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ABSTRACT

The nuclear industry is beginning to see reactors shut down—even after their operating licenses have
been extended—because they are not economically competitive with other energy sources. These early
closures happen primarily due to economic reasons, despite excellent safety records. Therefore, it is
imperative to reduce costs in order to prevent these early closures. One of the contributors to these
economic reasons is the large operations and maintenance costs. This paper showcases recent research
on advanced fault diagnostics techniques and preventative maintenance optimization (PMO) for reducing
NPP maintenance costs. Specifically, it focuses on the feedwater and condensate system (FWCS) for both
pressurized- and boiling-water reactor (BWR) systems. The computerized maintenance management
system (CMMS), which contains the plant’s digital record of all corrective maintenance (CM) and
preventative maintenance (PM) work orders, provided the ground truth for locating potential faults and
labeling the process data as either healthy or faulted. Various feature extraction techniques were used to
further differentiate the faulted data from the healthy data. Through a cross-validation procedure, support
vectors machines were used to label other test sets of process data as either healthy or faulted. With
relatively few faults identified in the BWR system, the potential for PMO opens up, since an unnecessary
amount of PM leads to inflated maintenance costs. The steps for PMO are summarized, from component
health determinations to recommendations for action. An example of PMO assessment is presented for
condensate pumps, condensate booster pumps, and the respective motors that drive them.

Key Words: condition-based maintenance, preventative maintenance optimization, support
vector machines, feedwater and condensate system.

1 INTRODUCTION

For economic reasons, the nuclear industry is witnessing premature closure of nuclear power plants
(NPPs), despite excellent safety records [1]. Operations and maintenance (O&M) activities are some of
the largest costs in operating light-water plants [2]. By reducing O&M costs, nuclear energy can become
more economically competitive with other energy sources. This can be achieved by transitioning to a



predictive maintenance strategy which takes advantage of advancements in machine-learning (ML) and
artificial intelligence technologies to develop data-driven algorithms to better diagnose potential faults
within plant systems [3]. Improved accuracy of fault detection can lead to a reduction in unnecessary
maintenance, thus reducing costs associated with parts, labor, and unnecessary planned, forced, or
extended outages.

The nuclear industry’s excellent safety record is partly due to the amount of preventative
maintenance (PM) it performs. PM aims to reduce the likelihood of failure through routine tasks.
Inspections, replacements, refurbishments, vibration monitoring, oil sampling, and other such tasks are all
performed at regular intervals [4]. Each task carries an associated cost but reduces the likelihood of
certain component failure modes. The frequencies at which these tasks are performed should be
reassessed throughout the life of the plant as a means to reduce O&M costs while still maintaining safety.

The overall goal of this research is to demonstrate how cost reduction associated with the nuclear
industry’s maintenance practices can be achieved. This is accomplished via a two-prong approach:
condition-based monitoring (CBM) and PM optimization (PMO). First, CBM techniques are used to
identify potential faults and degradation within the feedwater and condensate system (FWCS)’s
condensate pumps (CPs), condensate booster pumps (CBPs), and their associated motors. Heterogenous
data are used in combination with information from the computerized maintenance management system
(CMMS) to identify potential condition indicators. Next, the application of PMO to update PM
frequencies is examined, using component histories and the opinion of subject matter experts to determine
whether a component is a PMO candidate. PMO adjusts PM frequencies based on expected fault
frequencies to reduce cost without impacting safety.

2 FAULT DETECTION

Faults within a system can accumulate into asset failure. Fault does not necessarily mean that the
component is physically broken, just that it may not be performing within the desired ranges. Fault
detection is the process of detecting deviations from healthy operating conditions, and fault diagnosis
classifies the reason behind such deviations. With pertinent sensor data, anomalies can be detected so that
maintenance can be scheduled to remedy the fault [5].

