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1. GOALS OF SNL PROGRAM: CORROSION AND SCC

OVERALL OBJECTIVE
1. Improve ability to predict timing and location of potential canister penetration by stress corrosion
cracking (SCC)

* Probabilistic SCC model for improved prediction of canister performance.

* Provide guidance for aging management programs

2. Provide input on SCC mitigation and repair strategies

GOALS OF EXPERIMENTAL WORK
* 1) BRINE: Determine electrolyte composition and evolution with time

* 2) CORROSION: Determine the relationship between surface environment, material properties,
mechanical environment, and damage distribution and rates

* 3) PIT-TO-CRACK: Determine the environmental and mechanical properties that influence when and
where pit-to-crack transition occurs

* 4) CGR: Determine crack growth rate as a function of environment and material properties
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2. HOW DO WE ACHIEVE THIS?

1) Material Properties:

Characterization of Weld Metal Properties

* Evaluate sensitization, hardness, microstructure (metrics
for degree of plastic deformation)

* How do these factors influence subsequent corrosion and
SCC?

2) Surface Environment:

* Concentrated Brines (MgCl,)
* Cathode size

* Pit initiation and morphology
* Change in cathodic reaction from ORR to HER
» Effect of brine composition
* Do nitrates play an inhibitive role?
* Does inert dust effect brine distribution/ cathode
properties?
* Other probable environmental effects:
* Cyclic conditions (Diurnal variations)
* Metal contamination

3) Damage Distribution and Rates:

Pit-to-Crack Transition and CGR

* Factors controlling pit-to-crack transition
* Pit morphology/ modeling stress (Kondo criterion)

* Environment dependence f(T, RH, CI, etc.)
e Plastic strain, microstructure, residual stress
* CGR experiments:
* Strain rate dependence
* Environment dependence f(T, RH, CI, cyclic conditions, etc.)
* Material properties

* Acoustic monitoring of CG (cyclic conditions, brine
properties)

* Large Plates: Why don’t these crack?
* What are the surface stresses? (Center hole drilling)
* Metallurgy: microhardness to determine work hardening

4) Mitigation Strategies:

* Evaluation of FSW and Cold Spray techniques

» Development of qualification for mitigation strategies
(based on CISCC knowledge thus far) 7




MATERIAL PROPERTIES:
WELD METAL PROPERTIES

* Experiments:
* Weld sections from Big Plate test: longitudinal and circumferential

1. Corrosion Analysis
2. Microstructural Etch A
3. EBSD map Horizontal Weld
4. Evaluate sensitization around weld (DLEPR)
5. Microhardness map
6. Surface stress measurements (center hole drilling at SNL)

 Why:

* Provides information on weld material properties, specifically:

1. Degree of cold work due to weld shrinkage (hardness o< CW)
2. Sensitization in weld and HAZ
3. Residual stresses

 Who/What else it feeds

* Information pertinent for:
* SNL for SCC (pit-to-crack and CGR) testing inputs (relevant material properties)
* PNNL (direct inputs for material properties in CGR testing)
* SRNL (validation/ additional information of large plate SCC testing)

e What is needed?
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MATERIAL PROPERTIES:
WELD METAL PROPERTIES

* Experiments: A
* Weld sections from Big Plate test: longitudinal and circumferential
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Surface stress measurements (center hole drilling at SNL)
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Vickers

MATERIAL PROPERTIES:
WEILD METAIL PROPERTIES |

* Experiments:
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MATERIAL PROPERTIES:
WELD METAL PROPERTIES

* Experiments:
* Weld sections from Big Plate test: longitudinal and circumferential
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SURFACE ENVIRONMENT:
CONCENTRATED BRINES (MgCl,): CATHODE SIZE

* Experiments: HiGH R:NaClRlCl-l BRINE
1.  Droplet exposures & LNl 7 TR

* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis
2. Evaluate possible change in mechanism of cathodic reaction (ORR to
HER) and possible H uptake in concentrated MgCl, brines
* Full immersion
* Under a droplet/ thin film while pitting

3. In-Situ Raman detection of cathodic precipitates in concentrated 1 ‘
MgCl, brines i TR A T
« Why: Low RH: MgCl, RICH BRINE
 Establish relationship between max pit size and cathodic coverage 20%RH B '

(further parameterize model).

