

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-806078

New Opportunities to Study Earthquake Precursors

M. E. Pritchard, R. M. Allen, T. W. Becker, M. D. Behn, E. E. Brodsky, R. Burgmann, C. Ebinger, J. T. Freymueller, M. Gerstenberger, B. Haines, Y. Kaneko, S. D. Jacobsen, N. Lindsey, J. J. McGuire, M. Page, S. Ruiz, M. Tolstoy, L. Wallace, W. R. Walter, W. Wilcock, H. Vincent

March 2, 2020

Seismological Research Letters

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

New Opportunities to Study Earthquake Precursors

M. E. Pritchard¹, R. M. Allen², T. W. Becker³, M. D. Behn⁴, E. E. Brodsky⁵, R. Bürgmann², C. Ebinger⁶, J. T. Freymueller⁷, M. Gerstenberger⁸, B. Haines⁹, Y. Kaneko⁸, S. D. Jacobsen¹⁰, N. Lindsey¹¹, J. J. McGuire¹², M. Page¹³, S. Ruiz¹⁴, M. Tolstoy¹⁵; L. Wallace^{8,3}; W. R. Walter¹⁶, W. Wilcock¹⁷, H. Vincent¹⁸

¹Department of Earth & Atmospheric Sciences, 112 Hollister Drive, Cornell University, Ithaca, NY 14850;

²Department of Earth & Planetary Sciences, 307 McCone Hall, University of California, Berkeley, Berkeley, CA 94720;

³Jackson School of Geoscience, 23 San Jacinto Blvd, The University of Texas at Austin, Austin, TX 78758;

⁴Department of Earth & Environmental Sciences, Devlin Hall 213, Boston College, Chestnut Hill, MA 02467;

⁵Department of Earth and Planetary Sciences, 1156 High Street, University of California, Santa Cruz, Santa Cruz, CA, 95064;

⁶Department of Earth & Environmental Sciences, 101 Blessey Hall, Tulane University, New Orleans, LA 70118;

⁷*Department of Earth & Environmental Sciences, 288 Farm Lane, Rm 207, Michigan State University, East Lansing, MI 48824;*

⁸GNS Science, 1 Fairway Drive, Avalon 5010 PO Box 30-368, Lower Hutt 5040, New Zealand;
⁹Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109;

¹⁰Department of Earth & Planetary Sciences, 2145 Sheridan Road, Northwestern University, Evanston, IL 60201, USA

60208;

¹¹Department of Geophysics, 397 Panama Mall Mitchell Building, Stanford University, Stanford, CA

94305;
¹²USGS, 350 N. Akron Road, Moffett Field, CA, 94035:

¹³USGS, 525 South Wilson Avenue, Pasadena, CA 91106.

¹⁴Departamento de Geofísica, v. Blanco Encalada 2002, U.

¹⁵Department of Earth & Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University

¹⁶Lawrence Livermore National Laboratory, L-046, 7000 East Ave, Livermore, CA 94550;

¹⁷School of Oceanography, 1501 NE Boat St., University of Washington, Seattle, WA 98195

¹⁸Department of Ocean Engineering, Sheets Building, 15 Receiving Road, University of Rhode Island, Narragansett, RI 02882, USA

Department of Ocean Engineering, Crighton Building, 75 Presenting Road, University of Rhode Island,
Narragansett, RI 02882.

44 The topic of earthquake prediction has a long history, littered with failed attempts. Part of the
45 challenge is that possible precursory signals are usually reported after the event, and the
46 systematic relationships between potential precursors and main events, should they exist, are
47 unclear. Several recent studies have shown the potential of new approaches to simultaneously
48 detect earthquake foreshocks and slow-slip phenomena through ground deformation, seismic,
49 and gravitational transients -- weeks to months before large subduction zone earthquakes. The
50 entire international community of earthquake researchers should be engaged in deploying
51 instrumentation, sharing data in real-time, and improving physical models to resolve the extent
52 to which slow slip events and earthquake swarms enhance the likelihood (or not) for later, larger
53 earthquakes.