The system of interest here is the FWCS. For BWRs, this system supplies the reactor pressure vessel
(RPV) with clean, demineralized water at the desired temperature and pressure, in accordance with the
rate of steam production. The water is driven by several CPs, which serve as the driving force for the
system. CBPs then provide the motive force to push the condensate through the low-pressure heaters,
preheating the coolant before it enters the RPV. The PWR FWCS follows a similar path as the BWR
FWCS, but with less conditioning for the condensate, as it does not travel to and from the RPV. The
condensate travels from the condenser to the CPs, low-pressure heaters, CBPs, high-pressure heaters, and
steam generator. The CPs, CBPs, and their respective motors are the focus of this paper.

Motors convert electrical energy into torque, and potential failures can be found throughout this
process. Common failure locations include the frame and mounting, electrical leads, stator windings,
shaft, bearings, rotor, and lubricant [6]. Failures within these locations can be found via appropriate
discovery methods, such as inspections, oil analysis, electrical tests, bearing temperatures, ultrasonic
monitoring, pressure tests, winding resistance, and thermography [7]. No single method can catch every
form of degradation, so a suite of methods must be employed. Inspections can uncover most failure types
but are often expensive, time-consuming, or require the system to be offline. By using relevant sensors
that collect data from heterogenous sources, both common and severe failure mechanisms should be
identifiable.

The centrifugal pump uses the motor’s rotational energy to increase the flow rate and pressure of the
water within the system. Common failure locations for centrifugal pumps include seals, bearings,
connections, and gaskets, as well as the impeller, casing, lubricant mounting, shaft, and stuffing box.
CBM emphasizes the condition monitoring aspect of maintenance. Data and inspections are used in



combination to infer the health or status of the component. Once a sign of degradation is found and the
degradation can be diagnosed, the damage can then be trended. Maintenance can be scheduled and
performed prior to the component failing to meet its performance criteria.

Faults can be detected using data-driven or model-based techniques [8]. Data-driven techniques use
sensor data collected from the system and do not require expert knowledge of the physics associated with
the system. However, data-driven techniques require a sufficient amount of historical data regarding
system operations under various conditions. For the data-driven techniques to be most effective, the
training data should also include possible failure events. Such data can be difficult to obtain for NPP
components since safety is such a key priority. Fault detection in this case may appear similar to anomaly
detection, due to the ratio of healthy to faulted data collected. Some data-driven ML techniques include
artificial neural networks [9], auto-associative kernel regression [10], and support vector machines
(SVMs) [11-14].

Model-based techniques require a priori knowledge about the system and its potential failures [3].
These models can be developed based on first principles such as Newton’s laws, but require detailed
information about the materials used, the failure mechanisms, and the operating conditions. These types
of models can be difficult and costly to create. Model-based techniques are outside the scope of this
paper.

This paper specifically focusses on the application of SVM for fault diagnosis. SVMs are
classification algorithms that aim to create a hyperplane to separate out two sets of data: healthy and
faulted. The core concepts of SVMs are the kernel function and optimization routine [11,12]. In most
cases, the healthy and faulted data sets will not be linearly separatable, so the input data must be
transformed to a higher-dimensional space via a kernel function. The kernel function returns the inner
product between two points for a particular feature space. Common kernel functions include the
polynomial, sigmoid, and radial basis functions [13]. An optimization routine is used to find the
hyperplane that best separates the datasets in the higher-dimensional space by maximizing the margin
between the two classes. The fitted hyperplane is described by the data points closest to the margin’s
boundary, which are then called “support vectors.” These support vectors can be used to classify new sets
of data. SVMs are noted for their accuracy, regularization, and generalization abilities [14].

SVM is a supervised learning technique, meaning it requires labeled training data. In practice, such
data can be difficult to obtain. For this paper, labeled data is obtained by combining the CMMS with the
opinion of subject matter experts. The CMMS catalogues all maintenance actions performed on the
system. This includes maintenance to fix faults (e.g., oil leaks) and conduct bearing replacements. Before
the system is taken offline for corrective maintenance (CM), the system is assumed to be operating in a
degraded state that will be labeled as faulted, as seen in Figure 1. Exactly when this degraded state began
is determined via the opinion of subject matter experts, based on deviations in temperature measurements
from expected conditions. In many mechanical applications, a rise in temperature correlates with
degraded performance, typically through increased vibration or friction.

