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Abstract

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter ¢
characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary
conditions that have proven challenging for discretizations of nonlocal models. While existing 2D nonlocal
flux boundary conditions have been shown to exhibit at most first order convergence to the local counter
part as § — 0, we present a new generalization of classical local Neumann conditions that recovers the local
case as O(d?) in the L°°(2) norm. This convergence rate is optimal considering the O(6%) convergence
of the nonlocal equation to its local limit away from the boundary. We analyze the application of this
new boundary treatment to the nonlocal diffusion problem, and present conditions under which the
solution of the nonlocal boundary value problem converges to the solution of the corresponding local
Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux
boundary condition to more complicated scenarios, we extend the approach to less regular domains,
numerically verifying that we preserve second-order convergence for domains with corners. Based on the
new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree
discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions
that converges with O(6?) convergence.

Keywords. Integro-Differential Equations; Nonlocal Diffusion; Neumann-type Boundary Condition; Meshless;
Asymptotic Compatibility.
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1 Background

In recent years, there has been great interest in using nonlocal integro-differential equations (IDEs) as a
means to describe physical systems, due to their natural ability to describe physical phenomena at small
scales and their reduced regularity requirements which lead to greater flexibility [54] 8] 64} 29] 30} 63}, 27, 25]
49, [42), [471, 13}, 22 18], 37, 241, [3] (17, 52}, 14}, [3T]. In particular, nonlocal problems with Neumann-type boundary
constraints have received particular attention [I5] [16] 20} B4} 47, [7, 21}, 23] 26}, 53], 511, 11, [46] [63] due to their
prevalence in describing problems related to: interfaces [2], free boundaries, and multiscale/multiphysics
coupling problems [38, (3], 62, B, 6]. Unlike classical PDE models, in the nonlocal IDEs the boundary
conditions must be defined on a region with non-zero volume outside the surface [16, 2], [55], in contrast
to more traditional engineering scenarios where boundary conditions are typically imposed on a sharp
co-dimension one surface. Therefore, theoretical and numerical challenges arise from how to mathematically
impose inhomogeneous Neumann-type boundary conditions properly in the nonlocal model. For instance, in
the peridynamic theory of solid mechanics [54) [33], 19} 4 61 59, B2} [39] 28], (36, 40, 6], the classical description
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of material deformation locally via a deformation gradient is replaced by a nonlocal interaction described
with integral operators. In these models, it has been shown that the careless imposition of traction conditions
on the nonlocal boundary induces an unphysical strain energy concentration, leading in turn to the material
being softer near the boundary. Such artificial phenomena are referred to in the literature as a "surface" or
"skin" effect[35], [10].

A key feature in the discretization of nonlocal models has been the concept of asymptotic compatibility,
originally introduced by Tian and Du [57], which describes the ability of a nonlocal discretization to recover
a corresponding local model as both ¢ and a characteristic discretization lengthscale are reduced at the same
rate. We advocate the development of both nonlocal boundary treatment and discretization with the objective
of preserving this limit. In so doing, we ensure that nonlocal models recover a well-understood classical limit,
avoiding phenomena such as the surface effect. To this end, we introduce here a non-local boundary treatment
that is designed to recover the classical theory. After rigorously proving that this nonlocal boundary value
problem recovers the desired local Neumann problem as § — 0, we have a firm mathematical foundation
upon which to demonstrate asymptotic compatibility, where we will develop an asymptotically compatible
numerical method and demonstrate its high-order convergence and a lack of artificial surface phenomena.

In this paper we study compactly supported nonlocal integro-differential equations (IDEs) with radial
kernels. For concreteness, we focus on the nonlocal diffusion equation

Lsus == —2/ J5(|x — y)(us(y) — us(x))dy = f(x), x€QcCRY, (1.1)
B(x,6)

although the proposed technique is applicable to more general problems. Here B(x,d) is the ball centered at
x with radius J, us(x) is the solution, Q is a bounded and connected domain in RY (N = 2), f(x) is given
data, and the kernel function Js : R — R is parameterized by a positive horizon parameter ¢ which measures
the extent of nonlocal interaction. We further take a popular choice of Js as a rescaled kernel given by

Js(|€]) = 5N0+2J (E) ; (1.2)

where J : [0, 00) — R is a nonnegative and continuous function with [, v J(|z|)|z[*dz = N, [~ J(|z])|2|*dz =
o(1) for all £ > 3. Similar as in [55], we also assume that J(r) is nonincreasing in r, strictly positive in
r € [0,1] and vanishes when r > 1. In this work we aim to design a new formulation of Neumann-type
constraint for the nonlocal problem with mixed boundary conditions of Dirichlet, Neumann and mixed
type, and present a numerical discretization of the resulting problem.

We pose three requirements for this formulation:

1. The constraint should be a proper nonlocal analogue to the local Neumann-type boundary conditions,
so the formulation provides an approximation of physical boundary conditions on a sharp surface.

2. A boundary value problem given by the nonlocal Neumann-type constraint with the nonlocal diffusion
equation (1.1]) should be well-posed. Rigorous mathematical analysis on the existence, uniqueness and
continuous dependence on data should be addressed for the associated variational problem.

3. The nonlocal Neumann-type boundary value problem should recover the classical Neumann problem as
§ — 0, preferably with an optimal convergence rate of O(62) in the L> norm.

In the first part of the paper, we provide analysis of the boundary value problem (BVP) to establish the
consistency and well-posedness of the boundary value problem. We establish here second-order convergence on
non-trivial geometry, improving upon the first-order, one-dimensional analysis found in the literature. [16], 23]
55]. In the second part of this paper, we will present a new asymptotically compatible meshfree discretization
of the proposed nonlocal BVP [9] [48] [58]. We pursue an extension of previous work by Trask et al. [58]
utilizing an optimization-based approach to meshfree quadrature. This framework is attractive due to its
demonstrated ability to achieve high-order asymptotically compatible solutions on unstructured data, which
is complementary to the objective of developing boundary conditions consistent for irregular geometries. By



introducing the new boundary treatment we will demonstrate improved second-order convergence over the
previously demonstrated first order-convergence shown for Neumann problems [58].