54

55 Experts discussed these apparent seismic and geodetic earthquake precursors and next steps
56 in how to assess their impact on earthquake hazard assessment at a Committee on Seismology
57 and Geodynamics meeting held in May, 2019 in Berkeley, California (NASEM, 2019). For
58 example, slow slip occurred during a sequence of foreshocks on the Japan Trench megathrust
59 that began 23 days before the 2011 Mw 9 Tohoku-oki, Japan earthquake, culminating in a Mw
60 7.3 earthquake 2 days before the mainshock (Kato et al, 2012; Ito et al., 2013). Similarly,
61 foreshocks and aseismic slip started at least 2 weeks before the 2014 Mw 8.1 Iquique, Chile
62 mainshock (Ruiz et al., 2014; Socquet et al., 2017). The foreshocks and motions prior to the
63 Tohoku-oki earthquake may also have been connected to a change in satellite-measured
64 gravity gradients before the mainshock (Panet et al., 2019), but the significance of these results
65 continues to be debated (Wang and Bürgmann, 2019). While many clusters of earthquakes and
66 slow slip events occur without foretelling a large earthquake (some lasting years: e.g., Ohta et
67 al., 2006; Tsang et al., 2015; Uchida et al., 2016; Rousset et al., 2019), what is new in the last

68 decade is that both seismic and geodetic precursors have been jointly observed before two
69 major $M_w > 8$ earthquakes (e.g., Obara and Kato, 2016).

70

71 The societal implications of confirmed and repeatable precursory signals would be significant,
72 but questions remain. How frequently do similar precursor candidates occur, and in which plate
73 tectonic settings? How often do they result in larger earthquakes? Are there certain
74 characteristics of the precursor(s) that make them more or less likely to result in a larger
75 earthquake? What instrumentation do we need on- and offshore, at or below the Earth's surface
76 or in space, to best record precursory events? How do we improve operational earthquake
77 forecasts to include new knowledge of both earthquake statistics from improved seismicity
78 catalogs and geodetic transients? Are there settings where precursory signals can lead to
79 forecasts on timescales and at probability levels that are useful for saving lives and reducing the
80 economic impact of earthquakes? How do we communicate information about the inferred
81 hazard potential inferred from possible precursors in a clear and timely fashion?

82

83 To address these questions, there is an obvious need for more observations. Long-term
84 seismometer and geodetic networks are needed both onshore and offshore at a range of sites,
85 spanning a suite of fault slip behaviors. For seafloor geodesy above the seismogenic zone of
86 subduction megathrusts, continuous measurements and cm-level accuracy or better in the
87 horizontal and vertical directions are needed. An increasing array of techniques are available
88 including GPS-Acoustic methods, seafloor absolute pressure gauges, acoustic ranging,
89 borehole instrumentation (including tiltmeters, and pore pressure for volumetric strain), and fiber
90 optic strainmeters (e.g., Bürgmann and Chadwell (2014), and presentations about seafloor
91 instrumentation posted from the 2019 Committee on Seismology and Geodynamics meeting
92 (NASEM, 2019)). For onshore observations, dense networks of continuously recording

93 instruments are needed in many poorly instrumented subduction zones, and data sharing
94 across political boundaries are essential to enable detection of long wavelength precursory
95 signals (e.g., Bedford et al., 2020). Over the decades, lab experiments have shown precursors
96 (e.g., McLaskey, 2019), but understanding how these scale to natural systems has been a
97 challenge. To bridge the gap between lab and natural earthquakes, field-scale experiments to
98 better understand earthquake initiation, fault rupture, and earthquakes induced by human
99 activities are underway in the Swiss Alps (<http://www.bedrettolab.ethz.ch/activities/fear/>) and are
100 proposed in North America (Savage et al., 2017).

101
102 Along with new observations, there is a critical need for integrative physical models that can
103 assimilate those observations, ideally for a real-time assessment of seismic hazard. A specific
104 need that cannot currently be met is to rapidly incorporate how the newly observed phenomena
105 impact previous estimates of earthquake hazard. For example, following the 2016 Kaikōura
106 earthquake in New Zealand, slow slip on the subduction megathrust was observed near a highly
107 stressed portion of the fault near Wellington (Wallace et al., 2018). This led to an urgent
108 request by the New Zealand government to incorporate the triggered aseismic slip episode into
109 a timely and accurate forecast. Several methods, including expert elicitation, were used to
110 determine that the chance of an earthquake of magnitude 7.8 or larger in central New Zealand
111 more than doubled (to about 5%) for a time period of ~12 months following the Kaikōura
112 earthquake (Gerstenberger et al., 2017). To better prepare for future precursor candidates, the
113 scientific community should document “best practices” for dealing with slow slip events and
114 other possible precursors in earthquake forecasts, and the community should enhance efforts to
115 complement statistical hazard assessments with physical model-based approaches (e.g.,
116 Kaneko et al., 2018). To assess uncertainties in the forecasts, a systematic process of
117 quantifying expert judgements about uncertain parameters (called expert elicitation) is an

118 important (but not the only) component of these efforts, and also provides a means to integrate
119 and assess the results of a diverse suite of models and forecasts. Helping scientists gain
120 exposure to expert elicitation practices in advance of such events will help to streamline
121 forecasting efforts, but when information is needed by civil protection authorities within short-
122 time frames (e.g., 24-48 hours), expert elicitation can be challenging. However, there are
123 rigorous methods that allow for rapid elicitation (e.g., Aspinall, 2010) and that can be
124 implemented quickly if protocols have been established ahead of time.

