This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Degradation of Commercial Li-ion Cells

Beyond 80% Capacity
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2 ‘ Moving Beyond 80% Capacity for Grid Applications

* 80% capacity is a common reference point in manufacturer spec sheets
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* 80% capacity is a holdover from the EV world

o USABC 1996: “EV batteries should be removed from automotive use when current battery capacity is 80% of initial battery
capacity and current battery power capability is 80% of initial battery power capability”

o At this time, EVs were primarily powered by Ni-based batteries

e Unrealistic criteria for Li-ion batteries with higher energy density and power capability



3 I How Far Beyond 80% Should We Go!?

One possible criteria: until a battery undergoes rapid degradation -
capacity

1
e Typical model of LiB degradation assumes a transition from linear behavior Kz

o Phase 1: SEl formation 3
o Phase 2: linear degradation

o Phase 3: rapid capacity fade

cycle number

. . . Spotnitz et al. J. Power Sources 2003, 113, 72.
* Transition to rapid capacity fade has many names

o Transition point, tipping point, knee, rollover

e Transition to rapid capacity fade has many nuanced explanations
o General resistance increase at anode
o Liplating at anode
o Electrode dry-out
o Cathode processes (degradation or resistance increase)



Position of Knee Highly Dependent on Cycling Conditions

No knee down to 65% capacity
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Rapid Capacity Fade Due to Resistance Increase

normalized capacity

normalized resistance

Tipping point coincides with resistance increase of ~150%
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6 ‘ Li Plating as Cause of Rapid Resistance Increase

Cycle number
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Rapid Capacity Fade due to Electrode Dry-Out

e SEl formation reactions generate gas

e @Gas bubbles lead to a loss of contact between
active material and electrolyte

* Model fits the data, but no explicit experimental
confirmation of phenomenon
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9 I Rapid Capacity Fade due to Cathodic Processes

 Rollover due to impedance growth at positive
electrode

e Impedance growth associated with higher
charging voltage and electrolyte oxidation

* No change in anode impedance and no Li
plating observed on cells past tipping point
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Capacity

Limited Materials Insight and Cycling Data Means Limited

Predictive Capability

What is the remaining useful life (RUL) of a battery?
* Most studies calculate RUL with threshold of 75-85% capacity
* Most studies only model data in linear degradation region
e Recent modeling includes more knee data, but still empirical

Typical linear data set in RUL model
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Richardson et al. J. Power Sources 2017, 357, 209.

Normalized Capacity

Data set with knee — empirical modeling
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Next Steps: Expand Electrochemical and Materials Data Sets of
Commercial Cells Beyond 80% Capacity

Goal: Complete large-scale, long-term cycling study beyond 80% capacity to understand what causes and how to delay
tipping point
* Include materials characterization at various points in lifetime

Key Questions
1) What materials mechanism leads to rapid fade? Are there multiple?
2) If ESS installation with fresh batteries, how to predict RUL to knee based on full cycling history?

3) If ESS installation with 2" [ife cells, how to predict RUL to knee if limited knowledge of previous capacity fade?
Is the economic case factoring in this transition?

4) How much advance warning/buffer is needed prior to rapid degradation?



12 ‘ Scope of Current Study at SNL: Cells and Manufacturer Specifications

Cathode Chemistry AKA Vendor Specific Max Acceptable
Capacity (Ah) Discharge Temperature
Current (°C)
LiFePO, LFP A123 1.1 30 -30to 60
LiNiy gCog 15AlG 0505 NCA | Panasonic 3.2 6 Oto 45
LiNiMnCoO, NMC LG Chem 3.0 20 -5t0 50
40
< 90 Variables:
g 20 - *  Charge Rate: C/2
2 - Discharge Rate: C/2, 1C, 2C, 3C
2 104
-E; *  SOCRange: 40-60%, 20-80%, 0-100%
a o . Temperature: 15°C, 25°C, 35°C
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13 ‘ Cycling Past 80%: Preliminary Insights
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4 I Another Critical Topic: Influence of Cell Age on Safety

Standard abuse testing is reported only for fresh cells

Influence of cell age on safety is unclear:
* More safe (due to capacity loss)?
e Less safe (due to materials instability)?

e Little difference?

Safety Testing Example Data

TEST REPORT
IEC 62133, Second Edition
Secondary cells and batteries containing alkaline or other non-acid
electrolytes — Safety requirements for portable sealed secondary cells,
and for batteries made from them, for use in portable applications

Test Report issued under the responsibility of:

Q@

Summary of testing:

Tests performed (name of test and test
clause):

8.2.1 — Continuous charging at constant voltage
(cells)

8.3.1 — External short circuit (cells)

8.3.3 — Free fall

8.3.4 — Thermal abuse (cells)

8.3.5 = Crush (cells)

8.3.7 — Forced Discharge

8.3.9 — Forced internal short circuit (cells)

Source: LG Chem, IEC Test Report issued under UL



15 I How to Compare Safety of Fresh and Aged Cells
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Summary of Calorimetry on Aged Cells

No comprehensive studies, but broader conclusions possible
from many individual studies

B Aged cell less safe
Little difference

Aged cell more safe

SOH (State-of-

Thermal Runaway

Cell Type Aging Approach Health) Self-Heating Onset Ohask Total Heat Release (AT)
NMC-LMO -10°C (cyc) 81% --
NMC-LMO -10°C (cyc) 78% Little difference