The paper is organized as follows. We first present in Section [2] a definition of the nonlocal Neumann-type
boundary condition and the corresponding nonlocal variational problem, together with the associated nonlocal
operator and natural energy space. In Section [3] we study the well-posedness of the nonlocal variational
problem for convex and sufficiently regular domains. We provide a consistency result for the nonlocal
BVP by showing that the weak solution of the proposed nonlocal Neumann-type constrained value problem
(denoted as us) converges to the solution of the corresponding classical diffusion problem (denoted as wug)
as the interaction horizon § — 0 in the L?(£2) norm. Although the main proof in this section has assumed
homogeneous Neumann boundary conditions, a discussion on the extension to inhomogeneous Neumann-type
boundary condition is also provided. Furthermore, in Section [4| we prove the O(6%) convergence rate of
the continuous nonlocal solution us to ug in the L>°(€) norm without extra regularity assumptions on us.
Numerical results utilizing a meshfree quadrature rule are presented in Section [f] To verify the asymptotic
compatibility of the combined boundary treatment and the meshfree numerical scheme, in Section [6] we use
manufactured solutions to demonstrate the convergence of the discrete model to the local solution as both the
discretization length scale h and the nonlocal interaction length scale 6 — 0. Furthermore, in Section [7] we
extend the approach to domains with corners which indicate that the conclusions of the model problem and
the convergence rates extrapolate to nontrivial problems of interest to the broader engineering community.
Section [§] summarizes our findings and discusses future research. The appendices include additional technical
details on the theoretical analysis.

2 A Nonlocal Flux Condition for 2D Diffusion Problem

Figure 1: Left: Notations for the domain, where €2 is represented by the green and red regions together,
and the nonlocal Neumann boundary condition is applied on the red region 5. Right: Notations for the
projection of point x € s, the corresponding unit tangential vector p(X) and the unit normal vector n(X).

In this section, we first introduce a nonlocal flux boundary condition, and then provide a corresponding
nonlocal variational problem along with the associated energy space for the purpose of analysis. Given that
Q e RN (N = 2) is a bounded, convex, connected and C® domain, we seek a nonlocal analogue to the local

0
Neumann boundary condition % = ¢g(x), x € 9Q in the following classical problem

Loug := —Aug = f(x), inQ
8u0
— = g(x), on 0N

On (2.1)

Jo uo(x)dx = 0.

Here n(x) is the unit exterior normal to € at x. Moreover, we will use p(x) to represent the unit tangential
vector with orientation clockwise to n(x). Before introducing our nonlocal formulation, we denote the



following notation (see Figure [1] for illustration)
Qs := {x € Qdist(x,09Q) < 5}, (RN\Q)s := {x € RV\Q|dist(x,9Q) < §}.

We further assume sufficient regularity in the boundary that we may take ¢ sufficiently small so that for any
x € Qs, there exists a unique orthogonal projection of x onto 9€2. We denote this projection as X. Therefore,
one has X — x = s,n(X) for x € Qs, where 0 < s, < 0. We also assume that for x € Qj, we can find a
contour I'(x) which is parallel to 9. In the following contents, we denote x; as the point with distance ! to
x along I'(x) following the p(X) direction, and x_; as the point with distance ! to x in the opposite direction.
Moreover, we employ the following notations for the directional components of the Hessian matrix of a scalar
function v:

[0()]pp =P @ V(X)PE),  [0X)]nn =n" @V()NE), [X)]n =P @Ve(x)n(),

and the higher order derivative components are similarly defined.
Since B(x,6) N (RN\Q)s # 0 for x € Q5, from (1.1]) we have

Lsus = —2 / T5(1x — y]) (us(y) — us(x))dy
B(x,9)

——2 [ sl yl)usly) ~ us(x)dy 2 [ Js 1% — 1) (us () — us (x))dy.
B(x,5)NQ B(x,6)N(RN\Q)s

hence we need to approximate the integral in B(x,d) N (RV\Q)s and obtain a formulation with correction
terms. Specifically, we propose the following flux boundary condition for (1.1)): for x € Qs

- 2/ Js(|x = y|)(us(y) — us(x))dy — / Js(|x = yN)(y —x) - n(xX)(9(x) + 9(y))dy
Q RN\Q

=[x = ¥l = ) By s () = ) 22)
RN\Q
where the second and third terms aim to provide an approximation for
=2 [ sl = ¥ sy) — sy
RN\Q

Since the boundary condition g(x) is defined only on 91, the g(x) and ¢(y) terms in (2.2)) will be approximated
with the following (local) extensions

9(x) = g(X) = (x =X) - n(X) f(x) = (x = %) - 0(x) [us ()] pp;

g(y) = g(X) — (y —%) nX)f(x) - (y - %) [us (X)) pp-

-n(x)

Furthermore, we replace [us(x)]pp With its approximation 2 fi; Hs(J1]) (us(x1) — us(x))dx; — k(X)g(X), where
dx; is the line integral along the contour I'(x), x(X) is the curvature of 9Q at X, and Hs(|r|) = 6£3H <g|) is
the kernel for 1D nonlocal diffusion model. Similar to the requirements for .J, we assume here H : [0,00) — R
to be a nonnegative and continuous function with [, H(|z|)|z|2dz = 1, [, H(|2|)|z|*dz = o(1) for all k > 3.
H(r) is nonincreasing in r, strictly positive in [0,1] and vanishes for |z] > 1. Moreover, we add a further
requirement on H that [, H(z)dz := Cy < oo. Here we note that 2 fis Hs()1)) (us (x1) —us(x))dx; is a nonlocal
version of the Laplace-Beltrami operator defined on I'(x). Substituting the above two approximations into



(2.2), we obtain the following model

5
9 /Q T5(1% — y)(us(y) — us(x))dy — 2M5(x) / 1D us(x) = ()

= (X)—/ Js(lx =) [y = %) n®)]* - |(x = %) - n(@)|*] dy f(x)

+ <2/ Js(|x = y[)(y —x) n(X)dy — Ma(X)/’v(X)) 9(%). (2.3)
RN\Q
where
M;(x) == /RN\Q Js(x =y [[(y =x) - p®)* = [(y = %) - n®)[* + [(x = %) - nX)[*] dy.
Thus, by defining the nonlocal operator
é
L= =2 [ Js(lx = y)uly) = ux)dy =215 [ Hs(l1) () = u(0)ix

and

fs(x) :=f(x) - / Js(lx =y [I(y =%) 0@ - |(x - %) n®@)[*] dyf(x)

RN\Q
+ (2/ Js(|x =y (y —x) nX)dy — Ma(X)Fé(X)) 9(x), (2.4)
RN\Q

the proposed algorithm is equivalent to the following nonlocal integral equation

Lysus = f5, inQ
{ Jo usdx = 0. (2:5)
The corresponding nonlocal weak formulation can then be introduced
Bs(us,v) = (f5,v)12(0), (2.6)

where Bj(u,v) denotes a nonsymmetric bilinear form Bs(u,v) := (Lsu,v). We note that
. / / T5(1% — y))(uly) — u(x))dyv(x)dx
— [ [ astx = ¥ tuty)  uxyetaydx — [ [ sy = x)utx) - uly)(y)dydx
QJQ QJQ
= [ [ 9stx = ¥Dluty) - uolfo(y) - o)y
QJQ



and
)
72/QM5(X)/76 Hs()1]) (u(xg) — u(x))dxv(x)dx
. / / My() Hs (1) D(x, y) (uly) — u(x))v(x)dydx
- / / My (x) Hy (1) D(x, y) (u(y) — u(x))[oly) — v(x)]dydx
- / / M (y) Hy (1) Dy, %) (u(x) — u(y))v(x)dxdy
QJQ

