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The topic of earthquake prediction has a long history, littered with failed attempts. Part of the
challenge is that possible precursory signals are usually reported after the event, and the
systematic relationships between potential precursors and main events, should they exist, are
unclear. Several recent studies have shown the potential of new approaches to simultaneously
detect earthquake foreshocks and slow-slip phenomena through ground deformation, seismic,
and gravitational transients -- weeks to months before large subduction zone earthquakes. The
entire international community of earthquake researchers should be engaged in deploying
instrumentation, sharing data in real-time, and improving physical models to resolve the extent
to which slow slip events and earthquake swarms enhance the likelihood (or not) for later, larger

earthquakes.

Experts discussed these apparent seismic and geodetic earthquake precursors and next steps
in how to assess their impact on earthquake hazard assessment at a Committee on Seismology
and Geodynamics meeting held in May, 2019 in Berkeley, California (NASEM, 2019). For
example, slow slip occurred during a sequence of foreshocks on the Japan Trench megathrust
that began 23 days before the 2011 Mw 9 Tohoku-oki, Japan earthquake, culminating in a Mw
7.3 earthquake 2 days before the mainshock (Kato et al, 2012; Ito et al., 2013). Similarly,
foreshocks and aseismic slip started at least 2 weeks before the 2014 Mw 8.1 Iquique, Chile
mainshock (Ruiz et al., 2014; Socquet et al., 2017). The foreshocks and motions prior to the
Tohuku-oki earthquake may also have been connected to a change in satellite-measured
gravity gradients before the mainshock (Panet et al., 2019), but the significance of these results
continues to be debated (Wang and Birgmann, 2019). While many clusters of earthquakes and
slow slip events occur without foretelling a large earthquake (some lasting years: e.g., Ohta et

al., 2006; Tsang et al., 2015; Uchida et al., 2016; Rousset et al., 2019), what is new in the last
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decade is that both seismic and geodetic precursors have been jointly observed before two

major Mw > 8 earthquakes (e.g., Obara and Kato, 2016).

The societal implications of confirmed and repeatable precursory signals would be significant,
but questions remain. How frequently do similar precursor candidates occur, and in which plate
tectonic settings? How often do they result in larger earthquakes? Are there certain
characteristics of the precursor(s) that make them more or less likely to result in a larger
earthquake? What instrumentation do we need on- and offshore, at or below the Earth’s surface
or in space, to best record precursory events? How do we improve operational earthquake
forecasts to include new knowledge of both earthquake statistics from improved seismicity
catalogs and geodetic transients? Are there settings where precursory signals can lead to
forecasts on timescales and at probability levels that are useful for saving lives and reducing the
economic impact of earthquakes? How do we communicate information about the inferred

hazard potential inferred from possible precursors in a clear and timely fashion?

To address these questions, there is an obvious need for more observations. Long-term
seismometer and geodetic networks are needed both onshore and offshore at a range of sites,
spanning a suite of fault slip behaviors. For seafloor geodesy above the seismogenic zone of
subduction megathrusts, continuous measurements and cm-level accuracy or better in the
horizontal and vertical directions are needed. An increasing array of techniques are available
including GPS-Acoustic methods, seafloor absolute pressure gauges, acoustic ranging,
borehole instrumentation (including tiltmeters, and pore pressure for volumetric strain), and fiber
optic strainmeters (e.g., Burgmann and Chadwell (2014), and presentations about seafloor
instrumentation posted from the 2019 Committee on Seismology and Geodynamics meeting

(NASEM, 2019)). For onshore observations, dense networks of continuously recording
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instruments are needed in many poorly instrumented subduction zones, and data sharing
across political boundaries are essential to enable detection of long wavelength precursory
signals (e.g., Bedford et al., 2020). Over the decades, lab experiments have shown precursors
(e.g., McLaskey, 2019), but understanding how these scale to natural systems has been a
challenge. To bridge the gap between lab and natural earthquakes, field-scale experiments to
better understand earthquake initiation, fault rupture, and earthquakes induced by human

activities are underway in the Swiss Alps (http://www.bedrettolab.ethz.ch/activities/fear/) and are

proposed in North America (Savage et al., 2017).

Along with new observations, there is a critical need for integrative physical models that can
assimilate those observations, ideally for a real-time assessment of seismic hazard. A specific
need that cannot currently be met is to rapidly incorporate how the newly observed phenomena
impact previous estimates of earthquake hazard. For example, following the 2016 Kaikoura
earthquake in New Zealand, slow slip on the subduction megathrust was observed near a highly
stressed portion of the fault near Wellington (Wallace et al., 2018). This led to an urgent
request by the New Zealand government to incorporate the triggered aseismic slip episode into
a timely and accurate forecast. Several methods, including expert elicitation, were used to
determine that the chance of an earthquake of magnitude 7.8 or larger in central New Zealand
more than doubled (to about 5%) for a time period of ~12 months following the Kaikoura
earthquake (Gerstenberger et al., 2017). To better prepare for future precursor candidates, the
scientific community should document “best practices” for dealing with slow slip events and
other possible precursors in earthquake forecasts, and the community should enhance efforts to
complement statistical hazard assessments with physical model-based approaches (e.g.,
Kaneko et al., 2018). To assess uncertainties in the forecasts, a systematic process of

quantifying expert judegements about uncertain parameters (called expert elicitation) is an
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important (but not the only) component of these efforts, and also provides a means to integrate
and assess the results of a diverse suite of models and forecasts. Helping scientists gain
exposure to expert elicitation practices in advance of such events will help to streamline
forecasting efforts, but when information is needed by civil protection authorities within short-
time frames (e.g., 24-48 hours), expert elicitation can be challenging. However, there are
rigorous methods that allow for rapid elicitation (e.g., Aspinall, 2010) and that can be

implemented quickly if protocols have been established ahead of time.

