

Potential for ethanol production from different sorghum cultivars

Eulogio Castro^{1,2,a,*}, Ismael U. Nieves^{1,a}, Vanessa Rondón¹, William J. Sagues¹,
Marco T. Fernández-Sandoval¹, Lorraine P. Yomano³, Sean W. York³, John
Erickson⁴, and Wilfred Vermerris^{3,5}

¹*Stan Mayfield Biorefinery Pilot Plant, Univ. Florida, One Buckeye Drive, Perry, FL*

32347, United States

²*Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies on Energy and the Environment, University of Jaén, 23071 Jaén, Spain*

10 ³*Department of Microbiology and Cell Science, University of Florida, Gainesville, FL,*
11 *USA, 32611*

12 *⁴Department of Agronomy, University of Florida, P.O. Box 110965, Gainesville, FL,*
13 *USA, 32611*

14 ⁵UF Genetics Institute, University of Florida, Box 103610, Gainesville, FL 32610,

15 *United States*

16

17

^aThese authors contributed equally to this work.

¹⁹*Corresponding Author: Dr. Eulogio Castro

20 Tel.: +34 953212163

21 *Email address:* ecast

23 **Abstract**

24 This work presents the ethanol production results using three sweet sorghum cultivars.
25 The sugar rich juice was fermented by *Saccharomyces cerevisiae* and *Escherichia coli*.
26 The residual bagasse was further pretreated by dilute phosphoric acid steam explosion.
27 The resulting slurry was submitted to Liquefaction plus Simultaneous Saccharification
28 and co-Fermentation (L+SScF) process using Novozymes Cellic CTec3 enzymes and an
29 engineered ethanologenic *E. coli* strain. Results show a sugar concentration in the juice
30 ranging from 140 to 170 g/L, which were almost completely converted into ethanol by
31 yeast. Concerning the L+SScF, the final ethanol concentration produced increased with
32 enzyme dosage, with little difference among all three sorghum cultivars, reaching up to
33 27.5 g EtOH/L at enzyme concentrations of 11.5 FPU/gDW. Considering the ethanol
34 produced from juice and from Sweet Sorghum Bagasse (SSB), there is a potential of
35 producing up to 10,600 L of ethanol per hectare, improving on the values reported for
36 corn ethanol.

37

38 **Keywords**

39 Sweet sorghum, bioethanol, phosphoric acid pretreatment, L+SScF, *E. coli*

40

41 **1. Introduction**

42 Within the biorefinery concept, bioethanol production continues to be an
43 interesting process because it is still considered to be the most direct and feasible way to
44 partially replace fossil fuels. In addition, bioethanol production presents a number of
45 advantages from the economic, social, and environmental points of view by bolstering the
46 local economy and reducing the amount of carbon dioxide released into the atmosphere.

47 The possibilities of using local feedstocks or dedicated energy crops make the
48 ethanol production option more attractive, as it can also contribute to technical and
49 economic development of rural areas. In this context, sweet sorghum has attracted
50 attention because it can compare favorably with other energy crops such as corn or sugar
51 cane when cultivated in marginal areas, while yielding a similar amount of fermentable
52 sugars. Some of the advantages of using sweet sorghum include that it can be cultivated
53 twice a year in diverse climates, has a low requirement for fertilizer, high efficiency in
54 water usage, and the potential to be drought resistant (Erickson et al., 2011; Whitfield,
55 Chinn and Veal, 2012; Adams et al., 2015).

56 A number of studies have been devoted to assessing sweet sorghum performance
57 in agronomic terms (Linton et al., 2011; Davila-Gomez et al., 2011; Fernandes et al.,
58 2014). These studies were mostly focused on the ethanol production derived from the
59 soluble sugars contained in the juice (Yu et al., 2012). The sweet sorghum juice is
60 obtained from squeezing the sorghum stalks, with the main sugar being sucrose. On the
61 other hand, the remaining solids after extracting the juice (sweet sorghum bagasse, SSB)
62 constitute a lignocellulosic residue whose use as raw material for ethanol production is
63 advantageous due to the lack of competition with food applications and its relatively high
64 sugar content (as cellulose and hemicellulose).

65 In order for lignocellulosic biomass to be converted into ethanol, the polymeric
66 sugars need to be solubilized through pretreatment and enzymatic hydrolysis, followed by
67 microbial fermentation. We have developed a simplified process termed liquefaction
68 plus simultaneous saccharification and co-fermentation (L+SScF), coupled with dilute
69 phosphoric acid pretreatment, that has been successful in the production of

70 lignocellulosic ethanol from sugarcane bagasse (Nieves et al., 2011b), SSB (Wang et al.,
71 2015), and eucalyptus chips (Castro et al., 2014) at high ethanol yields.

72 The main objective of this work was to assess the possibilities of using three new
73 sweet sorghum cultivars developed at the University of Florida as raw material for
74 bioethanol production, considering both the juice and bagasse, from agricultural
75 production to fermentation. Special attention was placed on lignocellulosic ethanol and
76 the effect of enzyme dosage during liquefaction on the overall ethanol yield. In addition,
77 an ethanologenic *Escherichia coli* strain, capable of converting both hexoses and
78 pentoses, was used as the biocatalyst during fermentation.

79

80 **2. Materials and methods**

81 *2.1 Plant material*

82 2.1.1 Sorghum juice

83 Three University of Florida sweet sorghum [*Sorghum bicolor* (L.) Moench]
84 cultivars – F₆(Honey × Bk7)-45-3-1-1-1, F₆(Mer81-4 × Bk7)-20-2-1-1-1 and F₆(Mer81-4
85 × Bk7)-15-2-1-1-1, referred to from here on as UF45, UF20 and UF15, respectively, were
86 cultivated at the Plant Science Research and Education Unit near Citra, FL (29.410629 N,
87 82.170081 W) during the spring and summer of 2012. These cultivars were selected using
88 the pedigree method with the primary selection criteria being the yield of soluble sugars
89 in the stem juice, biomass yield, and resistance against the fungal disease anthracnose
90 (Felderhoff et al., 2016). The fields were fertilized with 250 kg ha⁻¹ of a liquid fertilizer
91 (10-34-0) at planting. An additional 125 kg ha⁻¹ of N and K₂O were applied after
92 planting. Three weeks after emergence, seedlings were thinned to 10 plants per row meter
93 giving a plant population of approximately 131,600 plants ha⁻¹. Insecticides were used as

94 needed to limit the damage from fall armyworm, aphids, or other pests. When the plants
95 had reached the hard-dough stage of maturity (seeds no longer able to be squeezed
96 between fingers), for each genotype a row (7.6 m) of plants was cut, leaves and panicles
97 were removed, and the stems were pressed in a roller mill to extract the juice, which was
98 collected in a bucket. A fresh sample of the juice was obtained for sugar analysis and the
99 remainder was stored at -20 °C in sealed 20-L buckets until needed.

100

101 2.1.2 Sorghum bagasse

102 These same three cultivars were planted in a commercial field managed by Delta
103 BioRenewables, LLC, near Memphis, TN on 20 June 2014 and harvested on 24
104 September 2014. The sweet sorghum was harvested with a forage chopper, pressed with a
105 commercial two-roller press (Laurel Machine and Foundry, Laurel, MS), imbibed with
106 water to extract additional soluble sugars, then pressed a second time, imbibed again, and
107 pressed a third time. The bagasse was then dried with hot air in a peanut wagon and
108 shipped by truck to the Stan Mayfield Pilot Biorefinery in Perry, FL.

109

110 2.2 *Sweet sorghum juice fermentation*

111 2.2.1 Yeast fermentations

112 Prior to use for fermentation, the juice was thawed, boiled for 5 min, and then
113 cooled to room temperature. Inoculum for fermentations using yeast came from Prestige
114 Turbo Pure 48 Turbo Yeast (Gert Strand AB, Svedala, Sweden). Yeast was proofed in
115 100 mL water in a 500 mL flask, 1 g yeast was added and the culture was grown at 35 °C,
116 100 rpm for 20 minutes in a New Brunswick shaker incubator. Sorghum juice was
117 supplemented with 2.5 g/L urea. Using 500 mL fleakers, 300 mL of sorghum juice was

118 inoculated with 2% (v/v) proofed yeast. Fleakers were grown at 30 °C, 150rpm, with no
119 pH control.

120

121 2.2.2 *E. coli* fermentations

122 The *E. coli* strains SL200A (XW055pLOI2751-T41), SL300 (LY180-T18) and
123 SL400 (XW068-T26) were used for testing the fermentability of the sorghum juice.