3 PREVENTATIVE MAINTENANCE OPTIMIZATION

PM includes tasks such as component refurbishments, electrical testing, lubrications, cleanings, and
replacements. Initial PM frequencies are typically established through a combination of vendor
recommendations, expert opinions, and operating experience. As more experience is obtained, these
frequencies should be re-examined and then adjusted accordingly. Poor performance may require more
PM in order to reduce in-service failures, whereas excellent performance may suggest that less PM is
required, thus leading to reductions in overall O&M costs. This research focuses on an analytical
approach for determining which PM task frequencies to extend.

First, the historical health of the component is analyzed to determine whether the component is
eligible for PMO. For this project, component health was determined from the CM work orders found in
the CMMS. The CM work orders detail every component-associated action that is not a regularly



scheduled activity. Leaks, repairs, and replacements indicate that degraded performance has occurred
within the component. If said events occurred frequently, the associated components would be ineligible
for PMO since the current rate of maintenance does not seem to be addressing the underlying issues.
However, PM is not capable of preventing all faults. The goal of PMO is to optimize resources in order to
maximize safety and uptime while also reducing costs. If a component is only experiencing one type of
fault, the frequencies of PM unrelated to that particular failure mode can still be potentially extended as
well. For example, if the nuisance fault is leaking seals, that is something discovered primarily through
inspections. Oil and vibration analyses are unrelated to seal leakage, so the opportunity to extend their PM
frequencies may still apply.

Once historical data have been used to identify a component as a potential candidate for PMO, each
PM task and the frequency thereof should be evaluated against industry averages or an expert database
such as the Electric Power Research Institute (EPRI)’s Preventive Maintenance Basis Database (PMBD).
The EPRI PMBD is a maintenance information database containing recommendations on PM frequencies
for major components related to power generating facilities. A justification for extending certain PM
frequencies can be made by comparing current PM frequencies against those recommendations found in
the EPRI PMBD. The PMO process is a delay feedback loop. Effects from extending the PM frequencies
will not be seen immediately, so extending them should consist of small, iterative steps.

4 PRELIMINARY RESULTS

This section provides an overview of the sensor data and CMMS information from two different
types of operational NPPs.

4.1 Data Description
Different amounts of data were available for the BWR and PWR systems. For the BWR system,

sensor data and CBM records were provided for a 5-year period. No PM records were available, so a final
PMO cannot be made. However, an assessment of whether PMO is applicable can be made using the data
and records available. For the PWR system, a year’s worth of sensor data was available for two units,
while CM and PM records were available for a 5-year period. This combination is better suited for PMO,
since all the maintenance tasks are available. This dataset may be less suitable for fault diagnostics,
depending on the signal of interest.

The available sensor data from both systems are similar and include variables such as generator gross
load, average feedwater flows, and data on temperatures/pressures for the CPs, CBPs, and their associated
motors for multiple pump trains. Each dataset consists of unlabeled data and is sampled hourly. There was
no indication as to whether any portion of the data corresponded with equipment failure. The available
datasets each encompassed steady-state operation, shutdowns for refueling, and derates of varying sizes.
There was insufficient information to determine the cause of each derate.

4.2 Signs of Degradation
In this work, fault diagnostics are analyzed from two perspectives: a data-driven perspective and a

CMMS perspective. In the data-driven perspective, the sensor data is analyzed for faults, anomalies, or
trends that may indicate degradation or reduced performance. The CMMS is then used to provide the
ground truth to verify that a fault occurred, based on any CM work orders remedying the issue. Some
changes seen within the FWCS sensor data are not due to faults, but rather changes in operating
conditions related to other systems. Diagnosing this behavior is difficult, as sensor data from these other
systems were unavailable for this paper.