_/Q/QM(;(X)H(;(UDD(X,y)(u(y)_u(x))v(x)dydx
:/Q/QMé(x)Hé(UDD(X, V) [uly) — u(x))[o(y) — v(x)] |t (y)|dydx

N / / [M5<y>rﬁ(x" —M(s(x)} Hs(1)D(x, y)(uly) — u())o(x)|r’(y)|dydx

)l

= M& / Hs([ID[u(xr) — w(x)][v(xr) — v(x)]dxdx

r' x

/ / {M(; x;) | ))|| M(;(x)} Hs (1) [u(x;) — u(x)]dxv(x)dx,
Qs

where r is the bijective parametrization of I'(x), |[r/(x)] is the Jacobian of r, and D(x,y) denotes a Dirac-Delta

function:
D(x,y) := HII(I) e 1ep(dist(y,T'(x)) /€), where ¢ is a mollifier function on R.
e—

Therefore
Biev) = [ [ J(x = yDlu(y) — ux)lo(y) = wlx)ldyix
+ [ g / Hi(Uu(x1) — u())folxe) — v(x)]dxidx
|r/ X)| — U(X Xjv(X)ax
/Q 5 / [Ma s M(s(x)} H (1) uxr) — () o (x) . (2.7
We then consider the nonlocal energy seminorm || - ||s; as

)
= [ [ Jstx = sDluty) = Py -+ [ Msto) [ o) fulxn) — ux) P,

with corresponding constrained energy space given by

Ss5(92) = {u € L*(Q) : [Jul|s, < oo, /Qudx = O}.

Given the nonlocal Poincare inequality which will be addressed in the next section, we will see that || - ||g, is
actually a full norm. Similar to [44], one can show that the constrained energy space Ss(2) is a Hilbert space
under the given assumptions for the kernels J and H.

Remark 2.1. A similar form of the flux condition (2.2]) has been proposed in the previous literature, e.g.,
[16, 55]. By comparing the second term of (2.2) with the first case in [I6], one can see that the second term of
(2.2)) can be obtained by taking G = G in [16] and modifying the correction term IRN\Q Gs(x,x—y)g(y)dy as



1
fRN\Q Gs(x,x — y)i(g(x) + g(y))dy. Actually, this modification is sufficient to provide a nonlocal Neumann-

type condition with second order accuracy in the 1D case, as shown in [55]. However, in higher dimensional
cases we need to add the third term of (2.2)) to achieve second order accuracy.

Remark 2.2. Note that in the current paper we focus on the 2D nonlocal diffusion problem, while the idea
can be further extended to the 3D cases and to more general nonlocal IDEs, which will be addressed in future
work.

3 Well-Posedness and Asymptotic Property

In this section, we first address the well-posedness of the proposed nonlocal Neumann volume-constrained
problem by providing a nonlocal Poincaré-type inequality based on the estimates for boundary curvature
k(x) and its derivative k’(x). The coercivity and boundedness of the nonsymmetric bilinear operator Bs(-, )
defined in follow, which yield the well-posedness of the variational problem. Furthermore, we study
the consistency of the nonlocal problem with the classical local model. Specifically, following the framework
introduced in [57] we prove the uniform embedding property and the precompact property of the proposed
norm Sy, and then show the asymptotic property of the solution of as § — 0, i.e., the solution us
converges to the solution ug from the limiting local model . Here for simplicity we consider the case
when g(x) = 0, and defer discussion of inhomogeneous boundary conditions until Remark For the
limiting local model one can define the corresponding inner product ||ul|s, = ||Vu||z2(q), the bilinear form
By(u,v) = (Vu, Vv) and the constrained energy space So = {u € H'(Q) : [, udx = 0}. Throughout this
section, we consider the symbol “C” to indicate a generic constant that is independent of §, but may have
different numerical values in different situations. Moreover, we introduce the following notation for simplicity:

bs(u, ) = /Q /Q T5(% — y))(uy) — u(x))(o(y) — v(x))dydx,

5
ns(u,v) = | M) / Hs(J1fu(xs) = ()] o) o),

Li(x,y) = |(y —x) - pX)]* — [y = %) n®)]* + |(x - %) - nx®)]*.
We first have the following estimates of the function Ms(x) for each x € Qs:
Lemma 3.1. Forl € [—-4,6], and assuming that there exist constants d,D > 0 such that |x'(z)| < D,
K (2¢)

r(2)

for almost every x € 92 we have 0 < Ms(x) < C and

< D for almost every z € 0%, there exists a 0 < § < d such that for § <6

|k(2)| < D and supj¢ <

st s

‘Ma(X)Ir’(Xz)I — Ms(x)|r'(x)]
Ms(x)[r' ()]

where Cpy, Cn are constants independent of 4.

< Cyé?, (3.1)

\ < Oy, (3.2)

Proof. We show now that 0 < Ms(x) < C. Note that
My = [ sl yDlsdy = [ sl = yDIsdy + [ Js(x = yl)Isdy.
(RN\Q)s Ds As

on the side of 7(X) not

With 7(X) representing the tangent line to 9 at X, here Dy is the region of B(x,0)
(x,0)\(Ds UQ) (as shown

containing € (as shown in the green region in the left plot of Figure, and A :=



z | pX)

Figure 2: Notation for the geometric estimates in Lemma [3.1] Left: illustration of regions Ds and As. Green
represents Ds, the region in B(x,d) which lies on the other side of the tangential line at X with respect
to . Cyan represents As, the region in B(x,d) which lies between 992 and the tangential line. Right:
Representation of the Cartesian coordinate system locally near X. Here the region Ag lies below the red curve

y = f(x).

in the cyan region in the left plot of Figure . We consider first the Ds part. One can rewrite y € Ds as
x + (rcos(6),rsin(f)) with s, < r < and —7/2 < —arccos(s;/r) < 6 < arccos(s,/r) < m/2, which yields

arccos(sz /T)

/DJ J&(X—Y|)I5dy:/: J(;(T)/ Is(x, y)rdodr

* — arccos(sz /)

5
= 2/ Js(r)r? \/1 — (s,/7)2s,dr. (3.3)

x

From (3.3) we can see that st Js(|x — y|)Isdy > 0 and

Ms(x) > /A Js(lx = yDll(y = %) - p®)* = |(y — %) - n(x)[*|dy. (3.4)
)
Therefore it suffices to show now that

vy =%)-pX)| > |y %) -nXx)] Vvyecds. (3-5)