124 Cultures were initially grown in standing screw-capped tubes with 5% sucrose and AM1
125 mineral salts medium at 37 °C. Strains SL200A and SL400 had 100 mM MOPS (pH 7.0)
126 added and SL200A had 100 mM KHCO₃. Seed fleakers were inoculated from tubes
127 containing the same media without MOPS. The sorghum juice was diluted to 100 g
128 sugar/L with AM1 salts plus trace elements and water. The pH was controlled with 4:1
129 3M K₂CO₃:6M KOH (SL200A, pH 7.0), 2M KOH (SL300, pH 6.5), and 6M KOH
130 (SL400, pH 7.0). Cultures were grown at 37 °C, 150 rpm.

131 To get optimal sucrose utilization for strains LY180 (*E. coli* W ethanol strain,
132 (Geddes et al., 2011) and XW068 (Wang et al., 2011) cultures were transferred in
133 fleakers containing 10% sucrose with AM1 mineral salts medium. After 18 transfers with
134 LY180 at 37 °C, 150 rpm and pH 6.5, SL300 was isolated. After 26 transfers with
135 XW068 at 37 °C, 150 rpm and pH 7.0, SL400 was isolated. Strain XW055 (*E. coli* C
136 succinate strain, (Wang et al., 2013)) has no native pathway for sucrose utilization. The
137 sucrose operon, cscA-cscK-cscB (invertase, fructokinase, permease, respectively) was
138 cloned from *E. coli* W into vector pTrc99a (Amann, Ochs and Abel, 1988), using PCR
139 (Pfx50, Invitrogen, Carlsbad, CA) and the NdeI and XbaI sites, making pLOI5720.
140 Plasmid pLOI5720 was digested with AhdI (Klenow treated, New England BioLabs,
141 Ipswich, MA) and XmniI and self ligated to make pLOI5721. This deletes the bla gene,

142 leaving no antibiotic resistance marker on the plasmid. Plasmid pLOI5721 was then
143 transformed into strain XW055 and transferred in fleakers containing 10% sucrose with
144 AM1 mineral salts medium plus 100 mM KHCO₃. After 41 transfers with
145 XW055(pLOI5721) at 37 °C, 150 rpm and pH 7.0, SL200A was isolated (Table 3).

146

147 *2.3 Phosphoric acid steam explosion pretreatment*

148 Phosphoric acid pretreated bagasse was prepared at the University of Florida Stan
149 Mayfield Biorefinery (0.5% (w/w) phosphoric acid on a dry biomass basis, 5 min, 190°C)
150 as previously described (Nieves et al., 2011b) using a steam pretreatment device (Linde,
151 Galbe and Zacchi, 2007; Palmqvist et al., 1996). After steam pretreatment, the discharged
152 fiber contained ~70% moisture (~30% dry weight including fiber and solubles). Multiple
153 pretreatment runs (15-20 runs at 0.5 kg each bagasse dry weight) were blended to make
154 each batch, and stored at -20 °C. This material was either used directly for liquefaction
155 plus simultaneous saccharification and co-fermentation (L+SScF) (Geddes et al., 2011),
156 or fractionated into liquid hemicellulose hydrolysate (used for seed growth) and fiber
157 (discarded) with a model CP-4 screw press (Vincent Corporation, Tampa, FL).

158 For experimental convenience, fine particulates were removed from the pressed
159 hydrolysate using a glass fiber filter (Whatman GF/D, 15 mm diameter, 27 µm pore size).
160 The clarified hydrolysate was stored at 4 °C until needed.

161

162 *2.4 Liquefaction plus Simultaneous Saccharification and co-Fermentation (L+SScF)*

163 Water was added to phosphoric acid pretreated SSB (10% dry wt solubles and
164 fiber, final concentration after inoculation), adjusted to pH 5 with 5 N ammonium
165 hydroxide, mixed with cellulase and incubated for 6 h at 50 °C to allow liquefaction.

166 Novozyme Cellic CTec3[®] cellulase was used at three different concentrations (2.88, 5.75,
167 and 11.5 FPU/gDW, corresponding to 1.25, 2.50 and 5.00 % v/w respectively) based on
168 the SSB dry weight after inoculation. The liquefaction step was conducted in 1 gal freezer
169 bags immersed in a water bath with hourly manual mixing. Contents were transferred to
170 2-L BioFlo 110 fermentors, cooled to 37 °C, and adjusted to pH 6.3 with 5 N ammonium
171 hydroxide. Trace metals and magnesium sulfate salts were added according to the recipe
172 for AM1 media (Martinez et al., 2007) and sodium metabisulfite was added to provide a
173 final concentration of 1.0 mM (Nieves et al., 2011a). The simultaneous saccharification
174 and co-fermentation was initiated by adding 10% (v/v) inoculum of a hydrolysate-
175 resistant strain of *E. coli* SL100 from a 2-L seed fermentor and monitored for up to 96 h
176 at 37 °C. During the seed growth, SSB clarified hydrolysate was used and prepared as
177 stated before (Geddes et al., 2013). Small amounts of air (0.01 vvm, 20 mL/min (Nieves
178 et al., 2011b)) were added throughout the fermentation.

179

180 *2.5 Analytical methods*

181 The composition of the raw material was determined according to National
182 Renewable Energy Laboratory (NREL) analytical methods for biomass (Sluiter et al.,
183 2008). Monomer sugars (glucose, xylose, arabinose, mannose and galactose) and
184 inhibitor composition (acetic acid, formic acid, furfural and HMF) of the liquid fraction
185 were determined by HPLC using an Agilent Technologies 1200 series HPLC system as
186 described in Geddes et al. (Geddes et al., 2011). Ethanol was measured using an Agilent
187 Technologies 6890N Network gas chromatography system (Geddes et al., 2011). Dry
188 matter was determined using a Kern model MLB 50-3 moisture analyzer (Balingen,

189 Germany). All analytical determinations were performed in triplicate and the average
190 results are shown. Relative standard deviations were below 3%.

191

192 **3. Results and discussion**

193 *3.1 Raw material composition*

194 Table 1 depicts the composition of the three SSB cultivars used in this study.

195 Sugars polymers account for approximately 2/3 of the dry weight. Glucan represents
196 more than 40% of the dry weight, while xylan is the most important hemicellulosic
197 polymer in SSB, followed by arabinan. This composition is in accordance with other
198 previously reported values (Shen et al., 2011; Wang et al., 2012; Li et al., 2010) and
199 confirms SSB as a lignocellulosic material of interest for ethanol production.

200

201 *3.2 Biochemical production from juice*

202 The composition of the soluble sugars in the sorghum juice is shown in Figure 1A.
203 With all three sorghum cultivars, sucrose was present in the highest concentration, with
204 UF20 producing the most amongst them. On the other hand, UF45 had the lowest
205 concentration of sucrose and the lowest concentration of total sugars released. The juice
206 of UF45 contains proportionally more monosaccharides and less sucrose compared to
207 UF15 and UF20, which matches the differences in the profiles of the sweet sorghum
208 parents: ‘Honey’ (UF45) is an amber type, historically cultivated for the production of
209 syrup, whereas ‘Mer81-4’ (UF15) is a more modern sweet sorghum cultivated for the
210 production of sugar for industrial uses.

211 The sorghum juice obtained from all three cultivars was fermented using turbo
212 yeast (for ethanol production) and three separate strains of *E.coli* that had been

213 engineered for the production of ethanol, succinic acid, and lactic acid. The yield for
214 ethanol production using turbo yeast ranged from 87-93%, which compares well with the
215 results reported using high sugar concentrations and *Saccharomyces cerevisiae* NP 01
216 under optimal aeration conditions, where 127.8 g ethanol/L were produced from 280 g
217 total sugars/L, equivalent to 89% of theoretical ethanol production (Deesuth, Laopaiboon
218 and Laopaiboon, 2016). Other authors also reported average fermentation efficiencies of
219 85% for the ethanol production form five different sorghum cultivars (Davila-Gomez et
220 al., 2011).

221 On the other hand, the production of ethanol from *E. coli* SL300 varied between
222 75-102% (Figure 1B). The succinate fermentations resulted in the lowest yields. It is
223 interesting to note that all *E. coli* fermentations had lower yields when using the juice
224 obtained from UF20. This lower yield might be related to the higher levels of sucrose
225 present in the UF20 juice.