125

126 An active area of research focuses on the question of whether there are certain characteristics
127 of the precursor(s) that make them more or less likely to result in a large earthquake. There was
128 debate at the meeting as to whether the precursors to the 2011 Japan earthquake were unusual
129 enough (in terms of size and spatio-temporal evolution of the foreshocks) to warrant public
130 statements of warning, a discussion that garnered earlier prominence in the case of the 2009
131 L'Aquila, Italy normal faulting earthquake (Marzocchi et al. 2014). Revisiting the timeline of
132 events preceding the 2011 earthquake (and other candidate precursors) using current
133 knowledge to evaluate what actions should have been taken by different stakeholders could be
134 useful, perhaps as a tabletop exercise.

135

136 Given our growing understanding of earthquake precursors, it is clear that most swarms and/or
137 slow slip events do not produce large, damaging earthquakes, but some do. (The size
138 threshold for a damaging earthquake depends on the location and vulnerability of the building
139 stock). Based on recent experiences like the 2016 Bombay Beach earthquake swarm, close to
140 the overdue southernmost section of the San Andreas fault in California (McBride et al., 2019),
141 and the 2016 Kaikōura earthquake and slow slip episode, it is clear that scientists will be asked
142 by civil protection or governmental authorities to calculate the increased probabilities of
143 earthquakes associated with seismic/geodetic precursors.

144

145 Well in advance of any seismic unrest events, public communication about earthquakes
146 requires planning, education, and training well in advance of any seismic unrest events by those
147 who are governmentally responsible (e.g., Alexander, 2010; Lamontagne et al., 2016; McBride
148 et al., 2019). Any new pre-event hazard alerts--potentially in the days, hours, and minutes prior
149 to an event--should be part of a consistent continuum of information, extending from long-term
150 hazard awareness education, through pre-event alert levels, earthquake early warnings, to
151 guidance for immediate event response, and followed by further education while interest levels
152 are high.

153

154 It seems clear that the prospects for short-term earthquake prediction (providing accurate time,
155 location, and magnitude) remain poor. However, new opportunities exist to improve seismic and
156 geodetic observations both onshore and offshore, to take advantage of various space-based
157 observation systems, to improve data analysis with machine learning, and to make real-time
158 updated estimates of earthquake probabilities using advanced physical models based on fault
159 loading models. Many of these opportunities are highlighted by the U.S. initiatives to
160 study subduction zones through both space and time (Gomberg et al., 2017 and SZ4D,
161 <https://www.sz4d.org>; McGuire et al., 2017). For example, fiber-optic cables for
162 telecommunications offer tantalizing new directions for geophysical observations relevant to
163 both onshore and offshore hazard assessment (e.g., Lindsey et al., 2019; Marra et al., 2018);
164 and recent observations of changes in seismicity rates and magnitude-frequency statistics prior
165 to earthquakes provide a potential means to determine the likelihood of a swarm being followed
166 by a larger earthquake (Guilia and Wiemer, 2019). Machine-learning tools have enabled
167 detection of months-long plate boundary zone slip reversals prior to two megathrust events,
168 offering not only a new signal, but also motivation to probe the physics of the long-wavelength
169 changes (Bedford et al., 2020). To some extent, public notice of foreshock precursors is

170 already happening through operational earthquake forecasting by some government agencies
171 and through online services (e.g., Marzocchi et al., 2014; Michael et al., 2019; Nandan et al.,
172 2019; <https://earthquake.usgs.gov/data/oaf/overview.php>; <https://www.richterx.com/>), but there
173 is more work to be done, including rapid reporting and integration of geodetically observed
174 transients.

