

PROJECT NAME: High-Temperature Particle Heat Exchanger for sCO₂ Power Cycles

Last 5 digits of project number: 30342

Principal Investigator (PI): Clifford K. Ho, SNL

PI Email: ckho@sandia.gov

BACKGROUND / INDUSTRY IMPACT

- Particle-to-sCO₂ heat exchangers did not exist
- Particle-based systems can enable higher temperatures and more efficient processes for CSP, thermochemistry, and solar fuels

PROJECT OVERVIEW / OBJECTIVES

- Design, develop, and test a particle/sCO₂ heat exchanger operating at sCO₂ temperatures of ≥ 700 °C and pressures ≥ 20 MPa that will enable high-efficiency sCO₂ power cycles

METHODS

- Team with industry to design heat exchangers
- Evaluate fluidized and moving packed-bed particle designs using analytic hierarchy process
- Construct 100 kW_t shell-and-plate prototype and perform tests to evaluate performance

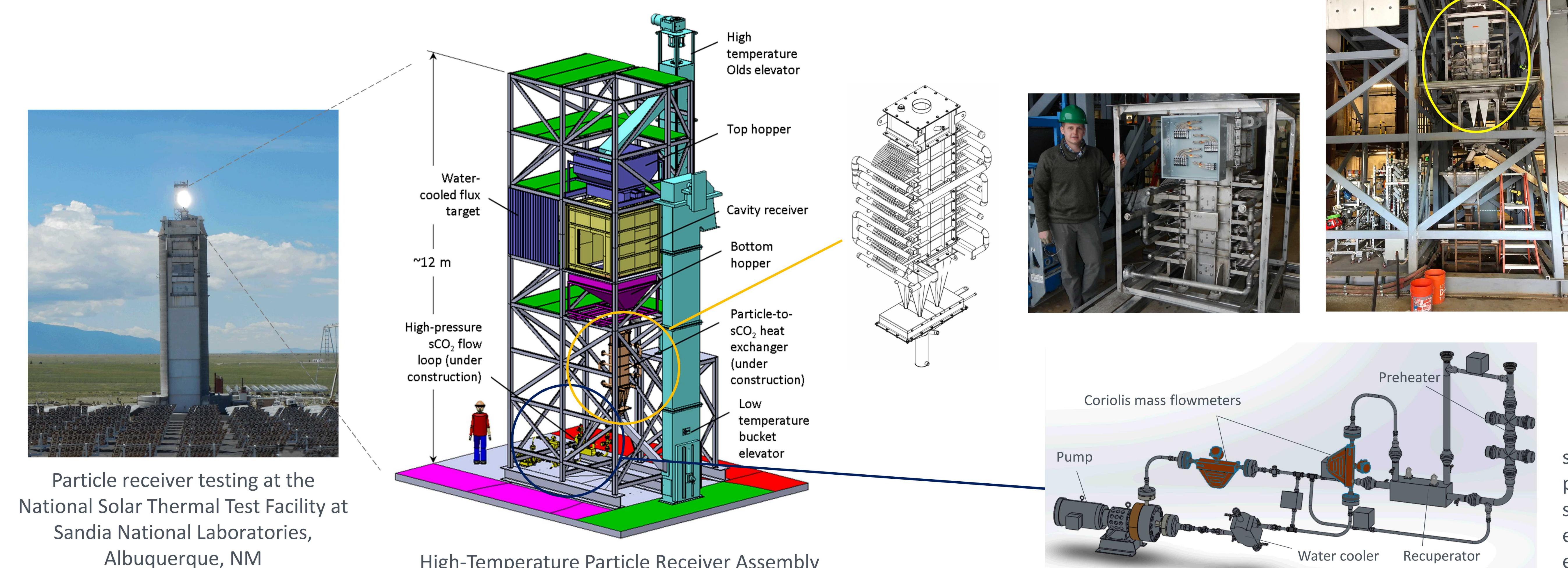
KEY OUTCOMES / MILESTONES

- Performed lab-scale heat-transfer and particle-flowability tests to demonstrate feasibility
- Constructed 100 kW_t prototype and achieved milestones: overall heat transfer coefficient >50 W/m²·K and >50 kW_t duty (off-design)
- Developed CFD simulations and identified design features to improve performance

CONCLUSION / REMAINING RISK

- Constructed world's first particle-to-sCO₂ heat exchanger and performed tests to evaluate thermal duty and overall heat-transfer coefficient
- Need to perform on-sun tests and implement designs to improve particle-side heat transfer coefficient and reduce pressure drop

CONCENTRATING SOLAR-THERMAL POWER TRACK (SuNLaMP)


Designed and tested world's first particle-to-supercritical-CO₂ heat exchanger in a falling particle receiver system

Scan for more information

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Integrated Falling Particle Receiver / Heat Exchanger / sCO₂ loop

Project contributors: Sandia National Laboratories (K. Albrecht, M. Carlson, H. Laubscher), Solex Thermal Science, Vacuum Process Engineering, Babcock & Wilcox, Georgia Institute of Technology, National Renewable Energy Laboratory