning model needs to be checkpointed with high frequency
during the training. In this context, the critical state that
changes between batch updates are the weights of the layers,
which are the focus of our experiments. We assume the rest
of the parameters (architecture of the model, training config-
uration, state of the optimizer) are checkpointed separately as
needed.

We compare the following approaches throughout our eval-
uation.

Keras-Default: This is the default checkpointing avail-
able in Keras. Specifically, the user has to register a callback
with the model, which is used during the training to signal
when a step and/or epoch was completed (which is a safe
moment to checkpoint). In the callback, the weights of the
model are saved using model.save weights(ckpt file), which
uses the HDF5 library to serialize the weights in the specified
file. Since the weights of all model replicas are synchronized
at the end of each batch, only one rank needs to save the
weights (we choose by convention rank 0). This operation is



blocking and causes rank 0 to lag behind in the next batch,
which ultimately causes and overall performance overhead due
to synchronization.

VELOC-Single: A similar approach with Keras−Default,
except that it relies on model.get weights() to obtain the list
of all weights as numpy arrays, which are then serialized in
bulk on the local storage using the VeloC Python bindings.
Again, this is a blocking operation that happens on a single
rank. However, unlike the case of Keras−Default, the serialized
weights are flushed to external storage (Lustre parallel file
system) asynchronously in the background while the training
continues.

VELOC-Sharded: This approach adds sharding on top of
the VELOC−Single approach. Specifically, each rank obtains
the list of weights as numpy arrays and then extracts for
each array a slice corresponding to its index. The size of the
slice is the total size of the array divided by the number of
ranks. Then, each rank independently serializes the slices of
all arrays using the VeloC Python bindings. Each rank flushes
the serialized slices to external storage in the background.

VELOC-Opt: This is the optimized approach that hides
the overhead of extracting and slicing numpy arrays from ten-
sors by embedding these operations directly into the execution
graph of Tensorflow. In this case, the only blocking operation
on all ranks is the serialization of the slices using the VeloC
Python bindings. Same as in the case of VELOC−Sharded,
each rank flushes the serialized slices to external storage in
the background.

These approaches are compared based on the following
metrics.

Blocking Phase: This metric corresponds to the duration
of all blocking operations performed during the checkpointing
callback that is invoked on batch completion. In the case of
Keras−Default, it includes all overheads associated with ex-
tracting numpy arrays from tensors, serialization into the HDF5
format and writes to external storage. For VELOC−Single and
VELOC−Sharded it includes all overheads associated with
extracting numpy arrays from tensors, slicing and serialization
using the VeloC Python bindings (writes to external storage are
asynchronous). For VELOC−Opt, it includes just the overhead
of serialization using the VeloC Python bindings (everything
else is performed asynchronously). It is calculated as the
average of all checkpoints performed by all ranks. This metric
is important because it exposes how much time an individual
rank loses on the average if it is involved in checkpointing.
It directly impacts scenarios where training is stopped after
checkpointing to use the model in a different context.

Preparation Phase: This metric targets VELOC−Single
and VELOC−Sharded. It measures the overhead introduced
by extracting numpy arrays from tensors and, in the case of
VELOC−Sharded, performing the slicing. It is calculated as
the average of all checkpoints performed by all ranks. This
metric is important because it emphasizes the overhead of
post-processing tensors outside of the execution graph in a
blocking fashion, which translates to a direct increase of the
duration of the blocking phase for the two approaches.

Runtime Overhead: This metric evaluates the runtime
overhead caused by checkpointing for the whole group. In
the case of VELOC−Sharded and VELOC−Opt, all ranks are
checkpointing and therefore a slowdown is experienced by
the whole group during the same iteration. In the case of
Keras−Default and VELOC−Single, only rank 0 is checkpoint-
ing while the rest move on to the next iteration. Therefore, rank
0 lags behind in the next iteration, causing a slowdown for
the whole group there. Therefore, to ensure a fair comparison,
we measure this slowdown by calculating the average of all
iterations where a checkpoint is taken and the corresponding
iterations that are immediately following, from which we
subtract the baseline (average duration of iterations without
checkpointing). This metric is important because it exposes the
end-impact when the training is continued after checkpointing,
including the interference caused by asynchronous operations.