We adopt a Cartesian coordinate system as shown in the right plot of Figure [2] assuming that X coincides with
the origin, p(X) is oriented along the positive direction of the x-axis while n(X) coincides with the negative
direction of the y-axis. We then have X = (0,0), 7(X) = {y = 0}, Q@ C {y > 0}, and let y = f(x) be the curve
describing 9€2. We note that any point y lying below y = |z| satisfies . Assuming that there exists a point
z € 00 lying above y = |z|, there exists xo # 0 such that f(xo) = |zo| and (zo, f(x0)) € 0Q. For simplicity
we consider the case where xy > 0 since the case where xy < 0 is analogous. Since f’(0) = 0, by continuity
there exists at least one point 21 € (0,20) such that f'(z1) > 1. Let 25 :=inf{t > 0: f'(¢t) > 1} < a1 < x,
then by the regularity of f we have zo > 0. Thus f'(x2) — f/(0) =1 = fom f"(s)ds. Moreover, the unsigned
curvature of the graph of f can be given by |f”(z)|(1 4+ f'(x)?)~3/2. Due to the finiteness of the curvature of
08, and the fact that f/(2)? < 1 for all € [0, x3], we obtain D > |f”(x)|(1 + f'(x)?)~%/? and therefore

/") < D+ f'(x)*)*/* <2V2D,  Va € [0,22].

Hence

T2 o 1
1= ”sd5</ "(s)|ds < 2V2x9D = 19 > ———.
| @< [ Ui < 2vEnD 0 > o



But since z9 < zg, this means that the first intersection point between y = f(z) and y = || (Which we denote
as w = (xq, |zo|)) has distance at least 25 from X = (0,0). Thus, for sufficiently small § < 4fD =: 1, we get

|lw—X| >y >

>20= sup [|p—gq|
2v2D p,q€B(x,0)

Therefore, w ¢ B(x, ), and the entire region As lies below y = |z|. Consequently, any y € As satisfies
(y —X)-p(X)| > |(y —X) -n(X)| and in turn Ms; > 0. On the other hand, with the C?3 regularity of Q and by
Taylor expansion B(x,d) N 0f) is the graph of a function of the form y = f(z) = ”(x) 22 + O(2®). Therefore,
the area |A;] < C|k(X)|(6? — 52)3/2 < CD&*. Hence

Ms(x) <

[ st shzsay| +| [ sstix = yisas]
Ds As
<Csup J(|r)) (0~ %5, (82 — $2)*? + Db) < C.

To show (3.1)), denoting by Dsx,, Asx, the analogous sets of Ds, As at x; instead of x, we then have

|II",’((;CZ))| /D&XL Js(|xi — y|)Is(x, y)dy
Ir'(

r'(x)|
+/A§ Js(|x =y Is(x,y)dy — 7 (x0)]

With the definition of x; and the regularity assumptions on €2, it holds sy, := dist(x;, 0Q) = dist(x, 02). We
obtain

M) = Myl = [ - ¥ sy -

/ Js(Ix — y))Is(x1, y)dy.
Asx,

/ Ts(% — y)Is (%1, y)dy = / J5(x — y)Is(x, y)dy.
Ds

Ds

Moreover, with the coordlnate system as shown in the right plot of Figure [2] we have |r'(x)| = 1 and

I’ (x;)] = +/1+ (f'(x))?. Since for any point x; = (z, f(2;)) in B(x,9), |f' ()| = |z1f"(§)| < C§ for some
¢ € [0, 2], therefore

‘I‘I(X)| _ _ ;7 :1 Il’ 2 4 2
v/ (x;)] 1’ = | (/1) 1‘ (f'(x))*+0(0%) < Co (3.6)

2
and hence together with (3.3)) we obtain

()]
Pl I,

To estimate ng Js(|x —y|)Is(x,y)dy — an Js(|x1 — y|)Is(x;,y)dy, let R be the rototranslation mapping
sX]
such that

Js(|xi — y|) Is(x1, y)dy < CS>.

/ Js(|x —y|)Is(x,y)dy —
Ds

R(x) =X, R(p(X))=pX), Rn(x))=n(x).
With such construction we note that the curves R(B(x;,d) N 9Q) and B(x, ) NI share the same tangential
lines at X. Meanwhile, B(x, §)N9Q and R(B(x;,0)NOY) have different curvatures x(X) and x(X;), respectively.
When § < 1/D, we have the arc lengths of R(B(x;,0) NIQ) and B(x,d) N OS2 satisfying |R(B(x;,0) N9Q)| <
24/0% — 52 + Ck(%)(6% — s2) and |B(x,0) N 9Q] < 2./6%2 — 52 + Ck(X)(62 — s2). Moreover, the spread
dy (B(x, 6) NoQ, R(B(x;,d) N 0N)) is bounded by

dy(B(x,6) N 9N, R(B(x1,8) N Q)

= max { sup  dist(z, R(B(x1,0) NIN)), sup dist(z, B(x,0) N 89)}
z€B(x,6)NoN zER(B(x1,6)NON)

<Cls(F1) = £(X)[(8” — 53)-



Therefore, noting that the quantities Js, Is and dy are invariant under R, and |Is5(x;,y)|, |Is(x,y)| < 362,

one has
/.

_‘/R(A&x)Ja(x—y)lg(x,y)dy—/ Ja(lx—yl)la(x,y)dy‘

(11— y1) s (0, y)dy — /akm—waxw@¢

As
<C Js(|x — y|)0%dy < Cla(x) — k(X)[6%(6° — 53)%/°
AsAR(As %)
<C sup |K'(Xe)|07 1% — s2)%/2 < €615 — 52)3/2, (3.7)
[€1<11|

where the constant C' depends on sup,. J(|r|) and is independent of §. Moreover, with (3.6)) and ‘an Js(|x —y|)Isdy| <

C'sup,. J(|r|0 we have
|r'(X)|)/
1-— J, —yDIs(xi,y)d
‘( ')l ) Jas ., o =yl by)dy

Thus, we obtain the bound in (3.1)
We now work on the proof of (3.2 by combining (3.7)) and establishing a lower bound for Ms. We firstly
prove that

< 08,

< Cb. (3.8)

’M(s — M;s(x;)
M;s(x)

With the previous calculation, we have

é
Js(x = y)lsdy = 2/ Js(r)r? /1= (55/7)2sgdr > Co*s5,(67 — s2)%/
Ds Sa
Z%Ife(f)lé“‘sm(é2 — 5232 = C|k(R)|5 *5,(6% — 52)%/2
and fAé Js(x —y)Isdy > 0. When s2 > §?/2 one has

colR) RO - 8 e
T IR, (07— 52)7 2 J¢l<d

’Ma — Ms(x;)
Ms(x)

and therefore - holds true. For s2 < §2/2, we just need to bound fA Js(x — y)Isdy from below. For
notational simplicity, we assume here the Cartesian coordinate system shown in the right plot of Figure [2]
The following properties hold:

!
KX 5)‘ < C¢ sup
#(X) l¢|<d

(y = X) - p(X) = x coordinate of y, (3.9)
(y —X) - n(X) = —(y coordinate of y). (3.10)

We first assume that |m(*)| > 0. By Taylor approximation, B(x, ) N9 is the graph of a function of the form
y = f(z) = “Xa2 4 O(z®). Integrating it yields that the area |As| = C|x(X)|(62 — s2)3/2 = C|r(X)|6%. Let
h € (0,1) be a point where the area of As N {x > hd} is C|x(X)[d3/2. With the convex1ty assumption of 92,
one has h > 1/2. When § < §; < 55, the slope of f (i.e. the slope of the tangent derivative of B(x,§) N Q)
can reach at most 6D < 1/2. Thus the graph of f lies below the line y = /2 and gives

5 2|y = %) B Iy %) n@P > [y %) pEI ~ |y ~ %) n(x)P
>3y - %) BRI 2 W > 5
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forally € Asn{z > hd}. Recalling that J(r) is strictly positive for 0 < r < 1 and therefore min,<; J(|r|) > 0,
we infer

M; Z/A min J(|r|)6~*(I(y = %) - p()|* — (y — %) - n(X)|*)dy

sn{z>h} "S1

3Cc, _
>33 IK(®)[6 > ClR()]5. (3.11)

Combining with (3.7)), we thus obtain the bound ({3.8]).

For [k(X)| = 0, with domain C? regularity assumption and sup¢<4 =)
=4 k(X

for |£] < d almost everywhere and therefore Ms(X;) = Ms(X) for |I] < § and 0 < d/2. (3.8) can then be
trivially proved.
We can now prove (|3.2)):

M (x)|r' (x1)| — Ms(Xl)lr’(X)l‘ P )] ’Ma(X) — Ms(x)
Ms(x)|r' (x1)] ' (x)] M;(x)

o
K (xi)‘ < D a.e., we have £(X¢) =0

O

Remark 3.2. Note that in the previous proof we assumed J(r) is strictly positive in [0,1] such that
J(|r]) = C1 > 0. However, the proof can be extended for a more general positive J whose support is the
entire ball B(0,1). It suffices to note:

e It easily follows from the previous proof that the set
As :={z € As:|z—x|€[6/3,6/2]}

has area C|As| for some constant C' € (0,1), and on Az it holds I; > €142, again for some constant
Ci € (0, 1)

e Since J(r) is nonincreasing on r and its support is the entire ball B(0,1) there exists another constant
C > 0 such that J(r) > Cy for r € [1/3,1/2].

Combining the above two facts, we obtain

Ms > —y|)Isdy > i Isdy > X)|o.
oz [ ety = [ i g0ty > Cluis)

Remark 3.3. When u € C*°(Q), the above bounds of Mj(x) yield

5
0 < hs(u,u) = ; M;(x) [5 Hs (1) [u(x;) — u(x))>dx;dx
’ du(x) ’ 2
< o, M;s(x) /—5H6(|l|) l op 12 + CJI)* | dxidx

<[ My ag(X) 2 x4 CYal6 < Gl ( du(x)|? N 5) |
Qs P op
Combining with the results in [57], we have lims_o ||u||s, = ||ul|s,-
We will now show a nonlocal Poincare-type inequality:
Lemma 3.4. There exists a 0 < 0 < 1 such that
l|ul|72(q) < CBs(u,u) (3.12)

for alluw € S5 and § < §. Note that here 6 depends on both u and .

11



Proof. With [45], Proposition 2] we have the bound for the first term in (2.7): there exist §y such that for all
6 < (507
and here we assume C* > 0 without loss of generality. To estimate the remaining two terms, we first work on

v ()|

the case where 64 is a straight line. For x € Qs we have Ms(x;)
r(X;

' (x:)
of Bs(u,u) vanishes. For the second term of Bs(u,u), with Lemma we have Ms(x) > 0, and therefore
hs(u,u) = [o Ms(x) fiS Hs(J1])[u(x;) — u(x)]?dx;dx > 0. We then have the Poincare-type inequality: there
exists constants C and &g such that for all u € Ss and § < dy:

= Mj5(x), and therefore the last term

llullZ2(0) < C*bs(u, u) < C*(bs(u,u) + hs(u, u)) = C* Bs(u, ).

We now proceed to finish the proof. Here we assume that ||ul|z2(q) > 0, otherwise the result is trivial. For
simplicity, we now denote &, as min(dy,d) where 0 is defined in Lemma and dg as in (3.13]). With (3.13])

and Lemma [3.1 we still have HUH%Q(Q) < C*bs(u,u) and hs(u,u) > 0. We now proceed to estimate the last
term in Bs(u, u

/Qé / [Mé |r/, x))|| —Ma(x)] Hs (1)) [u(x1) — u(x))dxu(x)dx

> — 5 M5 / Hs |l|)[ (Xl> —u( )] dx;dx

—QA/‘HNWM ) =~ MyC)lw O GIP oo

|M;5(x)]
CnC
2*5 hes(u, u) — N2 M/ / Hy(|1))83dx; [u(x)|?dx
1 CnCrCré
> — Sha(u,u) = === ul - (3.14)
Hence, when
1 -
§<min{dy,—— b =:4 3.15
<mm{ 15 C*CNC'MCH} ( )
we have
1 CNCMCH(S 2 1 1 2
Bt > (g~ LD Julf oy + phatin) > gzl
O

The uniform boundedness of Lé_1 then follows
Lemma 3.5. Assuming that Q and & satisfy the conditions in Lemma there exists a constant C' such that
L5 22y < C. (3.16)

Moreover, with the definition of || - ||s,, we can show the boundedness and coercivity of the nonsymmetric
bilinear operator B;(+,-):

Lemma 3.6. There exists a 0 < 6 < 1 such that for all § < § the following inequalities hold
Yu,v € S5, Bs(u,v) < Cq||ul|s;|vlls;, (3.17)

Vu € S5, Bs(u,u) > Co|ull3,, (3.18)
for two constants C1,Cy > 0.
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Proof. We first show (3.17)). For the first two terms in Bj(u,v), with the Cauchy-Schwarz inequality one may
obtain bs(u,v) < Cy/bs(u,u)bs(v,v) and hs(u,v) < C+/hs(u,u)hs(v,v). Moreover, with Lemma similar

as in (3.14)) we can show that

g r'(x
L[ [t 525 = s | st~ wGoldn i
Q5 J-s /(1)

<C \/hg(u, w) (CNcMcHanvugz(Q)) < C /hs(w, w)bs (v, v). (3.19)