226

227 *3.3 Sweet sorghum pretreatment results*

228 The characterization of the phosphoric acid steam explosion pretreated SSB is
229 shown in Table 1. As expected, the pretreatment caused a sharp decrease of the
230 hemicellulose content (particularly xylan, as the major hemicellulosic polymer) when
231 compared to the untreated raw material (Table 1). As a consequence, an increase of the
232 concentration of glucan and lignin is detected. The solubilization of xylan has been
233 reported as one of the reasons of improving cellulose accessibility to enzymes (Himmel et
234 al., 2007) which in turn results in higher glucose concentrations and, finally, greater
235 ethanol conversions. Similar results were obtained for steam explosion of SO₂-
236 impregnated SSB at 190 °C for 5 min, where xylan composition dropped from 19.4 to

237 9.8% in the pretreated solids (Shen et al., 2012). In addition, arabinan content was also
238 reduced as a consequence of the pretreatment. The composition of our pretreated solids,
239 with respective average values of 53.2, 8.2, and 27.7% for cellulose, hemicelluloses, and
240 lignin, is also very close to the one reported by (Pengilly et al., 2015) in a study of SSB
241 pretreated with steam at 200 °C for 5 min (52.4, 9.4, 25.0%, for cellulose, hemicelluloses,
242 and lignin respectively).

243 The composition of the liquid fractions issued from pretreatment is shown in Fig.
244 2A. The recovery of sugars in the liquid fractions, defined as the fraction of sugar initially
245 present in the raw material that is found in the liquid after pretreatment, reveals that 40,
246 35 and 55% of the initial xylose (21, 18 and 25% of all sugars) is recovered in the liquid
247 fraction when using cultivars UF15, UF20, and UF45, respectively. With respect to
248 glucose, an average of 8% enters the liquid phase after pretreatment, indicating that some
249 hydrolysis of the cellulose fraction took place as a consequence of the pretreatment.
250 In addition to the sugars released, other compounds are also present in the liquid fraction
251 as a result of sugar degradation and hemicellulose hydrolysis during pretreatment. These
252 compounds can have a negative impact in the process as they act as inhibitors of the
253 fermentation biocatalyst (Zaldivar, Martinez and Ingram, 1999). Acetic acid and furan
254 derivatives, with furfural and hydroxymethylfurfural (HMF) as prominent examples, have
255 been described as the main inhibitory compounds released during the hydrothermal
256 pretreatment of lignocellulose materials (Jönsson and Martín, 2016). Acetic acid appears
257 as a consequence of the breakdown of the acetyl bonds that form hemicellulose, while
258 furfural and HMF form from the dehydration at high temperature and low pH of pentose
259 and hexose sugars respectively. Levulinic and formic acids can also be obtained from
260 further degradation of the furan compounds (Jönsson and Martín, 2016). In addition to

261 the abovementioned compounds, lactic acid is also reported as appearing in the liquids
262 from hydrothermal pretreatment of sweet sorghum stems (Sun et al., 2015).

263 Figure 2B shows the composition of the liquids in terms of inhibitors. Acetic acid
264 had the highest concentration on hydrolysate obtained from pretreated UF45 (3.6 g/L or
265 12.1 g/kg). This was to be expected, as this was also the variety with the highest
266 hemicellulose hydrolysis (as can be observed by the higher xylose concentration, Figure
267 2A). These results are consistent with the ones reported by other researchers. For
268 example, acetic acid concentrations of 5.3 g/L were found in the liquid fraction obtained
269 after 200 °C steam explosion pretreatment for 5 min, as well as minor concentrations of
270 furfural and HMF (Zaldivar, Martinez and Ingram, 1999). After acetic acid, furfural was
271 also detected in the liquids from pretreatment at concentrations ranging from 1.28 to 1.47
272 g/L (3.1 to 4.0 g/kg), followed by lower amounts of HMF and formic acid. Following a
273 similar pattern to the sugar release, the SSB obtained from cultivar UF20 was the one
274 producing the lowest concentration of inhibitors in the liquids, with 15.5 total inhibitors
275 (sum of acetic acid, furfural, HMF, and formic acid) per kg SSB (5.8 g/L).

276

277 *3.4 Liquefaction plus simultaneous saccharification and co-fermentation (L+SScF)*

278 Following pretreatment, the whole slurry was further submitted to a liquefaction
279 step using Cellic-Ctec3 enzymes (230 FPU/mL) for 6 h and then adding *E. coli* for
280 simultaneous saccharification and co-fermentation of sugars present in the slurry. Figure
281 3 depicts the final concentration of the main sugars attained at the end of the 6-h
282 liquefaction step, at the different enzyme concentration tested (1.25, 2.50 and 5.00%,
283 corresponding to 2.88, 5.75, and 11.5 FPU/g DW biomass respectively). This figure
284 shows the clear effect of increasing enzyme concentrations on sugar release, no matter

285 the type of sugar or the SSB variety. Although this effect is more evident on glucose
286 release, the enzyme complex also exhibits xylanase activity, as shown by the increasing
287 xylose concentration. For the different SSB cultivars, UF20 was the one with the highest
288 concentration of total sugars released, although the differences among all three cultivars
289 were relatively small, especially at the higher enzyme dosage.

290 After a 6-h liquefaction, the slurry was inoculated with *E. coli* SL100 and the
291 simultaneous saccharification and co-fermentation of sugars was monitored. As an
292 example, the time evolution of the main sugars as well as that of the fermentation
293 products is presented in Figure 4A for cultivar UF15 using an enzyme concentration of
294 11.5 FPU/gDW. Similar profiles were obtained for all three sorghum cultivars tested.

295 As can be seen, all sugars (except galactose) were completely consumed during
296 the process. Glucose was depleted in all cases at 48 h or less (for the lower enzyme
297 dosages), while the consumption of xylose took up to 72 h in the cases of higher initial
298 sugar content. It is also worth noting that furfural, even if it was found in lower
299 concentration than minor sugars, was also consumed at the first stage of the SScF
300 process, and its depletion seems to initiate the consumption of glucose and xylose. This
301 behavior has also been described for other microorganisms like *Neurospora crassa*,
302 fermenting SSB hydrolysate (Dogaris et al., 2012) or *S. cerevisiae* (Almeida et al., 2009)
303 and is attributed to the conversion of furfural to other less inhibiting compounds such as
304 furoic acid or furfuryl alcohol. However, as the enzyme concentration was reduced, the
305 final concentration of ethanol was also reduced, reaching highest values of 16.4, 22.4 and
306 27.5 g/L for 2.88, 5.75, and 11.5 FPU/gDW of enzyme concentrations respectively
307 (Figure 4B). This is to be expected, as there would be less sugars available for the
308 fermentation.

309 To take into account the effectiveness of the pretreatment and L+SScF process,
310 the overall ethanol yield for the nine cases under study was calculated (Figure 5). The
311 results show that there is a marked increase in terms of overall ethanol yield when
312 doubling the enzyme loading from the lowest to the intermediate level assayed (37.1,
313 41.7 and 38.5% yield increase for UF15, UF20 and UF45 respectively). However, when
314 doubling the enzyme concentration once again to 11.5 FPU/g DW, the increase is not as
315 high. In this case, the UF15 variety ethanol yield increased by 22.7% while the other two
316 cultivars improved this parameter by only 7.1% and 11.8% (for UF20 and UF45
317 respectively).

318

319 *3.5 Potential for ethanol production*

320 Sweet sorghum has the potential to be an effective feedstock for ethanol
321 production. Grains, with high starch content, are a sugar source for ethanol. The crushed
322 stalks generate a sucrose rich juice that can also be converted to ethanol by hexose
323 fermenting microorganisms. And finally, the bagasse obtained after juice extraction is a
324 lignocellulosic material with high sugar content in the form of cellulose and
325 hemicellulose, which can be deconstructed to hexoses and pentoses, and be further
326 converted into ethanol by fermentation. Grains, juice, and bagasse account for
327 approximately 5, 55, and 35% of the mass balance of sweet sorghum produced per
328 hectare (Barcelos et al., 2016) (the remaining being leaves and straw, which are much
329 more difficult to include in the ethanol production process, and usually left in the fields).

330 Table 2 presents a comparison of results obtained with SSB under a wide range of
331 operational conditions, covering different types of pretreatment methods, enzymes and
332 fermentative microorganisms. An interesting note is that the publications with the highest

333 reported values for ethanol yield (of those listed in Table 2), all included a washing step
334 after pretreatment in order to remove inhibitors and facilitate the bioconversion of sugars
335 to ethanol (Darkwah, Wang and Shahbazi, 2016; Dogaris et al., 2012; Li et al., 2013;
336 Wang, Luo and Shahbazi, 2013). Although the breadth of the experimental conditions
337 makes it difficult to establish direct comparisons, our results are in line with those of
338 other researchers.