175

176 Synthesizing the seismic and geodetic observations in subduction zones and developing
177 physics-based models to link them into forecasts is an international challenge. Instead of waiting
178 centuries for large earthquakes to recur in a given location, we can use a global ergodic
179 approach to understand earthquake precursors, statistically sampling earthquakes around the
180 whole world instead of waiting for a statistically representative sample to accumulate over time
181 in one area. Further, lowering detection thresholds could also be helpful, as there are likely
182 many more smaller events that may have precursors (or not), thereby also increasing the
183 sample size for study -- with the caveat that the scaling between small and large earthquakes
184 must be considered. International coordination can alleviate the high cost of observations both
185 on land at the desired density and offshore even at quite low density. In the United States, the
186 SZ4D and USGS initiatives in subduction zones could be an important part of this international
187 effort. Finally, most countries have their own agencies in charge of vetting and undertaking
188 forecasts and deciding how and when changes to earthquake probabilities should be
189 communicated to the public. Again, the international community of researchers should work
190 together to share data in real-time and exchange lessons learned towards improving forecasts
191 based on potential precursor phenomena. The goal is to be prepared for the rapid response
192 needed to forecast the outcome of the next coupled seismic swarm and slow slip events.

193

194 Acknowledgements:

195 We thank Domenico Giardini, Andrew Michael, and Joan Gomberg for helpful reviews and all of
196 the participants in the May 2019 workshop.

197

198 Data and Resources:

199 There are no new data or resources to report for this article.

200

201 References:

202

203 Alexander, D. E. (2010). The L'Aquila earthquake of 6 April 2009 and Italian Government policy
204 on disaster response. *Journal of Natural Resources Policy Research*, 2(4), 325-342.

205

206 Aspinall, W., 2010. A route to more tractable expert advice. *Nature*, 463(7279), pp.294-295.

207

208 Bedford, J.R., Moreno, M., Deng, Z., Oncken, O., Schurr, B., John, T., Báez, J.C. and Bevis, M.,
209 2020. Months-long thousand-kilometre-scale wobbling before great subduction
210 earthquakes. *Nature*, 580(7805), pp.628-635.

211

212 Gerstenberger, M.C, Kaneko, Y, Fry, B., Wallace, L., Rhoades, D., Christophersen, A., Williams,
213 C. (2017). Probabilities of Earthquakes in Central New Zealand. Lower Hutt (NZ): GNS Science.
214 23p. (GNS Science miscellaneous series 114). doi:10.21420/G2FP7P

215

216 Gomberg, J.S., Ludwig, K.A., Bekins, B., Brocher, T.M., Brock, J.C., Brothers, D., Chaytor, J.D.,
217 Frankel, A., Geist, E.L., Haney, M.M. and Hickman, S.H., 2017. *Reducing risk where tectonic*
218 *plates collide—US Geological Survey subduction zone science plan*. U.S. Geological Survey
219 Circular 1428, 45 p., <https://doi.org/10.3133/cir1428>.

220

221 Gulia, L., & Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and
222 aftershocks. *Nature*, 574(7777), 193-199.

223

224 Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., Ohta, Y., Iinuma, T., Ohzono, M.,
225 Miura, S. and Mishina, M., (2013). Episodic slow slip events in the Japan subduction zone
226 before the 2011 Tohoku-Oki earthquake. *Tectonophysics*, 600, pp.14-26.

227

228 Kaneko, Y., Wallace, L. M., Hamling, I. J., & Gerstenberger, M. C. (2018). Simple physical
229 model for the probability of a subduction-zone earthquake following slow slip events and
230 earthquakes: Application to the Hikurangi megathrust, New Zealand. *Geophysical Research
231 Letters*, 45, 3932–3941. <https://doi.org/10.1029/2018GL077641>

232

233 Kato, A., K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata. (2012). Propagation
234 of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. *Science* 335, no. 6069: 705-
235 708.

236

237 Lamontagne, M., Flynn, B., & Goulet, C. (2016). Facing the Communication Challenges during
238 an Earthquake Swarm Period. *Seismological Research Letters*, 87(6), 1373-1377.

239

240 Lindsey, N.J., Dawe, T.C. and Ajo-Franklin, J.B. (2019). Illuminating seafloor faults and ocean
241 dynamics with dark fiber distributed acoustic sensing. *Science*, 366(6469), pp.1103-1107.

242

243 Marzocchi, W., Lombardi, A. M., Casarotti, E. (2014). The Establishment of an Operational
244 Earthquake Forecasting System in Italy. *Seismological Research Letters* ; 85 (5): 961–969. doi:
245 <https://doi.org/10.1785/0220130219>

246

247 McBride, S. K., Llenos, A. L., Page, M. T., van der Elst, N. (2019). # EarthquakeAdvisory:
248 Exploring Discourse between Government Officials, News Media, and Social Media during the
249 2016 Bombay Beach Swarm. *Seismological Research Letters*.

250

251 McGuire, J.J., T. Plank, et al. (2017). The SZ4D Initiative: Understanding the Processes that
252 Underlie Subduction Zone Hazards in 4D. Vision Document Submitted to the National Science
253 Foundation. The IRIS Consortium, 63 pp.