The fault diagnostics process from the CMMS perspective begins by analyzing the CMMS for
CM work orders related to failures and fixes. The sensor data collected prior to the work order being
issued are analyzed for signs of incipient degradation or developing trends over a period of time. It should
be noted that not all failure modes can be detected using the available process data acquired from in-situ



sensors. Failures concerning seals, shafts, impellers, and oil require some combination of inspection,
vibration, and oil analyses. NPPs perform these tasks at regular intervals, but such data were unavailable
for this exercise.

The BWR process dataset was first analyzed from a data-driven perspective. The dataset was
cleaned, and variables were analyzed individually to observe characteristic features from each signal.
Some temperature variables associated with the pumps exhibited seasonal trends: hotter in summer,
cooler in winter. Since the dataset covered a period of several years, an expected temperature was
calculated for each date, using the average temperature calculated from the other years. These averages
were then smoothed using a median filter to remove fluctuations in temperatures due to daily or weekly
weather variations. A condition indicator for the pump would then measure the difference between the
seasonal average and the current component temperature, as seen in Figure 1. Positive values indicate that
the component is running hotter than the seasonal average; negative values indicate that the component is
running cooler. Negative values are dismissed in this analysis because degraded components typically run
hotter due to increased friction. Positive values above a 6-degree Fahrenheit temperature difference were
labeled as faulted. This cutoff was chosen based on the component’s history before the outage. Other
methods, such as step detection, could be deployed to determine deviations in normal operation. The
faulted section can be seen in the red highlighted area in Figure 1. The period of time immediately
following the faulted section, and for which no data were collected, represents a regularly scheduled
refueling outage.

Figure 1. The average seasonal component temperature was subtracted from the current
component temperature. Positive values indicate that the component was hotter than the seasonal
average. Highlighted in red is the section of training data labeled as faulted.

The temperature condition indicator was combined with other process variables (e.g., gross load,
flow, and pressure) to observe the total system response to this potential fault. The high dimensionality of
this combination was reduced using principal component (PC) analysis. With just three PCs, 87% of the
information within the dataset was represented. These three PCs are seen in Figure 2. Data within the
faulted section of Figure 1 are also labeled as faulted in Figure 2, while all other data points are labeled as
healthy. Temperature data was not considered when the pump was offline. Figure 2 shows a clear
separation between the faulted and healthy data. However, this separation may not be due to the existence
of a fault, but rather the ramp down for a planned outage. The temperature difference between the
expected and actual temperature values changes in relation to the plant’s other process variables. This
nonstationary behavior makes it difficult to determine the cause of the separation.



Figure 2. PC analysis was implemented as a preprocessing step to further separate the faulted and
healthy datasets.

SVMs use fault labels to search for similar faults in other time periods. To capture the differences
between the healthy and faulted data, the SVM was trained on the data presented in Figure 2. Faulted data
made up 4.1% of the total training data. The SVM was trained using a linear kernel function, resulting in
242 support vectors. The SVM was then tested on the training data to double-check that it could correctly
label that data. On the training data, it proved 99% accurate. The confusion matrix for the training data
showed that it labeled 305 out of the 360 faulted data points correctly, while labeling 8,371 out of the
8,400 healthy data points correctly. The SVM was then used to search for similar faults from other years.
The test data was normalized and transformed into the same PC space as the training data. The SVM then
labeled the test data as either faulted or healthy, as shown in Figure 3 got one year of test data.

The red spikes throughout Figure 3 show each data point that the SVM labeled as faulted. This
test year is interesting because no repairs were made to the CP of interest, and a similar de-ramp into an
outage was performed. Since no repairs were made to this pump, all data throughout the test year should
be labeled as healthy. Under this assumption, the accuracy of the predictions seen in Figure 3 was 81.4%.
The accuracy in predicting years involving only healthy, steady-state operation reached as high as 99.7%.
This high accuracy can seem misleading, but the system was operating under healthy, steady-state
conditions over that entire year, so no faults were expected to be identified.