339 Taking a closer look at the potential for ethanol production from the sorghum
340 cultivars analyzed in the present work, the amount of ethanol possible from the juice and
341 the fiber compares favorably with the amounts of ethanol currently produced from corn
342 grain. Based on the yields obtained from field tests, it would be possible to generate over
343 6,300 L EtOH/ha for UF15, over 5,500 L EtOH/ha for UF20, and over 5000 L EtOH/ha
344 for UF45, considering only the sugars produced from the juice. In 2014, corn ethanol
345 averaged some 4200 L/ha (Goldemberg and Guardabassi, 2010), so the sorghum ethanol
346 yields are higher for all three cultivars assayed. If the residual lignocellulosic material
347 after juice extraction is also taken into account, our results show that additional amounts
348 of ethanol of 4,163 L EtOH/ha for UF15, 3,154 L EtOH/ha for UF20, and 3,299 L
349 EtOH/ha for UF45 can be produced. The comparison can be established also with the
350 lignocellulosic residues of corn, e.g., corn stover. The production of corn stover has been
351 estimated to be in a 1:1 mass ratio of corn grain (Tumbalam et al., 2016). Based on a
352 recent report which assumed that only 50% of the produced corn stover is harvested
353 (because of the well-known benefits of retaining a part of the corn stover as a soil
354 amendment), a production of 1,473 L of EtOH/ha can be obtained. Even if we were to
355 consider 100% of the corn stover to be used for lignocellulosic ethanol production, it is
356 still a smaller amount than the one derived from SSB of any of the cultivars assayed in

357 this study (2,946 for corn stover vs 3,154 for SSB). As shown in Figure 6, the total yield
358 of ethanol from both origins, is higher by 47%, 22% and 17% when comparing UF15,
359 UF25 and UF45 with corn. Additionally, SSB is already found as a by-product in the
360 location where the juice is extracted, so in comparison with corn stover, SSB represents
361 an economic advantage in terms of collection and transportation costs.

362 Although the information on bioethanol production based on the cultivated area of
363 sweet sorghum is seldom available in the scientific literature, some authors still offer this
364 information, sometimes based on laboratory experimental results and on theoretical
365 conversion yields. The wide range of conditions for the different steps of the process
366 makes difficult a direct comparison. Nevertheless, our results are similar to the ones
367 recently reported using sulfuric acid pretreatment and *S. cerevisiae* to convert sugars
368 obtained from the juice and a flocculant strain of *Scheffersomyces stipitis*, which was the
369 fermentative microorganism for sugars from bagasse. The potential for ethanol
370 production was estimated to be up to 11200 L/ha (Barcelos et al., 2016), without
371 considering the additional ethanol that could be obtained from sweet sorghum grains.
372 The production of a number of chemicals including bioethanol, butanol, and degradable
373 wood plastic composites under the biorefinery concept has been proposed in an attempt to
374 overcome the seasonal availability of sweet sorghum (Yu et al., 2012).

375

376 **4. Conclusions**

377 Sweet sorghum is an excellent raw material for the production of bioethanol, presenting
378 several advantages, such as its high productivity and its relative resistance to harsh
379 conditions. Fermentable sugars are obtained from the juice (mainly in form of sucrose)
380 and from the bagasse produced after juice extraction (mainly in form of glucose and

381 xylose). While sugars from juice can be fermented to ethanol by a simple process, the
382 bagasse needs to be submitted through a complex process involving a pretreatment step
383 and an enzymatic hydrolysis to produce a mixture of pentose and hexose sugars which
384 can then be fermented. In the present work, three varieties of sweet sorghum were
385 assayed for ethanol production. The fermentation of sugars from the sweet juice was
386 successful using either common industrial biocatalysts (*S. cerevisiae*), as well as
387 engineered microorganisms (*E. coli*). In addition, the SSB was further processed using a
388 phosphoric acid pretreatment, followed by L+SScF with an ethanologenic *E. coli* strain as
389 biocatalyst. Results showed that all the three assayed varieties produced between 8300
390 and 10500 L ethanol/ha from the combined conversion of sugars from the juice and SSB.

391

392 **Acknowledgements**

393 The authors gratefully acknowledge support from Universidad de Jaén (Plan de Apoyo,
394 Acción 11; EC); USDA-NIFA Biomass Research and Development Initiative Competitive grant
395 No. 2011-10006-30358 (WV, JE, LOI, KTS); U.S. Department of Energy's Office of Energy
396 Efficiency and Renewable Energy, Bioenergy Technologies Office and sponsored by the U.S.
397 DOE's International Affairs under Award No. DE-PI0000031 (WV, JE, LOI, KTS); and Florida
398 Department of Agriculture and Consumer Services grant No. 020650 (LOI, KTS). The authors
399 also thank Dr. Lonnie O. Ingram for his input, Foley Cellulose (Perry, Florida) for proving low-
400 pressure steam and many amenities for the pilot plant, Novozymes North America (Franklinton,
401 NC) for providing cellulase enzymes, and Dr. Randell Powell, Mr. Maury Radin and Mr. Steven
402 Smith from Delta BioRenewables, LLC (Memphis, TN) for managing, harvesting and processing
403 the commercial sweet sorghum plots.

404

405

References

406 1. Adams, C.B., Erickson, J.E., Singh, M.P., 2015. Investigation and synthesis of sweet sorghum
407 crop responses to nitrogen and potassium fertilization. *Field Crops Res.* 178, 1-7.

408 2. Almeida, J.R.M., Bertilsson, M., Gorwa-Grauslund, M.F., Gorsich, S., Lidén, G., 2009.
409 Metabolic effects of furaldehydes and impacts on biotechnological processes. *Appl. Microbiol.*
410 *Biotechnol.* 82, 625-638.

411 3. Amann, E., Ochs, B., Abel, K., 1988. Tightly regulated tac promoter vectors useful for the
412 expression of unfused and fused proteins in *Escherichia coli*. *Gene* 69, 301-315.

413 4. Barcelos, C.A., Maeda, R.N., Santa Anna, L.M.M., Pereira Jr., N., 2016. Sweet sorghum as a
414 whole-crop feedstock for ethanol production. *Biomass Bioenergy* 94, 46-56.

415 5. Castro, E., Nieves, I.U., Mullinnix, M.T., Sagues, W.J., Hoffman, R.W., Fernández-Sandoval,
416 M.T., Tian, Z., Rockwood, D.L., Tamang, B., Ingram, L.O., 2014. Optimization of dilute-
417 phosphoric-acid steam pretreatment of *Eucalyptus benthamii* for biofuel production. *Appl.*
418 *Energy* 125, 76-83.

419 6. Chan, S., Kanchanatawee, S., Jantama, K., 2012. Production of succinic acid from sucrose and
420 sugarcane molasses by metabolically engineered *Escherichia coli*. *Bioresour. Technol.* 103, 329-
421 336.

422 7. Darkwah, K., Wang, L., Shahbazi, A., 2016. Simultaneous saccharification and fermentation of
423 sweet sorghum after acid pretreatment. *Energy Sources, Part A: Recovery, Utilization, and*
424 *Environmental Effects* 38, 1485-1492.

425 8. Davila-Gomez, F.J., Chuck-Hernandez, C., Perez-Carrillo, E., Rooney, W.L., Serna-Saldivar,
426 S.O., 2011. Evaluation of bioethanol production from five different varieties of sweet and forage
427 sorghums (*Sorghum bicolor* (L) Moench). *Industrial Crops and Products* 33, 611-616.

428 9. Deesuth, O., Laopaiboon, P., Laopaiboon, L., 2016. High ethanol production under optimal
429 aeration conditions and yeast composition in a very high gravity fermentation from sweet
430 sorghum juice by *Saccharomyces cerevisiae*. *Industrial Crops and Products* 92, 263-270.

431 10. Dogaris, I., Gkounta, O., Mamma, D., Kekos, D., 2012. Bioconversion of dilute-acid
432 pretreated sorghum bagasse to ethanol by *Neurospora crassa*. *Appl. Microbiol. Biotechnol.* 95,
433 541-550.