254

255 McLaskey, G. C. (2019). Earthquake Initiation From Laboratory Observations and Implications
256 for Foreshocks. *Journal of Geophysical Research: Solid Earth*, 124. <https://doi.org/10.1029/2019JB018363>

258

259 Michael, A. J., S. K. McBride, J. L. Hardebeck, M. Barall, E. Martinez, M. T. Page, N. van der
260 Elst, E. H. Field, K. R. Milner, and A. M. Wein (2019). Statistical Seismology and
261 Communication of the USGS Operational Aftershock Forecasts for the 30 November 2018 M_w
262 7.1 Anchorage, Alaska, Earthquake, *Seismol. Res. Lett.*, 91, 153–173, doi:
263 [10.1785/0220190196](https://doi.org/10.1785/0220190196).

264

265 Nandan, S., Ouillon, G., Sornette, D., Wiemer, S. (2019). Forecasting the full distribution of
266 earthquake numbers is fair, robust and better. *Seismological Research Letters*, 90 (4): 1650–
267 1659.

268

269 National Academies of Science, Engineering, and Medicine (NASEM) (2019). Committee on
270 Seismology and Geodynamics 2019 Spring Meeting on New Opportunities to Study Tectonic
271 Precursors, [http://dels.nas.edu/resources/static-assets/besr/miscellaneous/Open-Session-
272 Materials/COSG/2019/COSG-May19.pdf](http://dels.nas.edu/resources/static-assets/besr/miscellaneous/Open-Session-Materials/COSG/2019/COSG-May19.pdf)

273

274 Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge
275 earthquakes. *Science*, 353(6296), 253-257.

276

277 Ohta, Y., Freymueller, J. T., Hreinsdóttir, S., & Suito, H. (2006). A large slow slip event and the
278 depth of the seismogenic zone in the south central Alaska subduction zone. *Earth and Planetary
279 Science Letters*, 247(1-2), 108–116.

280

281 Panet, I., Bonvalot, S., Narteau, C., Remy, D., & Lemoine, J. M. (2018). Migrating pattern of
282 deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. *Nature
283 Geoscience*, 11(5), 367.

284

285 Rousset, B., Fu, Y., Bartlow, N., & Bürgmann, R. (2019). Weeks-long and years-long slow slip
286 and tectonic tremor episodes on the south-central Alaska megathrust. *Journal of Geophysical
287 Research: Solid Earth*.

288

289 Ruiz, S., M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, and
290 J. Campos. (2014) Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1
291 earthquake. *Science* 345, no. 6201: 1165-1169.

292

293 Savage, H.M., Kirkpatrick, J.D., Mori, J.J., Brodsky, E.E., Ellsworth, W.L., Carpenter, B.M.,

294 Chen, X., Cappa, F. and Kano, Y. (2017). Scientific exploration of induced seismicity and stress

295 (SEISMS). *Scientific Drilling*, 23, pp.57-63.

296

297 Socquet, A., J. P. Valdes, J. Jara, F. Cotton, A. Walpersdorf, N. Cotte, S. Specht, F. Ortega-

298 Culaciati, D. Carrizo, and E. Norabuena. (2017). An 8 month slow slip event triggers progressive

299 nucleation of the 2014 Chile megathrust, *Geophys. Res. Lett.*, 44, 4046–4053,

300 doi:10.1002/2017GL073023.

301

302 Tsang, L. L., Meltzner, A. J., Philibosian, B., Hill, E. M., Freymueller, J. T., & Sieh, K. (2015). A

303 15 year slow-slip event on the Sunda megathrust offshore Sumatra. *Geophysical Research*

304 *Letters*, 42(16), 6630-6638.

305

306 Uchida, N., T. Iinuma, R. M. Nadeau, R. Bürgmann, and R. Hino. (2016). Periodic slow slip

307 triggers megathrust zone earthquakes in northeastern Japan, *Science*, 351(6272), 488-492,

308 doi:10.1126/science.aad3108.

309

310 Wallace, L. M., Hreinsdóttir, S., Ellis, S., Hamling, I., D'Anastasio, E., & Denys, P. (2018).

311 Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the

312 Kaikōura earthquake. *Geophysical Research Letters*, 45. <https://doi.org/10.1002/2018GL077385>

313

314 Wang, L., and R. Bürgmann. (2019). Statistical significance of precursory gravity changes before the

315 2011 Mw 9.0 Tohoku-Oki earthquake, *Geophys. Res. Lett.*, 46, doi:10.1029/2019GL082682.