* Investigate additional factors influencing pit morphology and
subsequent pit-to-crack transition.

* Understand micro-crack formation under highly concentrated brines, is this due to HER,
H uptake, and embrittlement?

* Establish influence of cathodic precipitates on the pitting process

* Who/What else it feeds:

* Determine imO,oortant environments and significance of cathodic control
for pitting and crack initiation/ growth studies at SNL and PNNL.

* What is needed

* Data on canister-relevant salt loads, compositions, and distributions to
better determine relevant surface environments for testing/ modeling.




SURFACE ENVIRONMENT:
CONCENTRATED BRINES (MgCl,): CATHODE SIZE

* Experiments: Initial : Week .
1. Droplet exposures .4 \

* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit
analysis

2, Evaluate possible change in mechanism of cathodic reaction (ORR to
HER) and possible H uptake in concentrated MgCl, brines
* Full immersion
* Under a droplet/ thin film while pitting

3. In-Situ Raman detection of cathodic precipitates in concentrated
MgCl, brines

_1Month

Initial comparison: Various full immersion brines

« Why: L

* Establish relationship between max pit size and cathodic coverage '
(further parameterize model).

* Investigate additional factors influencing pit morphology and
subsequent pit-to-crack transition.

* Understand micro-crack formation under highly concentrated brines, is this due to HER,
H uptake, and embrittlement?

» Establish influence of cathodic precipitates on the pitting process _76%

* Who/What else it feeds:

* Determine important environments and significance of cathodic control
for pitting and crack initiation/ growth studies at SNL and PNNL.

e What is needed

 Data on canister-relevant salt loads, compositions, and distributions to
better determine relevant surface environments for testing/ modeling.

RH: ASW
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SURFACE ENVIRONMENT:

CONCENTRATED BRINES mgC /2 g.- CATHODE S1ZE

* Experiments:
1.  Droplet exposures Full Immersion Charging Calibration

* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis 48 h’ 0.6M NaCl Cha rge
2.  Evaluate possible change in mechanism of cathodic reaction (ORR

to HER) and possible H uptake in concentrated MgCl, brines 0.004 7 ———"——""——————
«  Full immersion ® Hydrogen Concentration /.
+ Under a droplet/ thin film while pitting E /
3. In-Situ Raman detection of cathodic precipitates in concentrated g o / I
MgCl, brines S ¢
'E o /e
¢ WhY5 ‘S' 0.002 - / i
* Establish relationship between max pit size and cathodic coverage o /’
(further parameterize model). 3 P
* Investigate additional factors influencing pit morphology and g 0.001 1 7 -
subsequent pit-to-crack transition. S P
» Understand micro-crack formation under highly concentrated brines, is this due to HER, 3, s °
H uptake, and embrittlement? T o000 o _eo-"0 I
* Establish influence of cathodic precipitates on the pitting process
) Who/What else it feeds: 04 06 08 10 12 14 16 18
* Determine imO,oortan’g environments and significance of cathodic control riydragen Overpotantial i)
for pitting and crack initiation/ growth studies at SNL and PNNL. Prel/mlnary Results

* What is needed

* Data on canister-relevant salt loads, compositions, and distributions to
better determine relevant surface environments for testing/ modeling.
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SURFACE ENVIRONMENT:

CONCENTRATED BRINES mgC /2 g.- CATHODE S1ZE

In-situ Raman of SS under cathodic polarization in MgCl,,,,

* Experiments:
1. Droplet exposures
* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis

2. Evaluate possible change in mechanism of cathodic reaction (ORR to
HER) and possible H uptake in concentrated MgCl, brines

* Full immersion
* Under a droplet/ thin film while pitting
3. In-Situ Raman detection of cathodic precipitates in concentrated
MgCl, brines

 Why:
* Establish relationship between max pit size and cathodic coverage
(further parameterize model).

* Investigate additional factors influencing pit morphology and
subsequent pit-to-crack transition.

* Understand micro-crack formation under highly concentrated brines, is this due to HER,
H uptake, and embrittlement?