C. Applications

We study two representative deep learning applications,
each of which can benefit from checkpointing in a variety
of scenarios, as outlined in Section I.

1) CANDLE NT3: CANDLE [14] (Cancer Distributed
Learning Environment) is a project that aims to combine
the power Exascale computing with deep learning to address
a series of loosely connected problems in cancer research.
Each such problem is driven by a series of benchmarks. One
such direction (Pilot 1) aims to predict drug response based
on molecular features of tumor cells and drug descriptors.
In this context, we study on NT3 [1], which consists of a
1D convolutional network for classifying tissue, expressed as
gene sequences, as normal or tumorous. This type of network
follows the classic architecture of convolutional models with
multiple 1D convolutional layers interleaved with pooling
layers followed by final dense layers. The optimizer used by
NT3 is SGD (stochastic gradient descent). The training data
size for this benchmark is ≈ 600 MB, which includes 1120
training samples. We adapted NT3 for data-parallel training
by introducing a partitioning scheme that evenly distributes
the training data to the ranks and a new distributed optimizer
based on Horovod.

2) ResNet-50: is a deep neural network where the layers
learn residual functions with reference to the input layers,
instead of learning unreferenced functions. This allows ResNet
to train extremely deep neural networks with 150+ layers,
which was difficult prior to its introduction due to the problem
of vanishing gradients [24]. Thanks to this breakthrough,
ResNet became a highly popular image classification bench-
mark especially in a simpler form that uses 50 layers. We
study this form, called ResNet-50. A data parallel implemen-
tation is shipped together with Horovod as an example [30].
The optimizer used by this implementation is also SGD. As
training data, we use the ImageNet dataset [31], which is ≈
200 MB large and includes 100,000 samples. The training set
of each worker is randomly sampled from the training data.



D. Results

We focus our study on the weak scalability of data-parallel
training for each of the approaches introduced in Section V-B.
In this case, the batch size remains constant as the number of
ranks increases, which means more training data is processed
with each iteration. This is the most popular data-parallel
training scenario.

TABLE I: Application parameters

Application Batch size Ckpt tensors Ckpt size
CANDLE-NT3 20 9 600 MB

ResNet-50 32 27 100 MB

We run a single Horovod rank per node. Each rank runs
a Tensorflow instance that was configured to use two intra-
threads (used to parallelize single operations internally) and
128 inter-threads (used to parallelize independent operations
in the graph). These are the optimal settings for the Theta
pre-Exascale machine according to previous findings [32]. The
application parameters are listed in Table I. We include both
the number of tensors holding the weights to be checkpointed
and their total size.

TABLE II: Application performance: average duration of
iterations

Application 1 node 2 nodes 4 nodes 8 nodes
CANDLE-NT3 2.7s 2.8s 4.2s 5.1s

ResNet-50 4.79s 5.12s 5.29s 5.35s

Table II lists the average duration of the iterations without
any checkpointing as the number of nodes increases from one
up to eight. This is used as a baseline. Note that there is
a significant increase in the average duration as the number
of nodes increases, which is explained by increasingly larger
synchronization overhead introduced by frequent all-reduce
operations.

For the purpose of this work, we take a checkpoint every
15 iterations, which amounts to a total of 8 checkpoints for
CANDLE−NT3 and 5 checkpoints for ResNet−50. The metrics
introduced in Section V-B are averages of these checkpoints.

The results for CANDLE−NT3 are depicted in Figure 5. As
can be observed, the preparation phase for VELOC−Single
and VELOC−Sharded has a significant overhead, which is
almost half of the duration of an iteration when using a single
rank. As can be observed, this overhead is close for both
approaches. Therefore, we conclude that the dominating factor
of the preparation phase is the conversion from tensors to
numpy arrays, which requires an invocation of the Tensorflow
backend and costly initialization of Python data structures.
The additional slicing performed by VELOC−Sharded on the
numpy arrays seems to introduce negligible overhead, which
can be explained by the fact that the model consists of few
tensors of large size, therefore few slicing operations are
needed. Furthermore, the preparation phase remains relatively
constant regardless of the number of nodes, which is expected
given the negligible overhead of slicing (which is the only
operation that depends on the number of nodes).