NMC -5°C (cyc) 80-95% Little difference
NMC532 0°C (cyc) 70% --

LCO 0°C (cyo) 70% -

NCA 0/5°C (cyc) 65% Lower by 130°C
NMC532 20°C (cyc) 70-90% Little difference --
NMC442 20°C (cyc) 80% Little difference Little difference --

LCO 21°C (cyc) 89-94% -- Little difference --

NMC-LMO 25°C (cyc) 78% Little difference --

NMC 25°C (cyc) 80-95% Lower by 20-290°C

NCA 25/45°C (cyc) 70-85% Little difference Little difference Lower by 50°C
NMC532 45°C (cyc) 70-90% Higher by 10-20°C Little difference --

LCO 25/60/70°C(cal) -- Higher by 25-40°C -- --

NMC 55°C (cyc) 80-95% Little difference Little difference Little difference

NMC 55°C (cal) 80-95% Higher by 15-25°C Little difference Little difference

NMC-LMO 60°C (cal) 55% b&ﬁerence -

LFP 60°C (cal) 70-90% Higher by 10°C --

NCA 60°C (cal) 80% Little difference Little difference Lower by 150°C

LCO 80°C (cal) 56% Higher by 10-15°C Little difference --

NMC-LMO 80/90/100°C (brief ARC) 73-95% Higher by 15-35°C Higher by 15°C Lower by 45-80°C
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Likely due to Li plating at lower temperatures

Lower Self-Heating Onset at Lower Aging Temperatures

B Aged cell less safe
Little difference
Aged cell more safe

SOH (State-of-

Thermal Runaway

Cell Type Aging Approach ] Self-Heating Onset r Total Heat Release (AT)
NMC-LMO -10°C (cyc) 81% --
NMC-LMO -10°C (cyc) 78% Little difference

NMC -5°C (cyc) 80-95% Little difference
NMC532 0°C (cyc) 70% --

LCO 0°C (cyo) 70% -

NCA 0/5°C (cyc) 65% Lower by 130°C
NMC532 20°C (cyc) 70-90% Little difference --
NMC442 20°C (cyc) 80% Little difference Little difference --

LCO 21°C (cyc) 89-94% -- Little difference --

NMC-LMO 25°C (cyc) 78% Little difference --

NMC 80-95% Lower by 20-290°C

NCA ; ittle ditference ittle difterence Lower by 50°C
NMC532 45°C (cyc) 70-90% Higher by 10-20°C Little difference --

LCO 25/60/70°C(cal) -- Higher by 25-40°C -- --

NMC 55°C (cyc) 80-95% Little difference Little difference Little difference

NMC 55°C (cal) 80-95% Higher by 15-25°C Little difference Little difference

NMC-LMO 60°C (cal) 55% b&ﬁerence -

LFP 60°C (cal) 70-90% Higher by 10°C --

NCA 60°C (cal) 80% Little difference Little difference Lower by 150°C

LCO 80°C (cal) 56% Higher by 10-15°C Little difference --

NMC-LMO 80/90/100°C (brief ARC) 73-95% Higher by 15-35°C Higher by 15°C Lower by 45-80°C




Heat Release Not Always Lower at Lower Capacity

B Aged cell less safe

Total energy available for thermal runaway may be Little difference

unchanged due to role of inactive materials like electrolyte Aged cell more safe

Cell Type Aging Approach SOI-II_I(eSa:?:;-Of- Self-Heating Onset Therm;lnl;(:tnaway Total Heat Release (AT)
NMC-LMO -10°C (cyc) 81% --
NMC-LMO -10°C (cyc) 78% Little difference
NMC -5°C (cyc) 80-95% Little difference
NMC532 0°C (cyc) 70%
LCO 0°C (cyo) 70%
NCA 0/5°C (cyc) 65%
NMC532 20°C (cyc) 70-90% Little difference
NMC442 20°C (cyc) 80% Little difference Little difference
LCO 21°C (cyc) 89-94% -- Little difference
NMC-LMO 25°C (cyc) 78% Little difference
NMC 25°C (cyc) 80-95% Lower by 20-290°C
NCA 25/45°C (cyc) 70-85% Little difference Little difference Lower by 50°C
NMC532 45°C (cyc) 70-90% Higher by 10-20°C Little difference
LCO 25/60/70°C(cal) -- Higher by 25-40°C --
NMC 55°C (cyc) 80-95% Little difference Little difference Little difference
NMC 55°C (cal) 80-95% Higher by 15-25°C Little difference Little difference
NMC-LMO 60°C (cal) 55% Little difference
LFP 60°C (cal) 70-90% Higher by 10°C
NCA 60°C (cal) 80% Little difference Little difference Lower by 150°C
LCO 80°C (cal) 56% Higher by 10-15°C Little difference --
NMC-LMO 80/90/100°C (brief ARC) 73-95% Higher by 15-35°C Higher by 15°C Lower by 45-80°C




19 I Summary

1) How much useful life does a battery have beyond 80% capacity?
* limited literature on cycling cells to knee point
* knee-point capacity depends strongly on cycling conditions
* need studies coupling electrochemical performance with materials characterization to understand knee point

2) How does safety of battery change as it ages?
o kinetics: lower self-heating onset temperature if battery aged at low temperatures

> thermodynamics: total energy available for thermal runaway not always reduced for aged cells
> gap: need non-thermal abuse tests to understand impact of aging on overcharge/short circuit protective devices
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