* Establish influence of cathodic precipitates on the pitting process

* Who/What else it feeds:

* Determine imCFortant environments and significance of cathodic control
for pitting and crack initiation/ growth studies at SNL and PNNL.

* What is needed

* Data on canister-relevant salt loads, compositions, and distributions to
better determine relevant surface environments for testing/ modeling.
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SURFACE ENVIRONMENT:
CONCENTRATED BRINES (MgCl,): CATHODE SIZE

« Experiments: Input effect of cathodic precipitate into max pit size model

1. Droplet exposures
* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis
2. Evaluate possible change in mechanism of cathodic reaction (ORR to
HER) and possible H uptake in concentrated MgCl, brines
* Full immersion
* Under a droplet/ thin film while pitting

3. In-Situ Raman detection of cathodic precipitates in concentrated
MgCl, brines PH > pHeie OH-

LY b
* Why: { g2
* Establish relationship between max pit size and cathodic coverage
(further parameterize model).

* Investigate additional factors influencing pit morphology and A
subsequent pit-to-crack transition.

* Understand micro-crack formation under highly concentrated brines, is this due to HER, /

H uptake, and embrittlement?
* Establish influence of cathodic precipitates on the pitting process

- E """"--.._'_‘
 Who/What else it feeds: Lot wodated
 Determine imcf)ortant environments and significance of cathodic control Apda
for pitting and crack initiation/ growth studies at SNL and PNNL.
* What is needed |5 p—
* Data on canister-relevant salt loads, compositions, and distributions to -

better determine relevant surface environments for testing/ modeling. r y
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SURFACE ENVIRONMENT:

CONCENTRATED BRINES mgC /2 g.- CATHODE S1ZE

Greater effect in more concentrated brines

* Experiments:

1.  Droplet exposures T ___---
* Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis 25 - 'f“‘, -=" 'r aream I
. . . . . - max, = -9 W
2. Evaluate possible change in mechanism of cathodic reaction (ORR to "l ‘
HER) and possible H uptake in concentrated MgCl, brines g
* FU” |mmer5|0n E It:.ath, with precipitation
* Under a droplet/ thin film while pitting E ™
3.  In-Situ Raman detection of cathodic precipitates in concentrated —
MgCl, brines Fmax.2 = 998 1 he
* Why: o
* Establish relationship between max pit size and cathodic coverage 0 : : :
/ 0 50 100 150 200
(further parameterize model).
. e . . : Radi
* Investigate additional factors influencing pit morphology and L, jedwstm
subsequent pit-to-crack transition. 240, e, 1= 152.2pm_ = = =~
* Understand micro-crack formation under highly concentrated brines, is this due to HER, - I o R
H uptake, and embrittlement? = .=
. . . o Vg g 180 -
* Establish influence of cathodic precipitates on the pitting process T 10 z
* Who/What else it feeds: g 2108
* Determine imO,oortan’; environments and significance of cathodic control 3 100
for pitting and crack initiation/ growth studies at SNL and PNNL. 80 y
1 607 ILC | th, with precipitation
 What is needed 40! S
* Data on canister-relevant salt loads, compositions, and distributions to ]
better determine relevant surface environments for testing/ modeling. 0 25 % 75 M0 15 10 15200
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DAMAGE DISTRIBUTION AND RATES:
PIT-TO-CRACK AND CGR

* Experiments:

* Factors controlling pit to crack transition
*  Pit morphology, environment dependence, material properties — residual stress
* CGR experiments:
* Strain rate dependence
e Environment dependence f(T, RH, CI, etc.)
* Material properties
* Acoustic monitoring of CG in SS
*  Effect of cyclic weather conditions, evolving brine properties
* Large Plates: Why don’t these crack?
*  What are the surface stresses? Center hole drilling stress measurements
*  Metallurgy; microhardness to determine work hardening

 Why:
* Provides information on rate determining factors for pit to crack transition and
crack growth rates to enhance overall predictions

* Establish methods for monitoring crack growth under atmospheric exposures
(relevant to canister environments)

* Establishing an understanding of why crack aren’t occurring provides further
information to enhance lifetime predictions

* Who/What else it feeds:

* CGR as f(environment/material) as inputs into overall SNL model
* Provides validation/comparison with PNNL
* Basis for understanding SRNL large plate tests