Therefore
B(;(u,v)2 < C(bs(u, u)bs(v,v) + he(u, u)bs (v, v) + hs(u, u)hs(v,v)) < C||u|@6||v\|§6

On the other hand, (3.18) can be obtained when ¢ is taken as in (8.15) and follow a similar proof as in
Lemma (3.4)). |

With the above properties, we can see that there exists a unique solution us € S5 solving (2.6)) (cf, [12
Theorem 2.5.6]). The well-posedness of the proposed variational problem is therefore obtained. To further
show the asymptotic property of solution when § — 0, we need the following embedding property:

Lemma 3.7. For all u € Sy there exists a constant C such that
Bs(u,u) < O||Vul[72(q) (3.20)
for any & satisfying the condition in Lemma[3.6
Proof. Given u € Sy, from [IT, Theorem 1] we have that
bs(u,u) < Cllullf gy < Ol VulZa(q)-

To bound the second and the third terms of Bs(u,u), we start with the case of boundary curvature= 0,
where we only need to show that hs(u,u) = [, Ms(x) fis Hs([1)u(x) — u(x)Pdx;dx < C||Vul[7s . Since
M;(x) < C, it suffices to estimate fm ffé Hs(|I)[u(x;) — u(x)]?dx;dx. With the Hélder inequality and the
fact that [o, [Vu(x)|[?dx = [ [Vu(x)[*dx for all [t| < 4, we have

[ [ sttt - u e
<§1§1)H(|r)513 /Qs /_Z[U(Xz) — u(x))?dx;dx < 66;/95 /_66 /Ol |Vu(x,)|*dtdx;dx

C d g C 0
<o [ [ wutopaixax =S [ [ 19t P
6 Qs J—06J0 (5 Qs Jo

C 8
=S [ iwutsopaxie=c [ 19ute) P < CliVulg,
0 Qs Qs

Therefore, the Lemma holds true when the boundary curvature x(x) = 0, a.e.. We now work on the case of
nonzero curvature. Similar as in the curvature= 0 case we can obtain hs(u,u) < C||Vu||%2(ﬂ). For the last

term of Bs(u,u), with (3.19)) we have

L/ Z M) 2 = M) () ) i

v’ (1)

hs (u, w)bs (u, u) < C|VulZaq).
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Before studying the limiting behavior of the nonlocal operator, we need a compactness property:

Lemma 3.8. Suppose u, € S5, and &, — 0, then given sup,, Bs, (un,u,) < 00, u, is precompact in L*(Q).
Moreover, any limit point u € Sp.

Proof. Since S5, C L*(Q) and hg(uy, u,) > 0, similar to (3.14) we have,

1 1 CnCyCH6
Bt 2 [ [ 5.6 y)lunly) — a0y + (5 - DO g
QJQ

where C* denotes the constant in (3.13). Therefore, when ¢ is taken as in (3.15)), then for all § < &

B () > 5 [ s (= ¥)n () = a () Py

We have u,, € L?(Q2) and

/ / T, (% — ¥) (tn(y) — un(x))?dydx < oo.
QJQ

From [50, Theorem 1.2], any limit of {u,} is in L?(2), or equivalently, u,, is precompact, and any limit point
u € Sy. ]

With the above lemmas, we obtain the following L? convergence result for an intermediate solution as
6 —0:

Lemma 3.9. Suppose i is the weak solution of

fQ ugdx = 0, '
and ug s the weak solution of (2.1)), then
lim ||ds — 20) = 0. .22
lim [|as — uol[r2 () =0 (3.22)

Proof. The proof follows a similar strategy as in [57, 55]. A detailed derivation is provided in Appendix
9.1l m|

We now have the main theorem of this section for f € C(Q):

Theorem 3.10. Suppose us is the weak solution of (2.5)) and ug is the weak solution of (2.1)), then

}IL% ||’LL5 — UOHLZ(Q) =0. (3.23)

Proof. With the results in Lemma we only need to show that lims_,q ||us — Us||r2(0) = 0. Since
Ls(us —us) = f5 — f, with Lemma [3.5[ we can see that it suffices to show

li — = 24
61_13%||f6 fllzz) =0, (3.24)

or equivalently

lim ( / Ts(x —y)(|(y %) -n®@)P - I(X—X)-n(X)2)dyf(X)> dx = 0.
Qs (RN\Q)s

§—0

Since

i M= =200 = =m0

<C Js(lx —yDI(y —x) -n®)[*dy < C,
(RN\Q)s
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we have

2
/ ( / Ts(x—yD((y %) - n(®)? - (x — %) - n<x>>2>dyf<x>) dx < C / 1 () P
Qs (RN\Q)s Qs

which vanishes as § — 0. ]

Remark 3.11. For the analysis in this paper we focus on the homogeneous Neumann-type boundary
condition g(x) = 0, while we note that the proposed nonlocal variational formulation can be applied to

inhomogeneous boundary conditions. Here we take Js(r) = for simplicity. When f(x) = 0 and g(x) # 0,

77(5
applying a test function v(x) € C*°() to E 2.4] yields

(o0 = [ (z [ st ¥y =) n(x)dyMa<x>m<x>>g<x>v<x>dx

—92 /95 /RN\Q (Ix —yD(y —x) - n(X)dyg(X)v(x)dx — N M (x) k() g(X)v(x)dx.

For the second part, with the Holder inequality we have

< c\/ | #@ax [ v2eax < 0\ folgllzznllelle)
Qs Qs

Therefore, ’an M(;(x)/ﬁ(i)g(i)v(x)dx‘ — 0 as 6 — 0. To show the asymptotic limit for the first part as
6 — 0, for each x € Q5 we have

Ms(x)r(X)g(X)v(x)dx

Qs

/ Ja(lx—yl)(y—X)-n(i)dy=/ Js(lx —yD(y —x) nX)dy + [ Js(|x—y[)(y —x) -n(X)dy.
RN\Q Ds

As
For the first part

[ =ity =0 Ry = i [ = -
Ds

and

2 / J5(x — ¥ - %) - n(®)dyg(X)o(x)dx
Qs J D

=gt |, @ B gt = o5 [ [0 = g + 0
- / 9(R)o(R)dx + O(3). (3.25)
o0

For the second part, since the area of As is bounded by C§2, we have

/A Js(|x —yD)(y —x) - n(x)dy‘ < . (3.26)
Combining ({3.25)) and ( - yields
hm(f5 v)r2(0) = lim 2/ /RN\Q (Ix =y (y — x) - n(X)dyg(X)v(x)dx = /agg(i)v(i)di.