An active area of research focuses on the question of whether there are certain characteristics
of the precursor(s) that make them more or less likely to result in a large earthquake. There was
debate at the meeting as to whether the precursors to the 2011 Japan earthquake were unusual
enough (in terms of size and spatio-temporal evolution of the foreshocks) to warrant public
statements of warning, a discussion that garnered earlier prominence in the case of the 2009
L’Aquila, Italy normal faulting earthquake (Marzocchi et al. 2014). Revisiting the timeline of
events preceding the 2011 earthquake (and other candidate precursors) using current
knowledge to evaluate what actions should have been taken by different stakeholders could be

useful, perhaps as a tabletop exercise.

Given our growing understanding of earthquake precursors, it is clear that most swarms and/or
slow slip events do not produce large, damaging earthquakes, but some do. (The size
threshold for a damaging earthquake depends on the location and vulnerability of the building
stock). Based on recent experiences like the 2016 Bombay Beach earthquake swarm, close to
the overdue southernmost section of the San Andreas fault in California (McBride et al., 2019),
and the 2016 Kaikoura earthquake and slow slip episode, it is clear that scientists will be asked
by civil protection or governmental authorities to calculate the increased probabilities of

earthquakes associated with seismic/geodetic precursors.
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Well in advance of any seismic unrest events, public communication about earthquakes
requires planning, education, and training well in advance of any seismic unrest events by those
who are governmentally responsible (e.g., Alexander, 2010; Lamontagne et al., 2016; McBride
et al., 2019). Any new pre-event hazard alerts--potentially in the days, hours, and minutes prior
to an event--should be part of a consistent continuum of information, extending from long-term
hazard awareness education, through pre-event alert levels, earthquake early warnings, to
guidance for immediate event response, and followed by further education while interest levels

are high.

It seems clear that the prospects for short-term earthquake prediction (providing accurate time,
location, and magnitude) remain poor. However, new opportunities exist to improve seismic and
geodetic observations both onshore and offshore, to take advantage of various space-based
observation systems, to improve data analysis with machine learning, and to make real-time
updated estimates of earthquake probabilities using advanced physical models based on fault
loading models. Many of these opportunities are highlighted by the U.S. initiatives to

study subduction zones through both space and time (Gomberg et al., 2017 and SZ4D,

https://www.sz4d.org; McGuire et al., 2017). For example, fiber-optic cables for

telecommunications offer tantalizing new directions for geophysical observations relevant to
both onshore and offshore hazard assessment (e.g., Lindsey et al., 2019; Marra et al., 2018);
and recent observations of changes in seismicity rates and magnitude-frequency statistics prior
to earthquakes provide a potential means to determine the likelihood of a swarm being followed
by a larger earthquake (Guilia and Wiemer, 2019). Machine-learning tools have enabled
detection of months-long plate boundary zone slip reversals prior to two megathrust events,
offering not only a new signal, but also motivation to probe the physics of the long-wavelength
changes (Bedford et al., 2020). To some extent, public notice of foreshock precursors is

LLNL-JRNL-806078 6



170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

already happening through operational earthquake forecasting by some government agencies
and through online services (e.g., Marzocchi et al., 2014; Michael et al., 2019; Nandan et al.,
2019; https://earthquake.usgs.gov/data/oaf/overview.php; https://www.richterx.com/), but there
is more work to be done, including rapid reporting and integration of geodetically observed

transients.

Synthesizing the seismic and geodetic observations in subduction zones and developing
physics-based models to link them into forecasts is an international challenge. Instead of waiting
centuries for large earthquakes to recur in a given location, we can use a global ergodic
approach to understand earthquake precursors, statistically sampling earthquakes around the
whole world instead of waiting for a statistically representative sample to accumulate over time
in one area. Further, lowering detection thresholds could also be helpful, as there are likely
many more smaller events that may have precursors (or not), thereby also increasing the
sample size for study -- with the caveat that the scaling between small and large earthquakes
must be considered. International coordination can alleviate the high cost of observations both
on land at the desired density and offshore even at quite low density. In the United States, the
SZ4D and USGS initiatives in subduction zones could be an important part of this international
effort. Finally, most countries have their own agencies in charge of vetting and undertaking
forecasts and deciding how and when changes to earthquake probabilities should be
communicated to the public. Again, the international community of researchers should work
together to share data in real-time and exchange lessons learned towards improving forecasts
based on potential precursor phenomena. The goal is to be prepared for the rapid response

needed to forecast the outcome of the next coupled seismic swarm and slow slip events.
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