434 11. Erickson, J.E., Helsel, Z.R., Woodard, K.R., Vendramini, J.M.B., Wang, Y., Sollenberger,
435 L.E., Gilbert, R.A., 2011. Planting date affects biomass and brix of sweet sorghum grown for
436 biofuel across Florida. *Agron. J.* 103, 1827-1833,

437 12. Felderhoff, T.J., McIntyre, L.M., Saballos, A., Vermerris, W., 2016. Using genotyping by
438 sequencing to map two novel anthracnose resistance loci in *Sorghum bicolor*. *G3: Genes,*
439 *Genomes, Genetics* 6, 1935-1946.

440 13. Fernandes, G., Braga, T.G., Fischer, J., Parrella, R.A.C., de Resende, M.M., Cardoso, V.L.,
441 2014. Evaluation of potential ethanol production and nutrients for four varieties of sweet sorghum
442 during maturation. *Renewable Energy* 71, 518-524.

443 14. Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Hoffman, R.W., Sagues, W.J., York, S.W.,
444 Shanmugam, K.T., Erickson, J.E., Vermerris, W.E., Ingram, L.O., 2013. Seed train development
445 for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified
446 fermentation process. *Bioresour. Technol.* 128, 716-724.

447 15. Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Peterson, J.J., Hoffman, R.W., York, S.W.,
448 Yomano, L.P., Miller, E.N., Shanmugam, K.T., Ingram, L.O., 2011. Simplified process for
449 ethanol production from sugarcane bagasse using hydrolysate-resistant *Escherichia coli* strain
450 MM160. *Bioresour. Technol.* 102, 2702-2711.

451 16. Goldemberg, J., Guardabassi, P., 2010. The potential for first-generation ethanol production
452 from sugarcane. *Biofuels, Bioprod. Bioref.* 4, 17-24.

453 17. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., 2007.
454 Biomass recalcitrance: engineering plants and enzymes for biofuels production. *Science.* 315.,

455 18. Jönsson, L.J., Martín, C., 2016. Pretreatment of lignocellulose: Formation of inhibitory by-
456 products and strategies for minimizing their effects. *Bioresour. Technol.* 199, 103-112.

457 19. Li, B., Balan, V., Yuan, Y., Dale, B.E., 2010. Process optimization to convert forage and
458 sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment.
459 *Bioresour. Technol.* 101, 1285-1292.

460 20. Li, J., Li, S., Han, B., Yu, M., Li, G., Jiang, Y., 2013. A novel cost-effective technology to
461 convert sucrose and homocelluloses in sweet sorghum stalks into ethanol. *Biotechnol. Biofuels.*
462 6.,

463 21. Linde, M., Galbe, M., Zacchi, G., 2007. Simultaneous saccharification and fermentation of
464 steam-pretreated barley straw at low enzyme loadings and low yeast concentration. *Enzyme
465 Microb. Technol.* 40, 1100-1107.

466 22. Linton, J.A., Miller, J.C., Little, R.D., Petrolia, D.R., Coble, K.H., 2011. Economic feasibility
467 of producing sweet sorghum as an ethanol feedstock in the southeastern United States. *Biomass
468 Bioenergy* 35, 3050-3057.

469 23. Martinez, A., Grabar, T.B., Shanmugam, K.T., Yomano, L.P., York, S.W., Ingram, L.O.,
470 2007. Low salt medium for lactate and ethanol production by recombinant *Escherichia coli* B.
471 *Biotechnol. Lett.* 29, 397-404.

472 24. Matsakas, L., Christakopoulos, P., 2013. Fermentation of liquefacted hydrothermally
473 pretreated sweet sorghum bagasse to ethanol at high-solids content. *Bioresour. Technol.* 127, 202-
474 208.

475 25. Nasidi, M., Agu, R., Deeni, Y., Walker, G., 2015. Improved production of ethanol using
476 bagasse from different sorghum cultivars. *Biomass Bioenergy* 72, 288-299.

477 26. Nieves, I.U., Geddes, C.C., Miller, E.N., Mullinnix, M.T., Hoffman, R.W., Fu, Z., Tong, Z.,
478 Ingram, L.O., 2011a. Effect of reduced sulfur compounds on the fermentation of phosphoric acid
479 pretreated sugarcane bagasse by ethanologenic *Escherichia coli*. *Bioresour. Technol.* 102, 5145-
480 5152.

481 27. Nieves, I.U., Geddes, C.C., Mullinnix, M.T., Hoffman, R.W., Tong, Z., Castro, E.,
482 Shanmugam, K.T., Ingram, L.O., 2011b. Injection of air into the headspace improves
483 fermentation of phosphoric acid pretreated sugarcane bagasse by *Escherichia coli* MM170.
484 Bioresour. Technol. 102, 6959-6965.

485 28. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, M., Stenberg, K., Szengyel, Z.,
486 Tengborg, C., Zacchi, G., 1996. Design and operation of a bench-scale process development unit
487 for the production of ethanol from lignocellulosics. Bioresour. Technol. 58, 171-179.

488 29. Pengilly, C., García-Aparicio, M.P., Diedericks, D., Brienz, M., Görgens, J.F., 2015.
489 Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase
490 and endo-xylanase. Fuel 154, 352-360.

491 30. Shen, F., Hu, J., Zhong, Y., Liu, M.L.Y., Saddler, J.N., Liu, R., 2012. Ethanol production
492 from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic
493 hydrolysis. Biomass Bioenergy 41, 157-164.

494 31. Shen, F., Saddler, J.N., Liu, R., Lin, L., Deng, S., Zhang, Y., Yang, G., Xiao, H., Li, Y., 2011.
495 Evaluation of steam pretreatment on sweet sorghum bagasse for enzymatic hydrolysis and
496 bioethanol production. Carbohydr. Polym. 86, 1542-1548.

497 32. Sipos, B., Réczey, J., Somorai, Z., Kádár, Z., Dienes, D., Réczey, K., 2009. Sweet sorghum as
498 feedstock for ethanol production: Enzymatic hydrolysis of steam-pretreated bagasse. Appl.
499 Biochem. Biotechnol. 153, 151-162.

500 33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of
501 structural carbohydrates and lignin in biomass. Golden CO: National Renewable Energy
502 Laboratory; 2008. Technical Report NREL/TP-510-42618.

503 34. Sun, S., Wen, J., Sun, S., Sun, R., 2015. Systematic evaluation of the degraded products
504 evolved from the hydrothermal pretreatment of sweet sorghum stems. Biotechnology for
505 Biofuels. 8, 37.

506 35. Tumbalam, P., Thelen, K.D., Adkins, A., Dale, B., Balan, V., Gunawan, C., Gao, J., 2016.
507 Corn stover ethanol yield as affected by grain yield, Bt trait, and environment. Biomass
508 Bioenergy 85, 119-125.

509 36. Wang, L., Ou, M.S., Nieves, I., Erickson, J.E., Vermerris, W., Ingram, L.O., Shanmugam,
510 K.T., 2015. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and
511 productivity by a moderate thermophile *Clostridium thermobutyricum* at 50 °C. Bioresour.
512 Technol. 198, 533-539.

513 37. Wang, L., Luo, Z., Shahbazi, A., 2013. Optimization of simultaneous saccharification and
514 fermentation for the production of ethanol from sweet sorghum (*Sorghum bicolor*) bagasse using
515 response surface methodology. Industrial Crops and Products 42, 280-291.

516 38. Wang, W., Zhuang, X., Yuan, Z., Yu, Q., Qi, W., Wang, Q., Tan, X., 2012. High consistency
517 enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour.
518 Technol. 108, 252-257.

519 39. Wang, X., Miller, E.N., Yomano, L.P., Zhang, X., Shanmugam, K.T., Ingram, L.O., 2011.
520 Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in
521 *Escherichia coli* strains engineered for the production of ethanol and lactate. *Appl. Environ.*
522 *Microbiol.* 77, 5132-5140.

523 40. Wang, X., Yomano, L.P., Lee, J.Y., York, S.W., Zheng, H., Mullinnix, M.T., Shanmugam,
524 K.T., Ingram, L.O., 2013. Engineering furfural tolerance in *Escherichia coli* improves the
525 fermentation of lignocellulosic sugars into renewable chemicals. *Proc. Natl. Acad. Sci. U. S. A.*
526 110, 4021-4026.

527 41. Whitfield, M.B., Chinn, M.S., Veal, M.W., 2012. Processing of materials derived from sweet
528 sorghum for biobased products. *Industrial Crops and Products* 37, 362-375.

529 42. Yu, J., Zhang, T., Zhong, J., Zhang, X., Tan, T., 2012. Biorefinery of sweet sorghum stem.
530 *Biotechnol. Adv.* 30, 811-816.

