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Background
Project Goal: Linking Atomic and Process Scales

Process Models

Laboratory Experiments and Atomistic Modelling

ABO3

ABO3-d + O2

DG

Ellingham Diagrams

Reactor Design and CFD Models
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Background
Current and potential uses for Oxygen Storage Materials

Oxygen Storage 
Materials (OSM)

Medical 
Oxygen Supply

Oxygen 
Sensors

Chemical 
Looping 

Gasification or 
Combustion

Solid Oxide 
Fuel Cells

Three-way 
Catalysis

Aerobic 
Wastewater 
Treatment
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Stoichiometric Oxides
• Materials include: Fe2O3, Co3O4, 

MxFe2O4, M2-xM
’
x O3 etc. 

• Structural oxygen release/uptake 

• Large oxygen storage potential 

• High temperatures required

• Extensive structural rearrangement 
necessary

Background
Current Regenerable Oxygen Carriers

Non-stoichiometric Oxides
• Materials include: BaYMn2O5+δ, 

YBa(Co1-xGax)4O7+δ,    
Ca2AlMnO5+ δ, Sr3Fe2O7-δ, etc. 

• Interstitial or labile oxygen 
release/uptake 
• Lower oxygen storage potentials 

• Lower temperatures possible

• Much less structural rearrangement 
necessary

Fe2O3 → FeO
ca. 10 wt.% O2

BaYMn2O6 → BaYMn2O5

ca. 4 wt.% O2
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• Applications

• Chemical looping combustion

• Potential CLOU candidates, if  oxygen is 
released into the gas phase

• Pollution remediation

• NOx decomposition

• Replacement of  noble metal catalysts in 
automobiles

• Syngas production via reforming 
reactions

• High Temperature Gas Sensors

• Solid Oxide Fuel Cells

• Photovoltaics

• Potentially Interesting Properties

• Superconductivity

• Magnetoresistance

• Ferromagnetism

Perovskite Materials
Background

• Perovskites are a well studied 
type of  oxide with the general 
formula ABO3

• The first identified Perovskite 
was CaTiO3

• A-site cation has a dodecahedral 
coordination

• B-site cation sits in the center of  
BO6 octahedra

• “Ideal” structure is cubic though 
the size of  the A-site cation can 
create distortions

ABO3
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Perovskite Materials
Chemical Substitution

A-Site Substitution
A1A2B2O6

B-Site Substitution
A2B1B2O6

General Perovskite Formula
ABO3

Doubled Perovskite Formula
A2B2O6

Sr1-xCaxFe1-yMyO3-d
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NETL Material Synthesis Capabilities
Perovskite Synthesis

Solvothermal

(Single Crystal Growth)

High-Temperature Solid-State

(Bulk Delafossites and Perovskites)

Precipitation/Co-precipitation

(Layered Double Hydroxides)

Salt Flux

(Single Crystal Growth)

LDH Product

Mg(NO3)2 and 
Al(NO3)3

K2CO3 and 
KOH

Acid Digestion 
Vessel

Crystals

Solvent

Crystals

Eutectic Salt 
Mixture

Sol-Gel Methods

(Complex Metal Oxide Nanoparticles)

Solid State Microwave

(Bulk Chalcogenides)

BaCO3+Fe2O3+Mn2O3 BaFe0.9Mn0.1O3-d
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Staging Area

• Time-resolved in situ XRD
• Determine structural changes in relation to oxygen release
• Synchrotron source (APS 17-BM) - high-energy, rapid acquisition

Perovskite Characterization
High-resolution, rapid collection synchrotron powder in situ XRD

Sample w/ Heat Shields

Popczun, E.J.; Tafen D.; Natesakhawat, S.; Marin, C.M.; Nguyen-Phan, T.-D.; Zhou, Y.; Alfonso, D.; Lekse, J.W. J. Mater. Chem. A, 2020, 8, 2602. 



9

Sr1-xCaxFeO3-δ

Δ, N2

Δ, Air

(Sr1-xCax)2Fe2O5+δ

• Minor conversion between 
structure-types
• Tilt in half  of  FeO6-octahedra

• Removal of  oxygen creating layer of  
FeO4 tetrahedra from other half  of  
FeO6-octahedra

• More Ca2+ substitution – greater 
stability as brownmillerite 
structure

Perovskite Characterization
Structure Changes
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• Experiment:
• Systematic priming at 850°C in air 

flow for O2 uptake for 1 hour

• Cool to RT

• 10 deg/min ramp to 1050°C in He 
flow and monitor O2 release

• Findings:
• As x increases, Tdes, max decreases

• As x increases, max O2 release 
decreases

• As x increases, α & β oxygen 
desorption distinctions merge

Perovskite Characterization
TPD: Determination of maximum O2 storage capacities and desorption temperatures

Sample
Volume O2

(mL/g)

x = 0.00 17.134

x = 0.05 16.282

x = 0.10 16.264

x = 0.15 15.292

x = 0.20 15.678

x = 0.25 13.718

x = 0.30 14.388

x = 0.35 13.262

x = 0.40 11.482

Popczun, E.J.; Tafen D.; Natesakhawat, S.; Marin, C.M.; Nguyen-Phan, T.-D.; Zhou, Y.; Alfonso, D.; Lekse, J.W. J. Mater. Chem. A, 2020, 8, 2602. 
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• Samples demonstrate durability 
and cyclability
• 4 uptake/release cycles