* What is needed:

Tensile Bar: Atmospheric Exposure
* 300 pglcm? ASW, 35 °C, 40% RH

e,

:
» ke, LB = £
. 3 R f AN

oy i " J 3L, £ ’

P

| 3

i
|

g

[

A\ @Qjoaded, 6\m at oy

OSU/ Parey



DAMAGE DISTRIBUTION AND RATES:

PIT-TO-CRACK AND CGR

* Experiments:
* Factors controlling pit to crack transition

*  Pit morphology, environment dependence, material properties — residual stress

* CGR experiments:
* Strain rate dependence
e Environment dependence f(T, RH, CI, etc.)
*  Material properties

* Acoustic monitoring of CG in SS

*  Effect of cyclic weather conditions, evolving brine properties

* Large Plates: Why don’t these crack?

*  What are the surface stresses? Center hole drilling stress measurements
*  Metallurgy; microhardness to determine work hardening

 Why:

(relevant to canister environments)

* Establishing an understanding of why crack aren’t occurring provides further

information to enhance lifetime predictions

* Who/What else it feeds:

* CGR as f(environment/material) as inputs into overall SNL model

* Provides validation/comparison with PNNL
* Basis for understanding SRNL large plate tests

* What is needed:

Provides information on rate determining factors for pit to crack transition and
crack growth rates to enhance overall predictions

* Establish methods for monitoring crack growth under atmospheric exposures
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DAMAGE DISTRIBUTION AND RATES:
PIT-TO-CRACK AND CGR

* Experiments:

Factors controlling pit to crack transition

Pit morphology, environment dependence, material properties — residual stress
CGR experiments:

Strain rate dependence

Environment dependence f(T, RH, CI, etc.)

Material properties

Preliminary Results

Crack propagationrate, m/s
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MITIGATION STRATEGIES:
FSTW AND COID SPRAY

* Experiments:

* Preliminary Evaluation Testing:
* Boiling MgCl,
e FeCl;
e Post corrosion microstructural evaluation

* Environmental exposure in canister relevant conditions

 Why:
* Baseline evaluation for susceptibility to SCC
e Baseline evaluation for susceptibility to pitting

* Develop a further understanding of mitigation techniques
in relevant environment/ exposure conditions

* Who/What else it feeds:

. mrEol\J/IiDdes evaluation of mitigations repairs from PNNL/

* Establish techniques/ evaluation qualifications for potential
corrosion of mitigation for overall program

 What is needed:
* Test samples — currently provided by PNNL or NEUP

Cold Spray: 216 h

29
NEUP Purdue/ Montoya



MITIGATION STRATEGIES:
ESTWV AND COLD SPRAY

* Experiments:
* Preliminary Evaluation Testing:
* Boiling MgCl,
* FeCl, e B T P
. . : " tiNng 1est
* Post corrosion microstructural evaluation F@Clg pitting test
* Environmental exposure in canister relevant conditions

 Why:
* Baseline evaluation for susceptibility to SCC
e Baseline evaluation for susceptibility to pitting

* Develop a further understanding of mitigation techniques
in relevant environment/ exposure conditions

* Who/What else it feeds:

. ﬁré)l\J/IiDdes evaluation of mitigations repairs from PNNL/

* Establish techniques/ evaluation qualifications for potentia
corrosion of mitigation for overall program

 What is needed:
* Test samples — currently provided by PNNL or NEUP
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INTEGRATED PROBABILISTIC MODEL FOR CISCC

INCLUSION OF MITIGATION STRATEGIES/ REPAIR

Evolving Canister Environmental Conditions:RH, T, Salt Chemistry, Salt Load /

_] |
Incubation Time 1

3 3
* Pit-to-Crack
|| Transition Model
* Salt Composition Assumption - \Erinc Composition Froperty todel * Canister Thermal Model
* Canister Thermal Model & Canister Thenmaliflocel ;
* Weather Model * Weld Residual Stress Model
* Weather Model Ai w
) . * Airflow and Salt Deposition Model
* Airflow and Salt DePosmon Model « Corrosion (Maximum Pit Size) Model * Crack Growth Model

Develop and parameterize a mechanistically-based probabilistic SCC model for improved prediction of canister performance.