531 43. Zaldivar, J., Martinez, A., Ingram, L.O., 1999. Effect of selected aldehydes on the growth and
532 fermentation of ethanologenic *Escherichia coli*. *Biotechnol. Bioeng.* 65, 24-33.

533

534 **Table 1.** Composition (average values and standard deviations of three determinations)
535 of the raw sweet sorghum bagasse and its washed pretreated solids used in this study.

Component /Cultivar	UF15		UF20		UF45	
	Raw	Pretreated	Raw	Pretreated	Raw	Pretreated
Glucan	44.4 ±0.86	52.7±2.0	42.4±0.25	51.7±2.3	44.5±2.01	55.2±0.45
Xylan	19.5±0.84	8.5±0.30	18.7±0.26	8.1±0.28	19.0±0.82	8.0±0.06
Arabinan	3.2±0.32	1.0±0.64	2.5±0.13	1.8±0.64	2.7±0.020	0.84±0.07
Lignin	19.6±0.27	27.7±0.88	22.0±0.63	27.5±0.70	22.2±0.18	27.8±0.37
Acetate	2.6±0.72	1.36±0.13	2.7±0.13	1.4±0.30	2.9±0.37	1.5±0.73

536

537

538 **Table 2.** Comparison of results obtained using sweet sorghum bagasse under different
 539 process schemes

Pretreatment conditions	Enzymes/ Fermenting microorganisms	Main results	Reference
SO ₂ -steam explosion	• Spezyme-CP and β -glucosidase • <i>S. cerevisiae</i> , Tembec T1	153 g EtOH/kg SSB without xylose fermentation	(Shen et al., 2011)
Hydrothermal pretreatment by microwave digestion 2% v/v H ₂ SO ₄ acid, 75°C and then 121°C	• Cellic CTec2 • Baker yeast • Cellic Ctec, Cellic Htec, Promalt 295, Promalt 4TR • <i>P. tannophilus</i> and <i>S. cerevisiae</i> DCLM	230 g EtOH/kg SSB 23 g/L ethanol (72% of theoretical yield)	(Matsakas and Christakopoulos, 2013) (Nasidi et al., 2015)
180°C, 0.5% sulfuric acid	• Cellulase, β -glucosidase and hemicellulase • <i>S. cerevisiae</i> ATCC 24858	The ethanol yield, concentration and production rate were 89.4%, 38 g/L and 1.28 g/L/h, respectively	(Wang, Luo and Shahbazi, 2013)
Ammonium fibre explosion (AFEX) at 140 C for 30 min	• Cellulase (Spezyme CP) and xylanase (Multifect xylanase) • <i>S. cerevisiae</i> 424A (LNH-ST)	42.3 g/L EtOH 159 g EtOH/kg SSB	(Li et al., 2010)
2% SO ₂ Steam explosion at 180-200 °C for 5-10 min	• Celluclast 1.5 L and Novozym 188 • Baker yeast	85-90% conversion in pretreatment 173 g EtOH/kg SSB	(Sipos et al., 2009)
Dilute acid microwave assisted pretreatment	• Celluclast 1.5 L, and β -glucosidase • <i>Neurospora crassa</i>	345 g EtOH/kg SSB	(Dogaris et al., 2012)
Advanced Solid State Fermentation+ Distillation and NAOH treatment	• Cellic Ctec-3 • <i>S cerevisiae</i> TSH1/ <i>Zymomonas mobilis</i> TSH-01	92 g EtOH/kg fresh sweet sorghum stalks equivalent to 328 g EtOH/kg SS dry basis (juice and SSB)	(Li et al., 2013)

5% acetic acid+0.5% sulfuric acid at 180°C for 5 min	<ul style="list-style-type: none"> Cellulases, beta-glucosidases and hemicellulases <i>S. cerevisiae</i>, ATCC 24858 	Fed batch SSF for 96 h at 20% solids concentration produced 53.1 g/L ethanol (88.7% yield) compared to 25.7 g/L and 86.7% yield at 10% solids loading	(Darkwah, Wang and Shahbazi, 2016)
Steam explosion impregnated with H ₃ PO ₄	<ul style="list-style-type: none"> Cellic Ctec-3 <i>Escherichia coli</i> SL100 	Effective fermentation of hexoses and pentoses. 275 g EtOH/kg dry SSB	This study

540

541

542 **Table 3.** Plasmids and primers

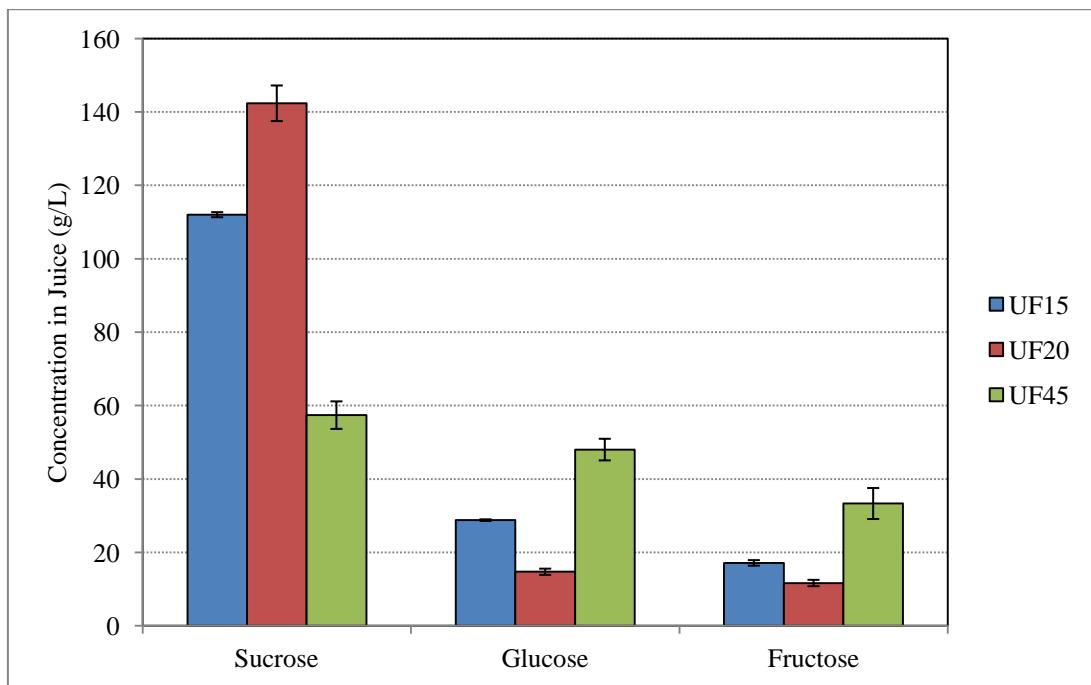
Plasmids		Reference
pTrc99a	<i>bla oriR rrnB lacIq</i>	(Amann, Ochs and Abel, 1988)
pLOI5720	<i>cscA-cscK-cscB</i> in pTrc99a, deletes <i>lacIq</i>	This study
pLOI5721	pLOI5720 digested with AhdI and XmnI, deletes <i>bla</i>	This study
Primers		
EC-cscKBA-f	AAT <u>CTAGAGACCGTGATAC</u> ACGGGACAG	XbaI site added
suc-cscA 3	<u>GAGCATATGACTACACCGA</u> TCTCGCAAGT	NdeI site added
This study		

543

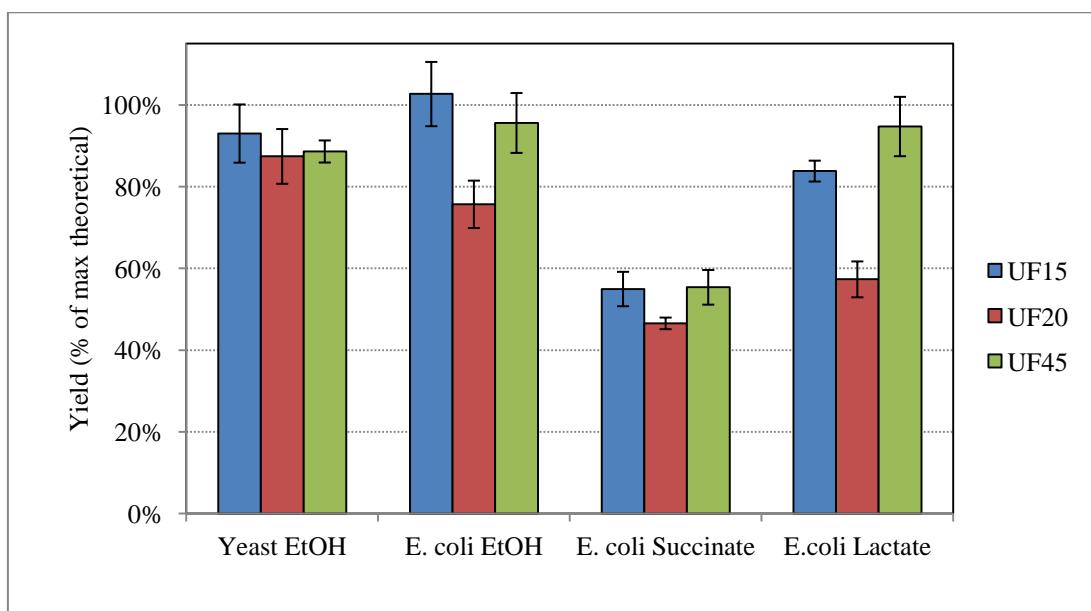
544 **Figure captions**

545 **Figure 1.** A) Sugar concentrations in the juice of the different sorghum cultivars. B)
546 Yield on a weight/weight basis obtained from the juice.