6—0
Therefore, the right hand side converges to the inhomogeneous flux condition as 6 — 0 in the variational
formulation. In fact, the asymptotic convergence property in Theorem [3.10] can be shown for the nonlocal
diffusion problem with inhomogeneous flux conditions given the corresponding nonlocal trace theorem, which
will be addressed in the future work.
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4 Convergence rate in the L>*({2) norm

In this section we will estimate the order of convergence rate by considering a problem with the more
general setting: 9 = 9Qp JINy and (00p)°((00Qn)° = 0. Here 9Qp and 9y are both 1D curves.
To define a Dirichlet-type constraint on dQp, we denote Qps = {x € Q5 : X € 00Qp} where X is the
orthogonal projection of x on 9Q2. Moreover, we denote Ips = {x € RN\Q : dist(x,Qps) < 0} and
assume that the value of u is given on it. To be specific, here we assume u(x) = 0 on 9Qps without loss of
generality. Similarly, to apply the Neumann-type constraint on 9Qy, we denote Qx5 = {x € Q5 : X € INn'}
and 9Qn; = {x € RM\Q : dist(x, Qns) < d}. We consider a Neumann-type constraint as an extension

of % = g(x) on 9Ny, by modifying the nonlocal problem discussed in the last section as follows: for
X € Q\QN(;:

9 / Js(1x — y]) (us(y) — us(x))dy = f(x),
QUINDs
and for x € Qps:
)
9 / To(x — 1) (us(y) — us(x))dy — 2M;(x) / H (1) (s (1) — 5 ()
Q —0
—f(x) - / Js(x =y [|(y = %) - 0@ - (x - %) - n®)?] dy /(%)
n (2 [ sl 3ty ) nidy - M5<x>n<x>) 4(x), (4.1)

where
Ms(x) = /aQ Js(x=y) [I(y =%) - p®)|* = [(y = %) - n(x)]* + |(x — %) - n(x)|*] dy

Here we note that it is possible that Qps () Qns # 0. We can then rewrite the nonlocal equation to be solved

as
Lsu = f, on Q\Qns

Lysu=fs, onQns (42)
u = 0, on 8QD5.
The corresponding limiting local model is given by
—Au=f, on{
ou =g, ondQy (4.3)
On

UZO, on 8QD

In this section we focus on the case with homogeneous Neumann-type constraints, i.e., g(x) = 0.
For the above problem with mixed constraints, we have the nonlocal maximum principle stated below

Lemma 4.1. For u € C(Q) N C(00ps\0Qp) and u bounded on ONps, assuming that u satisfies Lsu < 0
for all x € QO\Qns and Lysu <0 for all x € Qns, we have

sup  u(x) < sup u(x). (4.4)
xEQUIN D5 x€0ps

Proof. Assuming that sup, 5 50, 4(X) > SUDyxeaq,, (), since u € C(9) there exists x* € (QU Q) such
that u(x*) = SUD,  (GUa0Ds) u(x).
Case 1: x* € Q\ Qns. Then Lsu(x*) = =2 o 5o, Js(Ix* — y])(u(y) — u(x*))dy > 0. Therefore
Lsu(x*) =0 and
u(y) =u(x*)= sup u(x), Yy € (QU N ps) N B(x*,9). (4.5)
x€QUAN D
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Case 2: x* € Qns. Then

0
Lysu(x) = *2/Q=75(|X* = yD(u(y) *U(X*))dy*QMJ(X*)léH(Ill)[U(X7) — u(x")jdx; > 0.

Note that in Lemma we have proven M;s(x*) > 0. Again, this is possible only when

u(y) =u(x*)= sup u(x), Vy € QN B(x*,0). (4.6)
xEQUINDs

Summing up the two cases, in view of (4.5) and (4.6)), we have

x* € Q\ Qns = uly) =u(x*) = sup u, Vy € (QUINps) N B(x*, ), (4.7)
QU DS

x* € Qns = uly) =u(x*) = sup wu, Vy € QN B(x*,9). (4.8)
ﬁuaﬁm

Now fixing y* € (QUINN)NB(x*,d)), we can apply the same arguments with y* in place of x*, and get (4.7))
and (4.8) with y* in the role of x*. This process can be repeated for all points y* € ((Q U 9Qx) N B(x*,4)),
and together with the continuity assumption of u we obtain:

uly) =u(x*) = sup u, Vye (QUINps)N |B(x*,§U U B(y*,0)
QUAQDs y*€(QUIRN )NB(x*,6)

Geometrically, note that

QUAQps) N | B(x*,8)U U B(y*,9)
y*€(QUINN )NB(x*,5)

—{z € QU AN, : dist(z, (QUANy) N B(x",0)) < 5}

In other words, with this argument we expanded the region where u(z) = supg, oap, U from z € (QUIN)N

B(x*,6) to its entire 6-neighborhood lying in Q U 9Qps. We then apply this argument recursively, so that
the region where u(z) = supg, 20, & Will get expanded to the entire domain of QU INps. In other words, to

have a global maximum inside ©, the only possibility is for « to be constant on Q U 9Qps, which contradicts
with the assumption that sup, . 50, , 4(X) > Subxesq,,, ().
O

We now assume that us is the solution of (4.2)) and ug is the solution of (4.3]). Denote es5(x) := us(x)—uo(x),
Ts(x) := (Louo(x) — Lsuo(x)) + (f5(x) — f(x)) for x € Q\Qns and Tis(x) := (Louo(x) — Lnsuo(x)) + (fs(x) —
f(x)) for x € Qps, then for x € A\ Qps,

Lses = Lsus — Lsuo = Louo — Lsuo = Ty, (4.9)
and similarly for x € Qpyg,
Lses = Lnsus — Lnsuo = fs — f + Louo — Lnsuo = Ts. (4.10)
We then obtain the following truncation estimate for Ty:

Lemma 4.2. Suppose ug is the solution to local problem (4.3)), then

Ts(x) = O(6%) (4.11)
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for x € Q\Qns, and

Oup(x)
Ip

Ts(x) =2 /E Js(x — y) 2299 (x — y) - p(x))dy

[ ot = ¥l (0L (= ¥) ) (1% = x2 + 7](x =) - () )y

+ /Q 5 (1% = ¥ 1) [uo(x)]npp((x = ¥) - n(X))|(x — y) - p(X)|*dy

+ #(%) M5 (%) [ug (%) ]nn ((x — X) - (%)) + O(6?) (4.12)
for x € Qns. Here Es denotes the region in As which is asymmetric with respect to the y axis (see the right
plot of Figure @)

Proof. The proof is based on the Taylor expansion of ug and an estimate for the asymmetric part in As. The
detailed derivations can be found in Appendix O

Furthermore, with the maximum principle, when f € C(Q) and us = ug continuous in dQps, we have the
following lemma

Lemma 4.3. Suppose that a nonnegative continuous function ¢(x) is defined on QU dQps, and —Lsp >
G(x) >0 for x € A\Qns, —Lnsop > G(x) > 0 for x € Qns. Then