Figure 5b depicts the duration of the blocking phase for
each of the approaches. For a single node, VELOC−Single and
VELOC−Sharded are identical, because no slicing is possible.
Interesting to note though is how close these approaches are
to Keras−Default, which flushes the checkpoint directly to
external storage in HDF5 format. This can be explained by
the long preparation phase, which negates the benefits of
fast writes to local storage, therefore negating the benefits of
multi-level asynchronous flushing. This effect is clearly visible
when comparing with VELOC−Opt, which does not have a
preparation phase and therefore only needs to block while
writing to local storage. As the number of nodes increases,
the results begin to show a different trend. Keras−Default is
exhibiting an increasingly higher overhead, as the flushing to
external storage shares the network bandwidth with other ranks
that moved on to the next iteration. This effect is not visible
for VELOC−Single, as it uses local storage during the blocking
phase. As expected, VELOC−Sharded becomes increasingly
faster with increasing number of nodes, because each rank
needs to write an increasingly smaller amount of data to local
storage. The same trend is visible for VELOC−Opt, but at
much faster rate: for 8 nodes, it becomes 3.8x faster than
VELOC−Sharded, 10.6x faster than VELOC−Single and 11.1x
faster than Keras−Default.

A comparison of the runtime overhead (Figure 5c) reveals
similar overall trends for an increasing number of nodes but
with notable differences. In the case of Keras−Default, the
increasingly higher blocking phase does not cause a higher
runtime overhead, which can be explained by the fact that
more nodes have higher synchronization overhead, which
masks some of the lag of the checkpointing rank. This effect is
visible for VELOC−Single as well and even more pronounced
due to the fact that its blocking phase is relatively constant. For
VELOC−Sharded, the runtime overhead looks very similar to
the blocking phase, which is due to the fact that all ranks
are checkpointing and therefore there are no laggers. This
is true for VELOC−Opt as well, but in this case, the extra
operations running in the execution graph during checkpoint-
ing to avoid the preparation phase lead to a slightly higher
runtime overhead when compared with the corresponding
blocking phase. Even with this extra overhead, for 8 nodes,
VELOC−Opt is 2.5x faster than VELOC−Sharded, 6.2x faster
than VELOC−Single and 6.5x faster than Keras−Default.

The results for Resnet−50 are depicted in Figure 6. Just
like in the case of CANDLE−NT3, the preparation phase for
VELOC−Single and VELOC−Sharded (Figure 6a) shows sig-
nificant overhead for both approaches. However, the overhead
for VELOC−Sharded is much higher because there are many
tensors of small size, which means many slicing operations
need to be performed on fewer bytes, therefore introducing
an non-negligible overhead on top of the conversion from
tensors to numpy arrays. This also has an impact on the
scalability of the preparation phase, with slicing becoming
slightly cheaper as the number of nodes increases (which is
expected given that it involves fewer bytes with increasing
number of nodes). On the other hand, the preparation phase



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

VELOC-Single

VELOC-Sharded

(a) Preparation phase (lower is better).

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

Keras-HDF5

VELOC-Single

VELOC-Sharded

VELOC-Opt

(b) Blocking phase (lower is better).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

Keras-HDF5

VELOC-Single

VELOC-Sharded

VELOC-Opt

(c) Runtime overhead (lower is better).

Fig. 5: CANDLE-NT3: Checkpointing scalability

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

VELOC-Single

VELOC-Sharded

(a) Preparation phase (lower is better).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

Keras-HDF5

VELOC-Single

VELOC-Sharded

VELOC-Opt

(b) Blocking phase (lower is better).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8

T
im

e
 (

s
)

Number of nodes (256 threads per node)

Keras-HDF5

VELOC-Single

VELOC-Sharded

VELOC-Opt

(c) Runtime overhead (lower is better).

Fig. 6: ResNet-50: Checkpointing scalability

for VELOC−Single remains relatively constant just like in the
case of CANDLE−NT3.