After the data-driven analysis was completed, maintenance work orders were reviewed to confirm
the presence of a fault. Work orders completed during the outage immediately following the labeled faults
seen in Figure 1 suggest that the thermocouple experienced a drift or fault.



Figure 3. The SVM was used to predict faults in other years. The red spikes indicate either
potential faults or inaccurate labels.

Fault diagnostics were then analyzed from the CMMS perspective by reviewing the CM work orders
related to failures and fixes. CM work orders generated outside the regularly scheduled refueling outages
were given higher priority in this review, since they can immediately affect component uptimes and plant
output. One such fault was corroborated using the CMMS. An inboard oil leak was discovered in one of
the CPs. This leak was due to a bearing’s outer edge riding against the coupling side of the housing. The
CP was taken offline during plant operation to fix the bearing leak, causing a 27.5% derate in the plant’s
output over a 9-hour period.

This leak was most likely discovered during a routine walk-through or via route-based vibration
monitoring. The leak was not significant enough to impact those parameters that were being monitored
and to which we had access. These parameters included gross load, inboard/outboard bearing
temperatures, flow, and pressure. This shows that complete situational awareness is unavailable via the
current capabilities of the embedded sensors, causing inspections to remain necessary. A potential way of
diagnosing this type of leakage is through the position of the temperature control valve, which might vary
as the leakage results in less volume to control. Alternatively, the bearing leakage could potentially be
discovered via in situ vibration monitoring. Bearing vibrations may be affected by the size and position of
the leak, or by how the bearing’s outer edge rode against the housing. In such cases, the change in
vibration would be detected in a timelier manner through continuous online monitoring.

4.3 Preventative Maintenance Recommendations
Maintenance plans are established to ensure safety and reliability during plant operation. PM is one

aspect of such plans, and it is performed at pre-defined intervals, regardless of the component’s current
condition. The frequencies at which PM tasks are performed should be reviewed and updated as more
operating experience is acquired. This creates a feedback loop in which maintenance frequency impacts
component performance—in turn, affecting maintenance frequency. To speed up this feedback loop,
current PM frequencies for healthy components are compared against the recommendations in the EPRI
PMBD. By reviewing a component’s operating history and current PM frequency, a justification can be
made for suggesting that the frequency be extended.



Table 1. Example of current PM frequencies and recommendations

Component PM Task Current PM
Frequency

EPRI
PMBD Recommendation

CP and CBP

Refurbishment 8 years As
required

Good candidate for
frequency extension

Vibration
Monitoring 3 months 3 months Keep

Oil Analysis 6 months 6 months Keep

Motor

Vibration
Analysis 3 months 3 months Keep

Fan Cleaning 6 months 2 months Keep

Oil Analysis 6 months 6 months
or 1 year

Good candidate for
frequency extension

Electrical Testing/
Inspection 5 years 4 years Keep

Over the 5-year period, a total of 705 CBM activities were undertaken between the two PWR
systems with regards to the FWCS. These activities vary in location and severity, ranging from simple
inspections or alignments to bearing failures and equipment replacements. This paper focuses specifically
on mechanical issues stemming from the CPs, CBPs, and their respective motors. The CBM work orders
were reviewed first, in order to ascertain the historical health of the component.

In unit 1, the CBPs primarily experienced issues concerning mechanical seal leaks. CBP showed
three instances of leakage or seal problems. The CPs experienced issues in regard to their connections to
the condensate lube oil pump (CLOP). Unit 2 experienced fewer leak issues than unit 1, but included
some bearing, sensor, and CLOP issues. The records of the CP and CBP motors for both units 1 and 2
were nearly impeccable. The only recorded issues were dirty filters in the unit 1 motors in 2019. That sort
of record can open up opportunities to extend PM frequencies for cost reduction purposes.

