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Introduction
Scientists use retrosynthetic analysis (RSA) to quickly identify (in-silico) potential
reaction pathways for a desired target molecule. In practice, an organism may require
genetic engineering to optimize biological synthesis of necessary precursors.
Financially, it may actually be more cost-effective to distill a different precursor at the
cost of an additional chemical reaction. Chemical reactions may then require process
optimization to properly scale up. Finally, after all is said and done, environmental
screening may rule out the molecule or a completely novel compound may end up
having more desirable fuel properties. Rather than the traditional target-first
approach to RSA, we propose a platform-first approach focused on identifying a
versatile platform organism. RetSynthm, along with its flux balance analysis (FBA),
gene compatibility (GC), and separation properties (SP) toolkits, enables us to identify
organisms capable of producing high yields of the chemical precursors for many high-
value fuel candidates.
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Figure 1 Identified and theoretically possible metabolic pathways for E. coli (nodes=metabolites,
edges=reactions), including enzymatic reactions from PATRIC[3], MetaCyc[4], ATLAS[5], and

MINE[6].

10,839

Metabolic

Models

1

Reaxys

Database

MEW

RetSynth

Database

48,313

Enzymatic 1
Reaction

449 million
Chemical

# Reactions

MCCI

andidates

♦

Fuel

Properties

Database

fl
/

Unmeasured RON/CN Predictions
by BiocompoundML[2]

Figure 3: Workflow to identify organisms best suited to biochemically produce MCCI and SI fuels.

Methods
The RetSynth database is a centralized and organized resource containing metabolic
models, enzymatic reactions, and chemical reactions from PATRIC, MetaCyc, ATLAS,
MINE, KBase, SPRESI, and Reaxys. The potential metabolic pathways generated by
aggregating all of this information are often vast and complex (Figure 1). In order to
find the organism(s) best suited for biochemical synthesis of MCCI and SI fuel
candidates, we must first narrow down the list of potential organisms.

The first step was to identify our target molecules. Of the 420 pure substances, we
screened out 62 SI and 30 MCCI candidates based on the criteria in Table 1, filling
missing measurements with chemical and fuel property predictions from ChemDraw
and BiocompoundML respectively. We then identified the chemical precursors for all
of the targets and screened for organisms in the RetSynth database that had the most
potential pathways to produce the MCCl/SI targets.

Work is currently being done to take these organisms and identify the best, most
versatile candidate(s) (using the FBA, GC, and SP modules) for biochemical production
of MCCI and SI fuels.
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Table 1: SI and MCCI fuel screening criteria as determined by McCormick 2017[71 and the Co-
Optima Tier 1 criteria respectively.
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Figure 2 SI (left) and MCCI (right) fuel targets based on the screening criteria listed in Table 1.

Results and Initial Takeaways
The candidate chassis for SI fuels are Ensifer adhaerens, Klebsiella quasipneumoniae,
Klebsiella sp. KPN1705, Klebsiella variicola, and Shinella sp. HZN7. The candidate
chassis for MCCI fuels are Bacillus thuringiensis, Cupriavidus basilensis,
Paraburkholderia carbiensis, Paraburkholderia hospital, Paraburkholderia terrae, and
Variovorax paradoxus.

Pathways to production of MCCI compounds contain a lot of chemical reactions. As a
result, there are more candidate chassis organisms capable of producing some MCCI
fuels, whereas there are few SI candidate organisms capable of producing many of
the SI targets. Additionally, while metabolic models suggest SI fuels can be
synthesized from limited lignocellulosic media, that is not the case for MCCI fuels.
Only 3 of the MCCI targets have the potential to be made biologically without any
chemical processing, none of which are present in lignocellulosic models.
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