547 **Figure 2.** Composition of liquids (g/kg SSB, dry matter) released from phosphoric acid-
548 soaked, steam exploded sweet sorghum bagasse. A) Sugars. B) Inhibitors.

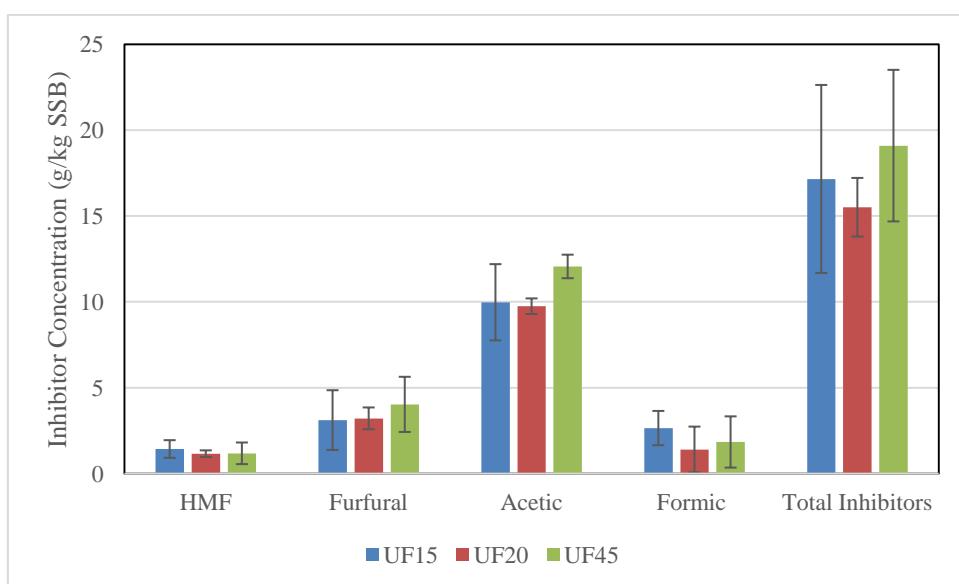
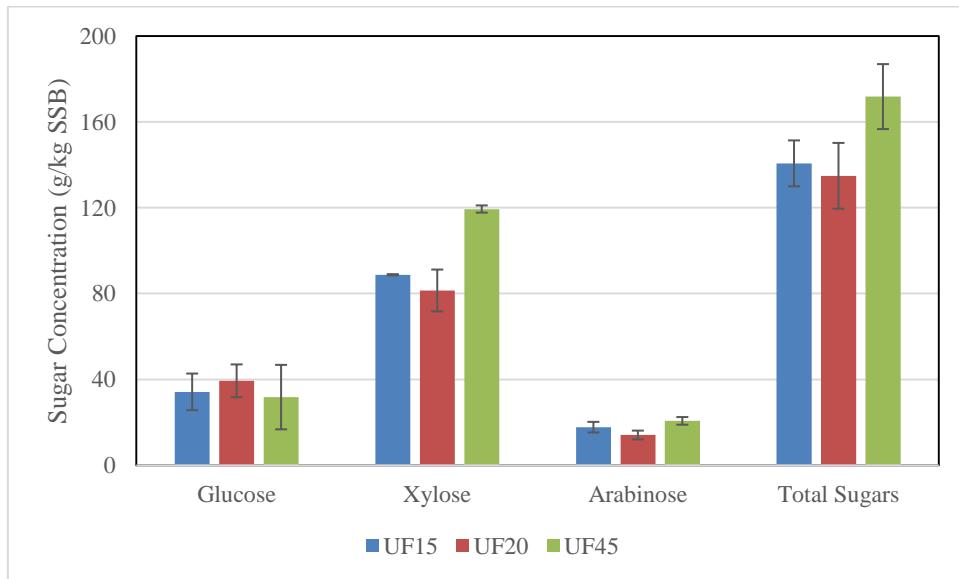

549 **Figure 3.** Initial sugar composition of SScF after a 6 h-liquefaction as a function of
550 sorghum cultivar and enzyme concentration. Values in the x-axis refer to the
551 concentration of enzyme used in FPU/g DW.

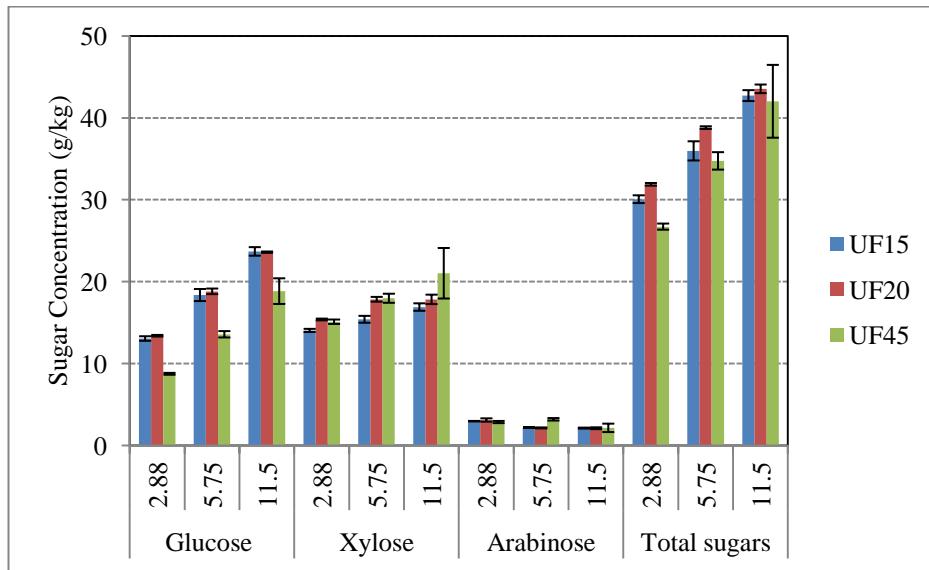
552 **Figure 4.** A) Time evolution of sugars, furfural and ethanol during simultaneous
553 saccharification and co-fermentation of pretreated UF15 SSB slurry using *E. coli* SL100
554 and 11.5 FPU/g DW of Cellic CTec3 enzymes. B) Ethanol concentration for all three
555 sorghum cultivars using varying concentrations of enzyme.


556 **Figure 5.** Overall ethanol yield using varying concentrations of enzyme. Error bars
557 represent the standard deviations of at least 4 replicate experiments.