A summary of PM tasks and the frequencies at which these tasks are performed for each
component is given in Table 1. Next to each component’s PM frequency is the EPRI-PMBD-
recommended frequency based on subject-matter-expert opinion and component reliability data. Among
the seven listed PM tasks, four have current frequencies that differ with those recommended by the EPRI
PMBD. Based on CM history and the EPRI-PMBD-recommended frequencies, two tasks were deemed
good candidates for PM frequency extensions for the PWR of interest: pump refurbishment and motor oil
analysis.

A “refurbishment” is defined as replacing a component with a spare and then sending it off to be
overhauled and repaired. Refurbishments are conducted every eight years during a plant outage, thus
avoiding any unnecessary downtimes. Overall, the CPs and CBPs had a positive CM work history. With
their EPRI-PMBD-recommended PM frequency of “as required,” CP/CBP component refurbishment is a
good candidate for PM frequency extension, though the final decision should not be based solely on
component performance. An appropriate risk assessment and review of available sensors must be
undertaken to determine the health of the pumps. To aid in determining when the pumps should be
refurbished, it is recommended that the vibration monitoring and oil analysis continue at their current
frequencies. These tasks can be used to monitor component health while trending any observable
degradation. Additionally, periodic, route-based vibration monitoring can be replaced with online
vibration monitoring (where applicable) in order to further aid in this process. The decision of when to
refurbish is a complex one, requiring more information than available for this paper.

The motors driving the CPs and CBPs have experienced minimal problems over the last 5 years.
The one instance noted in the CM work orders was due to dirty filters in the unit 1 CP motors. Since the



overall health of the components has been good over a significant period of time, PM frequency
extensions should be considered in order to reduce the overall cost of maintenance. Since the only issue
that the motors faced were dirty filters, and the current PM frequency is already longer than that
recommended by the EPRI PMBD, the fan-cleaning frequency should not be adjusted. There is a potential
opportunity to extend the frequencies of vibration and/or oil analyses for the motors. Table 1 lists the
EPRI-PMBD-recommended frequencies as being 3 months for the vibration analysis and 6 months or a
year for the oil analysis, depending on whether the motor is classified as critical or noncritical,
respectively. Either of these frequencies could potentially be extended, perhaps even both. Furthermore,
the vibration-monitoring PM task could potentially be replaced by continuous online monitoring, which is
why Table 1 suggests oil analysis to be the preferred candidate for PM frequency extension. In the PWR
system, all four CPs must be running for the system to operate at 100% capacity. The motors that drive
the CPs are critical components. The CBPs are operated in a two-out-of-three fashion for 100% capacity.
Their operation is alternated regularly in order to evenly spread out the accumulated wear. In this case, a
backup CBP is present in case one fails to operate. Even with a potential backup, the CBP motors may
still be considered critical, and a 6-month oil analysis may be advisable. With a risk analysis and more
information about the oil analysis contents, the PM frequency could likely be extended to 9 months or
even a year.

5 CONCLUSIONS

O&M costs for NPPs are very large but could potentially be reduced thanks to advances in fault
diagnostics and PMO. The CMMS contains work orders detailing maintenance activities, and these can be
used to identify and label faults. ML techniques such as SVM, in combination with feature extraction
techniques, can be used to search for similar instances of those faults. Results indicate that not all faults
can be identified via the current suite of embedded sensors. Additional sensors or inspections would be
required to locate these elusive faults. This paper also showed the analytical steps necessary for PMO,
from component health determinations to recommendations for action. This type of analysis can be
extended to components within other systems, as long as their performance histories and PM frequencies
are known. The final determination as to which PM tasks to extend (and to what frequencies) should be
made in light of both the component’s performance history and the results of a risk analysis. Further
investigation needs to be made into the cause of anomalies observed within the data but not explained by
the CMMS. These anomalies could be due to CMMS bookkeeping errors, operational shifts, sensor drift,
etc.
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