• Shorter cycle timeframe used for 
higher temperatures

• Gas flow (75 sccm)

• Samples aged 6+ mo. in air

• Findings:
• As x increases, max O2 capacity 

decreases (agrees with O2-TPD)
• As x increases, max uptake 

temperature increases
• As x increases, rate of  O2 release at 

800°C increases
• If  x ≥ 0.30, sharp decrease in 

oxygen storage at 450-500°C exists
• x = 0.20, less abrupt at 550-700°C

Perovskite Characterization
TGA: All samples show cyclable O2 uptake and release

Popczun, E.J.; Tafen D.; Natesakhawat, S.; Marin, C.M.; Nguyen-Phan, T.-D.; Zhou, Y.; Alfonso, D.; Lekse, J.W. J. Mater. Chem. A, 2020, 8, 2602. 
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Perovskite Characterization
TGA: Oxygen storage capacities and time to reach 90% released

Temperature (°C)

400 450 500 550 600 700

C
a

2
+

ra
ti

o

0.00 9.56 16.53 17.38 13.93 15.58 15.15

0.05 31.77 18.33 20.70 16.03 15.65 11.67

0.10 36.03 22.08 25.08 15.47 8.85 4.93

0.15 51.35 24.22 11.83 5.35 3.02 1.68

0.20 45.17 17.85 6.53 3.00 1.70 0.90

0.25 36.13 7.00 2.18 1.00 0.53 1.05

0.30 25.83 4.10 1.17 0.70 4.72 17.32

0.35 16.03 3.00 1.07

0.40 10.30

Temperature (°C)

400 450 500 550 600 700

C
a

2
+

ra
ti

o
 (

x
)

0.00 0.84 0.82 0.95 1.06 1.30 1.40

0.05 0.81 0.91 1.19 1.37 1.69 1.55

0.10 0.93 1.08 1.91 2.04 1.90 1.50

0.15 1.35 2.17 2.26 2.04 1.83 1.44

0.20 2.10 2.37 2.19 1.99 1.78 1.36

0.25 2.41 2.35 2.13 1.84 1.43 0.49

0.30 2.41 2.21 1.77 0.54 0.24 0.14

0.35 2.13 1.90 0.46

0.40 1.72
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Plot estimates the speed of  oxygen release:   

rate = OSC90%/time90%

(Larger rates do not specifically           

suggest use of  that material)

• As temperature increases, 

max OSC decreases

• Instability of  oxidized 

species under air flow

• Ex: x = 0.30 at 550°C  

0.54 wt% O2

• Rates increase as x and 

temperature increase

• Disparities due to 

very low OSCs

• Only SrFeO3 stays 

constant

Popczun, E.J.; Tafen D.; Natesakhawat, S.; Marin, C.M.; Nguyen-Phan, T.-D.; Zhou, Y.; Alfonso, D.; Lekse, J.W. J. Mater. Chem. A, 2020, 8, 2602. 
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Perovskite Characterization
Stability Testing and Comparison to Known Materials

• NETL Perovskite samples were tested in collaboration with ThermoSolv

• NETL sample demonstrated stability over >10,000 cycles

• NETL Perovskite outperformed an LSCF sample in multiple cycle structures
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Perovskite Modelling

Ting Jia, Eric J. Popczun, Jonathan W. Lekse, Yuhua Duan, submitted to Appl. Energy. (2020)
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Atomistic Modelling

Vacancy Formation Energy

Oxygen Diffusion

Electronic Density of States
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Perovskite Modelling
Ellingham Diagram Calculation

Sr1-xCaxFeO3

• Differential Scanning Calorimetry used to determine enthalpy of  oxidation/reduction 

for each sample at each temperature from cycling experiments

• Decreasing enthalpy as both calcium content and temperature increase

• Agreement between computational models and DSC experiments

Computational Model DSC Experiments

Ting Jia, Eric J. Popczun, Jonathan W. Lekse, Yuhua Duan, submitted to Appl. Energy. (2020)
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Perovskite Modeling
MFiX-DEM Verification of TGA Data

Tube:
Diameter = 0.021 m
Height = 0.559 m

Particles:
Diameter = 0.0031 m
(300 g total)

Mesh: 4 x 60 x 4

Isothermal

Mass in-flow  
• Air for adsorb swing
• N2 for desorb swing

Pressure out-flow
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TGA data for Sr0.7Ca0.3FeO3-δ at 450 °C
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For each case, the 2nd TGA cycle was used to calculate
kinetic constants.
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Current and Future Work
MFiX Validation and Reactor Design

For each temperature and perovskite composition, a 
numerical matching of TGA data is necessary.

CFD Model Demonstration for 300s O2 

absorption sweep

• 22mm x 559mm tube

• Ba1-xSrxCo0.8Fe0.2O3-δ data from He (2009)

Mass fraction 

O2 absorbed 

at tube inlet 

for first 30s 

Validated TGA data 
will contribute to the

final MFiX CFD 
Reactor Design
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Conclusions

• Synthesized more than 24 perovskite 

materials

• Achieved more than 2.4 wt % O2 capacity

• Achieved control of  desorption temperature

• Sr1-xCaxFeO3-d found to outperform LSCF

• Sr1-xCaxFeO3-d found to be stable over 

>10,000 cycles

• Experimentally validated Ellingham 

Diagrams

• Initiated CFD design and model validation

Sr1-xCaxFeO3
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accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. 
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