Developing an Air Separation Reactor
Design from the Carrier to the Reactor

N NATIONAL

TL TECHNOLOGY
LABORATORY

Pittsburgh Coal Conference, September 10, 2020



NATIONAL
ENERGY

Background S RS oo

LABORATORY

Project Goal: Linking Atomic and Process Scales

Laboratory Experiments and Atomistic Modellin
- O,-TPD on MM2950 Y EXp g Ellingham Diagrams
[THTT T srcareo,
— — = = =SFO
'g 20x10" Eg Eig 400 P, :':g:..a
B —_—z025 :':1\;':\\ - SCF:;
E’ —E - TN —-—- SCF,,
avsox10lh —x=04 ~ N
o o) \\
z g 300} RN
< 2 R
S 20x10 RN
Z S \\\\\
o o A ~,
8 10x10™" S| 200 \‘Q\
[=] X I ¥,
> ABO, N
R '\
0.0 Ty
300 400 500 600 700 800
0 100 1 1 i
Temperature ("C) 0 300 600 900 1200
TIK
Time: 724s

1500.
[ 1400
800
. 600
h‘ 400
293,

Process Models Reactor Design and CFD M

U.S. DEPARTMENT OF

ENERGY

g

g

Solid Temperature (K)




Background N= [
g T L [[ESHNoLoGY
Current and potential uses for Oxygen Storage Materials LABORATORY

.S. DEPARTMENT OF




Background N=[Mameoe:
g TL TECHNOLOGY
Current Regenerable Oxygen Carriers LABORATORY
Stoichiometric Oxides Non-stoichiometric Oxides
* Materials include: Fe,O,, Co,0,, * Matetials include: BaYMn, O,

, YBa(Co,_ Ga),0
M_Fe,O,, M, M_. O . 1x ho T,
€My, Mo M U5 ete Ca,AIMnOq, , Sr;Fe,O- 4, etc.

* Structural oxygen release/uptake * Interstitial or labile oxygen

* Large oxygen storage potential release/ uptake
* High temperatures required * Lower oxygen storage potentials
* Extensive structural rearrangement * Lower temperatures possible

necessary * Much less structural rearrangement

necessary

Fe,0; = FeO
ca. 10 wt.% O,

Ba¥YMn,O, 2 BaYMn. g
ca.4wt% 0, v g: A

r\'
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Perovskite Materials ¥E ENERGY
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* Applications

e Perovskites are a well studied

type of oxide with the general * Chemical looping combustion
formula ABO3 . Potential‘ CLOU candidates, if oxygen is
released into the gas phase
* The first identified Perovskite e Pollution remediation
was CaTlO3 * NO, decomposition
i i * Replacement of noble metal catalysts in
* A-site cation has a dodecahedral aug) mobiles Y
coordination * Syngas production via reforming
* B-site cation sits in the center of reactions S
BO6 octahedra * High Temperature Gas Sensors ”H - :‘i
., . . * Solid Oxide Fuel Cells Li|Be B[ C|N|C
* “Ideal” structure is cubic though e Photovoltaics Na | Mg
the size of the A-site cation can X gl JLELE
create distortions _ _ _ P e e e e T
* Potentially Interesting Properties el
Fr ™ LR

* Superconductivity

*Lanthanide series

* Magnetoresistance

* *Actinide series

* Ferromagnetism
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Chemical Substitution

General Perovskite Formula A-Site Substitution
ABO, A'A?B,0q

!

Doubled Perovskite Formula

A,8B,04

B-Site Substitution .3

— 5ry,CaFe; M O35
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High-Temperature Solid-State Precipitation/Co-precipitation Sol-Gel Methods
(Bulk Delafossites and Perovskites) (Layered Double Hydroxides) (Complex Metal Oxide Nanoparticles)
\ : Wet Gel Xerogel Ceranie
K2C03 and Mg(NO3)2 and Evaporation Heat O
KOH AI(NO,), /

Sol from
Precursor Solution

BaCO5+Fe,0;+Mn,0; —> BaFe, ;Mn, ;045

Uniform Particles Aerogel

LDH Product

Solvothermal Salt Flux Solid State Microwave

(Single Crystal Growth) (Single Crystal Growth) (Bulk Chalcogenides)

Acid Digestion
<« 8
Vessel

Eutectic Salt
Mixture

Solvent

Crystals
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High-resolution, rapid collection synchrotron powder in situ XRD

* Time-resolved in situ XRD
* Determine structural changes in relation to oxygen release

* Synchrotron source (APS 17-BM) - high-energy, rapid acquisition

SrFeO; 5 Sty ;Ca,3FeO;5
} : 1 — 3 - 5 ~. —
=SE—+ §F -8 e ,
=== il— = téi — =
=5
2 4 6 8 10 12 14 16 2 a 6 8 10 12 1 16
20 20

Thermal expansion, possible oxygen release
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Structure Changes

e Minor conversion between
structure-types

* Tilt in half of FeO,-octahedra

* Removal of oxygen creating layer of
FeO, tetrahedra from other half of
FeO,-octahedra

* More Ca®* substitution — greatet
stability as brownmillerite
structure

Sr, ,.Ca FeO,
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Perovskite Characterization

TPD: Determination of maximum O, storage capacities and desorpfion temperatures

* Experiment:
* Systematic priming at 850°C in air
flow for O, uptake for 1 hour
* Cool to RT
* 10 deg/min ramp to 1050°C in He

flow and monitor O, release
* Findings:

* As xincreases, T decreases

des, max
* As x increases, max O, release
decreases

* As x increases, a & 3 oxygen
desorption distinctions merge
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Sr1_)‘CaXFeOE_ii
o
Volume O
Sample 2
P (mL/g)
x = 0.00 17.134
x = 0.05 16.282
x =0.10 16.264
x = 0.15 15.292
x =0.20 15.678




Perovskite Characterization

TGA: All samples show cyclable O, uptake and release

* Samples demonstrate durability
and cyclability
* 4 uptake/release cycles

* Shorter cycle timeframe used for
higher temperatures

*  Gas flow (75 sccm)
* Samples aged 6+ mo. in air

* Findings:
* As x increases, max O, Capacif)y
decreases (agrees with O,-TPD)

* As x increases, max uptake
temperature increases

* As x increases, rate of O, release at
800°C increases

e If x = 0.30, sharp decrease in
oxygen storage at 450-500°C exists

¢ x = 0.20, less abrupt at 550-700°C
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* As temperature increases, Temperature (°C) =
max OSC decreases NN 400 | 450 | 500 | 550 | 600 | 700 =
- 000 | 084 | 082 | 095 | 106 | 130 | 140 £
* Instability of oxidized ®» 005 | 081 | 091 119 | 137 | 169 | 155 ;\3
species under air flow | & [0 | 095 | 108 | 191 | 204 | 190 | 150 'E
= | o [ 015 | 135 | 217 | 220 | 204 | 183 | 144
* Exix=0.30at550°C o € [o20 [ 210 | 237 | 219 | 199 | 178 | 136 ~
L
0.54 wt% O, O % 025 | 241 | 235 | 213 | 184 | 143 | 049 ©
8 S | 030 | 241 | 221 | 177 | 054 [ 024 | 014 o
035 | 213 | 190 | 046 o
040 | 172 g
Q
Temperature (°C) [
@) 400 | 450 | 500 | 550 | 600 | 700 14
e Rates increase as x and : o 000 | 956 | 1653 | 17.38 | 1393 | 1558 | 15.15 o
: o & 0.05 | 3177 | 1833 | 2070 | 1603 | 1565 | 11.67
temperature increase = Q| [ 010 [ 3603 | 2208 | 2508 | 1547 | 885 | 493
* Disparities due to &0 S | 015 | 5135 | 2422 | 1183 | 535 | 302 | 1.8 .
very low OSCs ;’ : e 020 | 4517 | 1785 | 653 | 300 | 170 | 0.90 Plot estimates the gagas
~| ‘w 025 | 3613 | 700 | 218 | 100 | 053 | 1.05 rate = O
*  Only StFeO; stays g S| © 030 | 258 | 410 | 117 | 070 | 472 | 1732
constant [_‘ N 0.35 16.03 3.00 1.07 (Larger rates
0.40 | 1030

suggest use
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Stability Testing and Comparison to Known Materials

* NETL Perovskite samples were tested in collaboration with ThermoSolv
* NETL sample demonstrated stability over >10,000 cycles

* NETL Perovskite outperformed an LSCFEF sample in multiple cycle structures
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Perovskite Modelling

Atomistic Modelling
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Perovskite Modelling

Elingham Diagram Calculation

AG(P_)/kJ-(molO,)"!

Computational Model
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* Differential Scanning Calorimetry used to determine enthalpy of oxidation/reduction

DSC Experiments

il
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* Decreasing enthalpy as both calcium content and temperature increase

Agreement between computational models and DSC experiments
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Mass in-flow
e Air for adsorb swing
* N, for desorb swing

For each case, the 2" TGA cycle was used to calculate
kinetic constants.

Tube:

Diameter =0.021 m

Height = 0.559 m

Particles: :
Diameter = 0.0031 m ] ]
(300 g total) A N .

Mesh: 4 x 60 x 4

Isothermal

Pressure out-flow
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————— CFD Model Demonstration for 300s O,
Sry.;,Ca, 3Fe0; 5 at 450 °C QbSOI’pTIOﬂ SWeep
* 22mm x 559mm tube

0.025

¥
§ 0.020
§ s « Ba,,Sr,CoqsFey,05 ¢ data from He (2009)
g Perovskite Adsorption
o 0.010
g —— Experiment . ——Experiment ——Simulation
£ 0005 — Simulaton Validated TGA data o
- will contribute to the % om Mass fraction
0 200 400 600 800 1000 — § 0.008 02 absorbed
Time (s) @ .
: : § 0.006 af tube inlet
Desorption Swing flnal MFIX CFD EO-”O“ fOI’ fII’ST 305
o Sry;Cap 3Fe0; 5 at 450 °C Rea CtOr Design £ 0.002
)
SiEh S— 0 50 100 15T?me(i;)o 250 300 350 -| .39'02
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For each temperature and perovskite composition, a
numerical matching of TGA data is necessary.
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materials o N, for desorb swing
* Achieved more than 2.4 wt % O, capacity | Tube:
: : & : ‘ ‘ ‘ ‘ Diameter=0.021m
* Achieved control of desorption temperature AR wne e oo Height = 0.559 m

* Sr, Ca FeO, ; found to outperform LSCF

Particles:
* Sr, Ca FeO, , found to be stable over Diameter = 0.0031 m
(300 g total)
>10,000 cycles “oh. IR,
. : - N I Mesh: 4 x 60 x 4
* Experimentally validated Ellingham _ T e Mesh: 4 x 60 x
Diagrams % 300 | \\\\ Isothermal
2 N
.. i . i = | N
* Initiated CFD design and model validation 5 RN
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