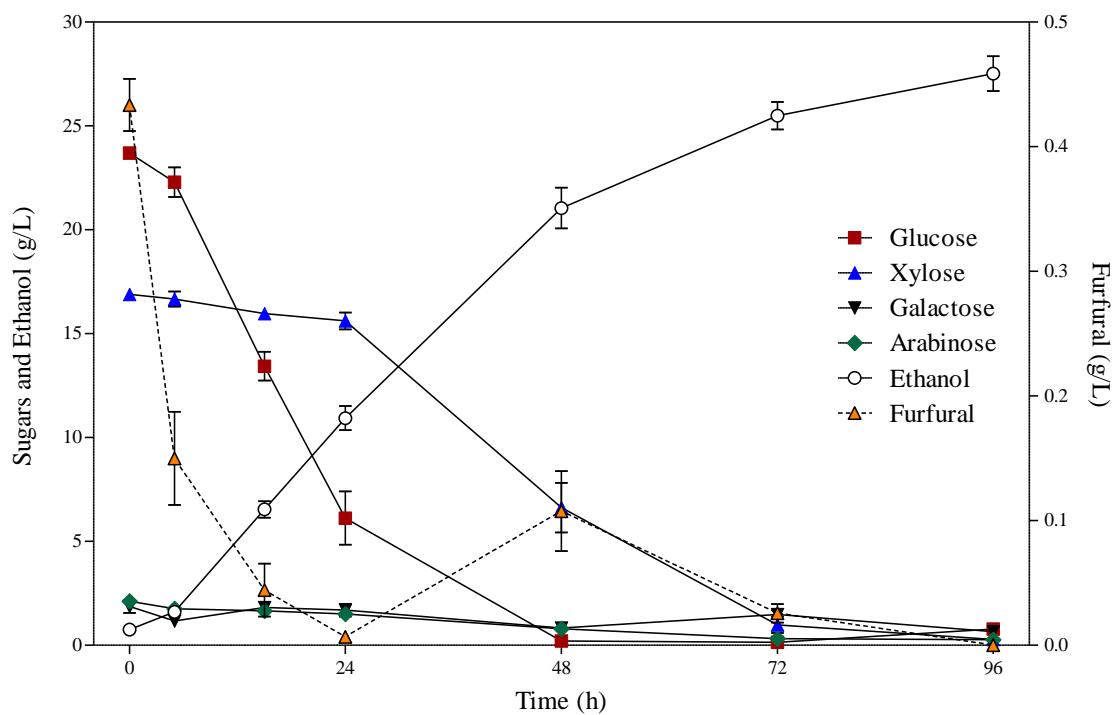
558 **Figure 6.** Potential ethanol production from the three sorghum cultivars assessed in this
559 study and the average yield for corn ethanol from the year 2014. Juice and fiber
560 correspond to sweet sorghum and grain and stover to corn.

561 A)



563 B)

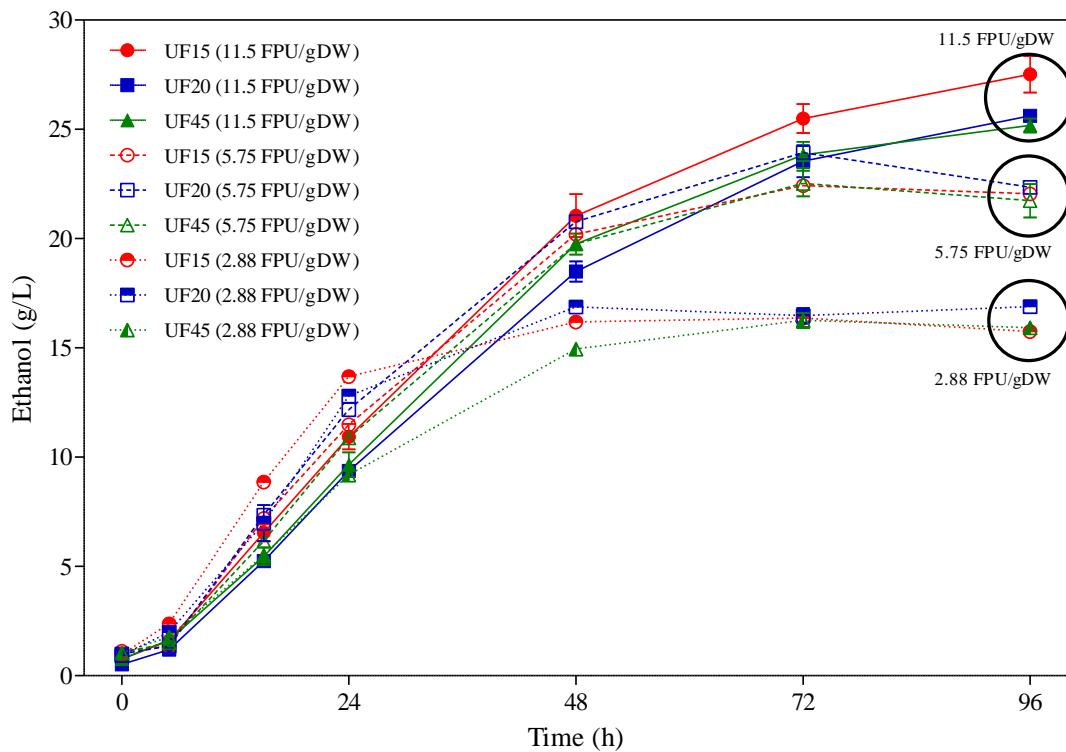


565 **Figure 1.**


566

567 A)

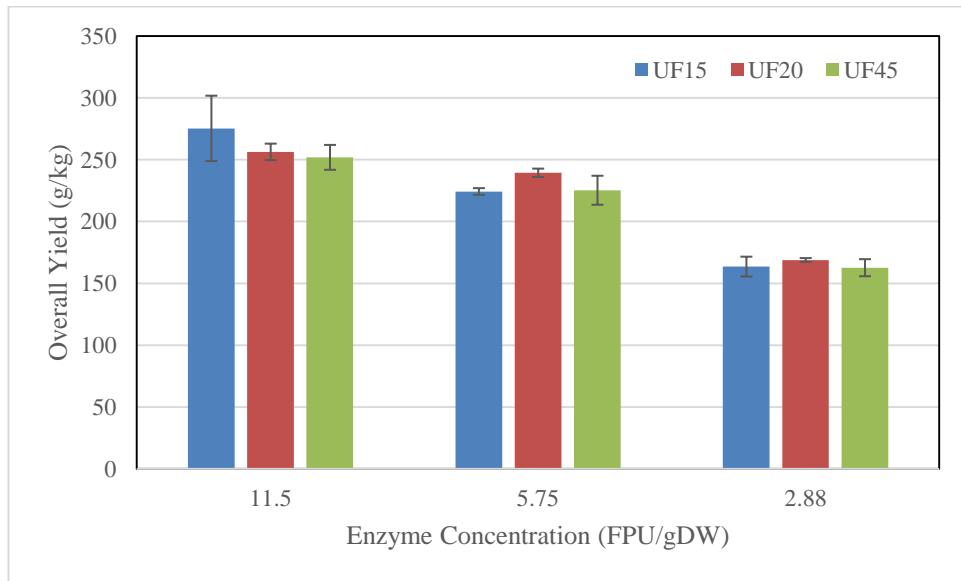
575 **Figure 3.**


577 A)

578

579 B)

580



581

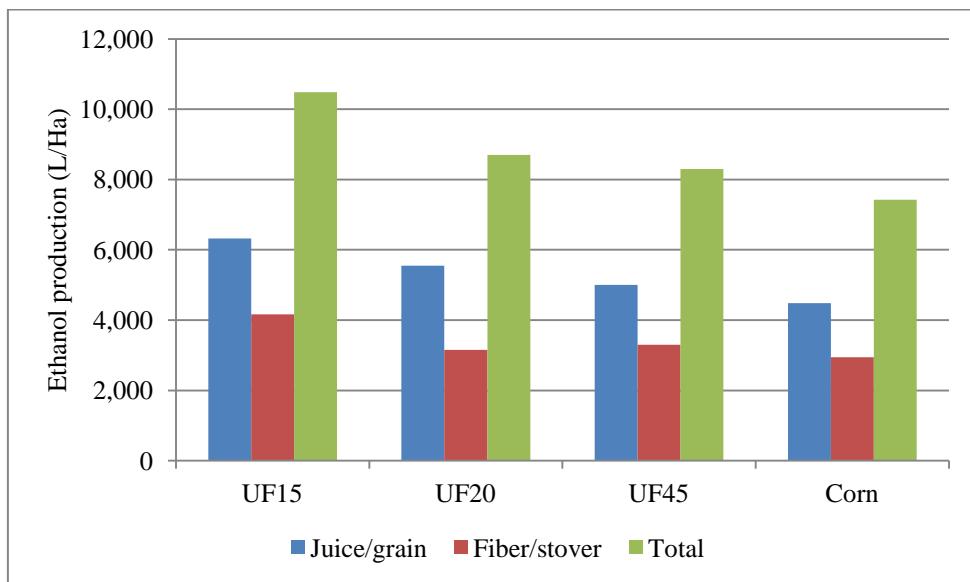
582 **Figure 4.**

583

584

585

586 **Figure 5.**


587

588

589

590

591

592

593 **Figure 6.**

594