
CORROSION RESEARCH AT
SANDIA NATIONAL LABORATORIES

CISCC PROGRAM MEETING

SPENT FUEL &
WASTE DISPOSITION
C1SCC Program Meeting
March 4, 2020

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International inc., for the U.S.
Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.

0 :CO um ar •Ixo xn lam leo: ler

1.1

1CO

IN=

OBS I OBS_5

OBS 3 OBS_9

Permeability X (mA2)

— rn

085_7 

„ 

1.a0e-20 le-19 le-18 1e-17 le-16 le-15 9.098e-I5
I. I.IIIII

SAND2020-2857PE



1. GOALS OF SNL PROGRAM: CORROSION AND SCC

OVERALL OBJECTIVE
1. Improve abilio to predict timing and location of potential canister penetration by stress corrosion
cracking (SCC)

• Probabilistic SCC model for improved prediction of canister peornyance.

• Provide guidance for aging management programs

2. Provide input on SCC mitigation and repair strategies

GOALS OF EXPERIMENTAL WORK

1) BRINE: Determine electrolyte composition and evolution with time

2) CORROSION: Determine the relationship between surface environment, material properties,
mechanical environment, and damage distribution and rates

3) PIT-TO-CRACK: Determine the environmental and mechanical properties that influence when and
where pit-to-crack transition occurs

4) CGR: Determine crack growth rate as a function of environment and material properties
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3) Damage Distribution and Rates: 

Pit-to-Crack Transition and CGR

• Factors controlling pit-to-crack transition

• Pit morphology/ modeling stress (Kondo criterion)

• Environment dependence f(T, RH, Cl-, etc.)

• Plastic strain, microstructure, residual stress
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• Strain rate dependence
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4) Mitigation Strategies: 

• Evaluation of FSW and Cold Spray techniques

• Development of qualification for mitigation strategies
(based on CISCC knowledge thus far)



MAT  14,RIAL PROP  FRTI  14,S :
WHLD 1111-1TAL PROPhRTMS
• Experiments:

• Weld sections from Big Plate test: longitudinal and circumferential
1. Corrosion Analysis
2. Microstructural Etch
3. EBSD map
4. Evaluate sensitization around weld (DLEPR)
5. Microhardness map
6. Surface stress measurements (center hole drilling at SNL)

• Why:
• Provides information on weld material properties, specifically:

1. Degree of cold work due to weld shrinkage (hardness oc CW)
2. Sensitization in weld and HAZ
3. Residual stresses

• Who/What else it feeds
• Information pertinent for:

• SNL for SCC (pit-to-crack and CGR) testing inputs (relevant material properties)
• PNNL (direct inputs for material properties in CGR testing)
• SRNL (validation/ additional information of large plate SCC testing)

• What is needed?
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SURFACI41 ENVIRONMF\T:
CONChNTRAMD BRINhS MgC4 : CATHODh  
• Experiments:

1. Droplet exposures
• Varying size/ brine droplet exposure with in-situ imaging and post-mortem pit analysis

2. Evaluate possible change in mechanism of cathodic reaction (ORR to
HER) and possible H uptake in concentrated MgCl2 brines
• Full immersion

• Under a droplet/ thin film while pitting

3. In-Situ Raman detection of cathodic precipitates in concentrated
MgCl2 brines

• Why:
• Establish relationship between max pit size and cathodic coverage

(further parameterize model).
• Investigate additional factors influencing pit morphology and

subsequent pit-to-crack transition.
• Understand micro-crack formation under highly concentrated brines, is this due to HER,

H uptake, and embrittlement?

• Establish influence of cathodic precipitates on the pitting process

• Who/What else it feeds:
• Determine important environments and significance of cathodic control

for pitting and crack initiation/ growth studies at SNL and PNNL.

• What is needed
• Data on canister-relevant salt loads, compositions, and distributions to

better determine relevant surface environments for testing/ modeling.

HIGH RH: NaCI RICH BRINE

Low RH: MgC12 RICH BRINE
40% RH
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SURFACI41 ENVIRONMF\T:
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SURFACI41 ENVIRONMF\T:
CONChNTRAMD    C4): CATHODI; SID;

In-situ Raman of SS under cathodic polarization in MgC1• Experiments: 2(aq).
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SURFACI41 ENVIRONMF\T:
CONChNTRAMD BRINhS 01 C4): CATHODh SID;
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DAMAGI41 DISTRIBUTION AND RATI4S:
PIT-TO-CRACK AND CGR
• Experiments:

• Factors controlling pit to crack transition
• Pit morphology, environment dependence, material properties — residual stress

• CGR experiments:
• Strain rate dependence

• Environment dependence f(T, RH, Cl-, etc.)

• Material properties

• Acoustic monitoring of CG in SS
• Effect of cyclic weather conditions, evolving brine properties

• Large Plates: Why don't these crack?
• What are the surface stresses? Center hole drilling stress measurements

• Metallurgy; microhardness to determine work hardening

• Why:
• Provides information on rate determining factors for pit to crack transition and

crack growth rates to enhance overall predictions
• Establish methods for monitoring crack growth under atmospheric exposures

(relevant to canister environments)
• Establishing an understanding of why crack aren't occurring provides further

information to enhance lifetime predictions

• Who/What else it feeds:
• CGR as f(environment/material) as inputs into overall SNL model
• Provides validation/comparison with PNNL
• Basis for understanding SRNL large plate tests

• What is needed:

•
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DAMAGE DISTRIBUTION AND RATES:
PIT-TO-CRACK AND CGR
• Experiments:

• Factors controlling pit to crack transition
• Pit morphology, environment dependence, material properties— residual stress

• CGR experiments:
• Strain rate dependence

• Environment dependence f(T, RH, Cl-, etc.)

• Material properties
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MITIGATION STRAT  144 GI  FS:
FSW AND COLD SPRAY
• Experiments:

• Preliminary Evaluation Testing:
• Boiling MgCl2

• FeCI3

• Post corrosion microstructural evaluation
• Environmental exposure in canister relevant conditions

• Why:
• Baseline evaluation for susceptibility to SCC
• Baseline evaluation for susceptibility to pitting
• Develop a further understanding of mitigation techniques

in relevant environment/ exposure concitions

• Who/What else it feeds:
• Provides evaluation of mitigations repairs from PNNL/
NEUP

• Establish techniques/ evaluation qualifications for potential
corrosion of mitigation for overall program

• What is needed:
• Test samples — currently provided by PNNL or NEUP

Cold Spray: 216 h

NEUP Purdue/ Montoya
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INT144GRATIHD PROBABILISTIC MOD14,L FOR CISCC
INCLUSION OF MITIGATION STRATEGIES/ REPAIR

Evolving Canister Environmental Conditions: RH, T, Salt Chemistry, Salt Load

Incubation Time

• Salt Composition Assumption
• Canister Thermal Model
• Weather Model
• Airflow and Salt Deposition Model

Pit Growth Crack Growth

• Pit-to-Crack
Transition Model

• Brine CompositionlProperty Model
• Canister Thermal Model
• Weather Model
• Airflow and Salt Deposition Model
• Corrosion (Maximum Pit Size) Model

Mitigation/ Repair

• Canister Thermal Model
• Weld Residual Stress Model
• Crack Growth Model

Develo and parameterke a mechanisticaly-basedprobabilistic SCC modd fir improved prediction of canisterperfirmance.