The blocking phase, which is depicted in Figure 6b, exhibits
significant differences between Keras−Default and the rest
of the approaches, even for a single node. In this case,
VELOC−Opt is 2.2x faster than VELOC−Sharded, 1.5x faster
than VELOC−Single and 4.7x faster than Keras−Default. This
can be explained by the fact that Keras−Default writes to
the parallel file system using many small I/O operations,
which is sub-optimal. On the other hand, the rest of the
approaches write to local storage, which can handle smaller
I/O operations better. As the number of nodes increases, the
blocking phase for Keras−Default and VELOC−Single remains
constant, as expected. In the case of VELOC−Sharded, the
blocking phase slowly decreases up to the point where it is
close to the preparation phase, which already happens at 4
nodes and shows limited scalability potential. The opposite is
true for VELOC−Opt: not only does its blocking phase start
lower than the rest of the approaches, but the gap is also
increasing with the number of nodes, hinting at much better
scalability. For 8 nodes, its blocking phase is 7x faster than
VELOC−Sharded, 7.4x faster than VELOC−Single, 22x faster
than Keras−Default.

The runtime overhead (depicted in Figure 6c), follows
a similar pattern with the blocking phase. Specifically, the
high blocking overhead of Keras−Default is reflected in the
runtime overhead as well, leading to a situation where the
other approaches are two times faster for most configurations.
For a single node, just like in the case of CANDLE−NT3,
VELOC−Opt has higher overhead than VELOC−Single due to
the extra operations running in the execution graph. With in-

creasing number of nodes, Keras−Default experiences slightly
lower runtime overhead due to higher all-reduce synchroniza-
tion overhead, while the overhead of VELOC−Single remains
relatively constant. Interesting to note is that VELOC−Single
is close to VELOC−Sharded, which emphasizes the poor
performance of sharding for many tensors of small sizes.
Both VELOC−Sharded and VELOC−Opt experience a visible
reduction in runtime overhead. However, this reduction is
much sharper for VELOC−Opt, which is 5.15x faster than
Keras−Default, 2.2x faster than VELOC−Single and 2.3x faster
than VELOC−Sharded for 8 nodes.

Overall, we conclude that the combination of our proposed
techniques give VELOC−Opt a large performance and scalabil-
ity advantage over the other approaches, both for the blocking
phase and the runtime overhead.

VI. CONCLUSIONS

This paper introduced an approach specifically optimized
for frequent checkpointing of deep learning models subject
to synchronous data-parallel training and optimized to take
advantage of layer-wise parallelism. Despite the fact that
frequent checkpointing is an increasingly important building
block in a broad range of deep learning scenarios, state-of-
art checkpointing approaches are rudimentary and lack high-
performance and scalability considerations.

To address this gap, we contributed with several novel
ideas, including lightweight serialization, sharding and aug-
mentation of the execution graph to asynchronously mask
the overhead of capturing weights from tensors without using
a separate execution context. These ideas facilitate efficient
serialization into contiguous byte arrays, which be used by



multi-level checkpointing approaches to persist the state of
learning models in a resilient fashion. The combination of
these techniques has shown major improvements for real-
life deep learning applications, both in terms of reducing the
blocking overhead (at least 10x) and runtime overhead (at least
5x) when compared with state-of-art. For users, this has an
important impact because it carries benefits regardless whether
the training needs to continue after taking a checkpoint or not.

Encouraged by these promising results, in future work we
plan to explore more trade-offs that emerge in the context of
synchronous data parallel training and layer-wise parallelism.
One promising direction is gaining direct access to the memory
regions used by the tensors, which enables zero-copy on
one hand, but introduces the need to maintain consistency of
checkpoints by ensuring tensors are not changed while being
checkpointed. In this regard our previous work [9] introduces
several ideas we can start from.

ACKNOWLEDGMENTS

This research was funded by Argonne National Laboratory,
under Contract LDRD-1007397. It used resources of the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-
AC02-06CH11357.

REFERENCES

[1] “CANDLE Benchmarks,” https://github.com/ECP-
CANDLE/Benchmarks.

[2] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC ’10: The 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, New
Orleans, USA, 2010, pp. 1:1–1:11.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault
tolerance interface for hybrid systems,” in SC ’11: The 2011
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, USA, 2011, pp. 32:1–32:32.

[4] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[5] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“VeloC: Towards high performance adaptive asynchronous checkpoint-
ing at large scale,” in IPDPS’19: The 2019 IEEE International Parallel
and Distributed Processing Symposium, Rio de Janeiro, Brazil, 2019,
pp. 911–920.

