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Abstract
A previous Code Comparison Infrastructure (CCI) study focused on non-collisional plasma expansion problems.
Here we build on that work by considering collisional plasma behavior. We seek to understand the physics of
collisions and how they are modeled in both Particle-In-Cell (PIC) and multifluid plasma codes with an overarching
goal of establishing and demonstrating model consistency. We also seek to identify limitations of the methods and
codes to better inform approaches to hybrid modeling which strives to enable dramatic gains in performance
without sacrificing modeling fidelity.

Problems and Codes
Codes O-D Maxwell

Mol.Thermalize
(w/o drift)

O-D Maxwell
Mol.Thermalize

(w. drift)

O-D Coulomb
Thermalize

I -D Neutral
Exapanding Slab

Aleph - PIC x x x x

Drekar - fluid x x x

Empire-PIC x x

Empire-fluid x x x

Outcomes of this activity include the following:
.

.

•

.

Construct code-to-code comparison tests in CCI

Understand how to achieve consistency between PIC and fluid operators

Understand how to achieve consistency in problem specifications across the respective codes

Understand how to identify the onset of non-Maxwellian evolution from collisions and how it relates to delta-f
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Maxwell molecules permit model consistency across codes along
particles. Additional modeling terms become active with drifted
solution for a subset of the codes.

CCI allows rigorous comparisons across codes (and models
solutions when applicable.

with an exact closed-form solution for non-drifting
distributions and can be compared against a known

) along with verification against known
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Maxwellian Expectation

Anderson-Darling Goodness-of-Fit to
estimate (with confidence level) how
Gaussian a discrete VDF is. This
metric can indicate time to thermalize,
opportunity to switch between fluid
and kinetic models and possibly inform
delta-f hybrid approaches.

Points below Blue Line are time steps with 99% confidence of being from a Maxwellian
(thermalized) distribution.

Fluid Model
Martinez-Gomez

Coulombic Thermalization

Kinetic (PIC) Model
Nanbu cumulative small-angle collision operator , DSMC
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Summary
We are integrating four tests into the CCI test suite focused on elastic collisional interactions.

Neutral Expanding Slab - Tests have demonstrated both kinetic and fluid solutions to the neutral expanding

slab problem in a PIC code by adjusting the Knudsen number from the non-collisional regime to the collisional

regime.

Maxwell Molecule Thermalization - Tests allows rigorous verification across kinetic and fluid codes for

isotropic scattering of neutral species. In the case of zero drift velocity four codes were exercised and show

good agreement between codes and exact solution. For the case including drift velocity, two codes reproduce
the numerically integrated ODE.

Coulomb Collision Thermalization - Using native Coulomb collision operators, we have shown reasonable

agreement of an ion-electron thermalization problem.

.

•

Lessons Learned
• Differences due to methods (PIC vs. fluid) and assumptions (dropped terms, regimes) can be subtle and must

be identified and understood for quantitative comparison across codes solving "the same problem."
• If capability is not tested it is broken (or soon will be).
• The CCI infrastructure standardizes problem descriptions and enforces comparable solution resolution (mesh

size, time step and particle statistics) and is invaluable for benchmarking, preserving and protecting capability.
• Confidence is best built by evidence.
• CCI fosters a culture of iterative understanding and improvement moving toward a shared goal of credible

predictive mod/sim.
• Experience gained from design/implementation and testing relatively simple elastic tests is a necessary pre-

requisite for including more complex inelastic collisional interactions such as ionizaton/recombination.

Next Steps
• Adopt a parameterized Maxwell molecule model to allow deviations from Maxwellian intra-particle distributions

to assess greater non-local thermodynamic equilibration and inform hybrid approaches based on such

deviations (e.g. delta-f).

• Augment Drekar with Maxwell molecule model for comparison to existing drift velocity results.

• Investigate possibility of constructing an inelastic collisional interaction test

• Extend 0-dimensional collisions to 1,2,3-D along with fields to benchmark interplay between PIC and explicit

collision operators.
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