[6] S.-M. Tseng, B. Nicolae, G. Bosilca, E. Jeannot, and F. Cappello, “To-
wards portable online prediction of network utilization using MPI-level
monitoring,” in EuroPar’19 : 25th International European Conference
on Parallel and Distributed Systems, Goettingen, Germany, 2019, pp.
1–14.

[7] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, “Damaris: How
to efficiently leverage multicore parallelism to achieve scalable, jitter-
free I/O,” in CLUSTER ’12 - Proceedings of the 2012 IEEE International
Conference on Cluster Computing, Beijing, China, 2012, pp. 155–163.

[8] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer,
K. Iskra, R. Ross, W. E. Nagel, and S. Poole, “Optimizing I/O for-
warding techniques for extreme-scale event tracing,” Cluster Computing,
vol. 17, no. 1, pp. 1–18, Mar. 2014.

[9] B. Nicolae and F. Cappello, “AI-Ckpt: Leveraging memory access pat-
terns for adaptive asynchronous incremental checkpointing,” in HPDC
’13: 22th International ACM Symposium on High-Performance Parallel
and Distributed Computing, New York, USA, 2013, pp. 155–166.

[10] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury,
“Efficient user-level storage disaggregation for deep learning,” in 2019
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2019, pp. 1–12.

[11] S. Pumma, M. Si, W.-c. Feng, and P. Balaji, “Parallel I/O optimizations
for scalable deep learning,” in 2017 IEEE 23rd International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, 2017, pp. 720–
729.

[12] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “FanStore: Enabling efficient and scalable I/O
for distributed deep learning,” arXiv preprint arXiv:1809.10799, 2018.

[13] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and
W. Yu, “Entropy-aware I/O pipelining for large-scale deep learning on
hpc systems,” in 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2018, pp. 145–156.

[14] J. Wozniak, R. Jain, P. Balaprakash et al., “CANDLE/Supervisor: A
workflow framework for machine learning applied to cancer research,”
BMC Bioinformatics, no. 19, 2018.

[15] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[16] P. Balaprakash, M. Salim, T. Uram, V. Vishwanath, and S. Wild, “Deep-
Hyper: Asynchronous hyperparameter search for deep neural networks,”
in 2018 IEEE 25th International Conference on High Performance
Computing (HiPC). IEEE, 2018, pp. 42–51.

[17] G. K. P. Kaul and D. Golovin, “Hyperparameter tuning in cloud machine
learning engine using bayesian optimization,” 2017.

[18] J. M. Wozniak, P. E. Davis, T. Shu, J. Ozik, N. Collier, M. Parashar,
I. Foster, T. Brettin, and R. Stevens, “Scaling deep learning for cancer
with advanced workflow storage integration,” in Proceedings of Machine
Learning in High Performance Computing Environments (MLHPC),
2018.

[19] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[20] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, “DeepSZ:
A novel framework to compress deep neural networks by using error-
bounded lossy compression,” 2019.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[22] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[23] B. Nicolae, “Towards scalable checkpoint restart: A collective inline
memory contents deduplication proposal,” in IPDPS ’13: The 27th IEEE
International Parallel and Distributed Processing Symposium, Boston,
USA, 2013, pp. 1–10.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16: 2016 IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, USA, 2016, pp. 770–778.

[25] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: http://tensorflow.org/

[26] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: Convolutional ar-
chitecture for fast feature embedding,” in ICM’14: The 22Nd ACM
International Conference on Multimedia, Orlando, USA, 2014, pp. 675–
678.

[27] “Torch: A scientific computing framework for luajit,” http://torch.ch/.
[28] A. Sergeev and M. D. Balso, “Meet Horovod: Uber’s open

source distributed deep learning framework for tensorflow,”
https://eng.uber.com/horovod.

[29] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[30] “Horovod repository,” https://github.com/horovod.
[31] J. Deng, W. Dong, R. Socher et al., “ImageNet: A large-scale hierarchi-

cal image database,” in CVPR’09: Conference on Computer Vision and
Pattern Recognition, Miami, USA, 2009, pp. 248–255.

[32] J. Li, B. Nicolae, J. Wozniak, and G. Bosilca, “Understanding scalability
and fine-grain parallelism of synchronous data parallel training,” in 5th
Workshop on Machine Learning in HPC Environments (in conjunction
with SC19), 2019.