T5 X
sup [es(x)] < sup ¢(x) sup T ()
x€QUINN x€Nps xeouony G(%)

T5 X
Proof. Let Ks = subxcquany |G((X))|

(4.13)

, then for Ks¢(x) + es(x) we have: For x € Q\Qys

|T5(x)]

_ |T5(x)]
xequoay G(x) Ls¢(x) + Lses(x) = sup Lsp(x) +T5 <0,

Ls(Ksp(x) +es5(x)) = xcouoay G(X)

and a similar argument holds for x € Qy;s. With the maximum principle in Lemma [{.1] we have

sup e5(x) < sup (K30(x) +es5(x)) < sup (Ks5(x) +e5(x)) = K5 sup ¢(x).
xEQUIN N xEQUIN N x€EONps x€Nps

Similarly, we have Ls(Ksp(x) — e5(x)) < 0 for x € Q\Qns and Lys(Ksp(x) — es(x)) < 0 for x € Qns, hence

sup  (—es(x)) < sup  (Ks59(x) —es(x)) < sup (Ksp(x) —es(x)) = Ks sup  ¢(x).
xEQUIN N xEQUIN N x€INps x€0Qps

O

We now define a nonnegative continuous function ¢ satisfying the conditions given in Lemma In

4

the following we take a specific kernel Js(s) = o for |s| < ¢ for simplicity. As shown in Figure , let
i

{z1,22} := 0Qp N Oy and myq be the projection operator onto I). Due to the convexity of 2, the map

moq(x) is always well defined and single-valued for any point x ¢ Q. For x € ), the set where myq(x) is not
single-valued (i.e. the “ridge” of ) is L?-negligible [43]. We then make the following crucial geometric
assumption: Let 7(z1) (resp. 7(z2)) be the tangent line to 9Q at z; (resp. z3), then the intersecting point
z := 7(z1) N 7(22) satisfies

moa(z) € 00N. (4.14)

Let z3 € 092 be a point such that 7(z3) is orthogonal to the bisector of the angle /z2Zz;. Set the barrier
function as

B(x) = |dist(x, 7(z3)) + 1| (4.15)
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Figure 3: Tllustration of the geometric assumption and notation for the barrier function ¢(x) definition.

For any point X € 9Qy, in the following we denote the angle between p(X) and n(z3) as «(X). Note that
with the crucial geometric assumption and the fact the € is convex, there exists 0 < & < 7/2 such that
a<aX) <m—a, VX € 0Qy. Let II be the half-plane delimited by 7(z3) and containing €2, we now check
the conditions in Lemma with the following 3 steps:
Step 1. Convezity of ¢. To check that ¢ is convex on II, consider arbitrary points x,y € II, and ¢ € (0, 1).
We need to check
P((1 —t)x+ty) < (1 —t)p(x) + to(y). (4.16)

By construction, ¢ is invariant in the direction of 7(z3). Letting 3 be an arbitrary line orthogonal to 7(zs3)
and x* (resp. y*) be the projections of x (resp. y) on ¥ for the projection of (1 —t)x + ty on X, we get

[(1—-t)x+ty]" =1 —t)x" +ty".
Since ¢ is invariant in the direction of 7(z3), we get
((L—t)x+ty) = (L -t)x" +1y"), o(x) =o(x"), &(y)=2o(y"),

and is equivalent to
(1 —t)x" +ty") < (1 = 1)o(X") + to(y™). (4.17)

Note that (4.17) holds true due to the convexity of ¢ along the direction n(zs) || £. The convexity of ¢ gives
[#]vv > 0 for any (nonzero) vector v. Combining with the facts 0 < Ms(x) < C as shown in Lemma [3.1] and

fis H(|I)[o(x) — d(x)]dx; = %[gf)]pp + g[cb]nn(x —X) - x as shown in (0.7), we infer directly that
)
M) [ () [ox) — o)l > 0. (4.18)
It remains to show the bounds for
/ o) — 060Ny, vx e Q\ Qs (1.19)
(QUOAQps)NB(x,5)
[ @) -stdy.  ¥xe Qs (4.20)
QNB(x,6)

Step 2: bound for (4.19). Note that in this case B(x,0) C QU dNps. Let £(x) be the line through x and
parallel to ¢ := 7(z3). Noting that B(x,¢) is symmetric with respect to £(x), for any y € B(x,d) we denote
by y* the reflection of y across £(x). Let BT (x,d) (resp. B~ (x,d)) be the “upper” (resp. “lower”) half ball,
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Figure 4: Notation for estimating the bound of [, B(x 5)(¢>(y) — ¢(x))dy when x € Qns. Here green denotes
the region of B~ (x,d) N, cyan denotes [B~ (x,d) N Q]*, and yellow denotes [N Bt (x, )]\ [B~(x,d) N QJ*.
[09Q]* is the reflection of 90 across £(x).

Figure 5: Notation for estimating the bound of [, 5 x 5)(¢(y) — ¢(x))dy when x € Qns, where the green and

cyan regions denote B~ (x,0) N Q and [B~(x,0) N §]*, respectively. The union of yellow and purple regions
represent [Q N B1(x,8)]\ [B~(x,d) N Q]*. Left: notation when dist(x, Q) > /2, where the purple region is
chosen such that p(yg)LzB, n(yg) | CE and |BC| = |BD|. Right: notation when dist(x,9Q) < /2, where
the purple region is chosen such that p(yp)LlxB and the distance from C to I(x) is /2.

then

(6(y) — 6(x))dy = / (6(y) — 6(x)) + (B(y") — B(x))dy

B+(x,5)

) )
- / (VO + 0 + (Vo) — p)? — 26(x))]2 /& — Rdp = 4 / P E Rdp

6/2 54
>4 2.\/62 —62/4dp = ——.
_/0 RV /4dp W

/(QUBQD,;)OB(x,é)

2
on its support, we obtained —Lsp(x) > ——=, Vx € Q\ Qns.

4
o4 /3

Step 8: bound of (4.20)). For x € Qps, we will show that

Recalling J5 =

cé3, When s, < §/2,
/QﬂB(x,zS)<¢(y) - ¢(x))dy > { C5* + 0(5 _ 5$)3/253/2’ When s, > 5/2.
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Let [B~(x,d) N Q]* be the reflection of B~ (x,d) N across £(x), as shown in Figure 4l Note the crucial
geometric condition ensures that [B~(x,d) N Q)* € B*(x,§) N Q. Since

(0(y) = d(x)) + (6(y") — d(x)) = 2dist(y, £(x))?, (4.21)

we have

/' wwwwwmw:/ (6(y) — B(x))dy
QN B(x,5) [N B+ (x,8)]\[B~ (x,6)NQ]*

+/[B<x,a)nm*<¢(Y)_¢(X))dy+/[3(x75m]*(¢(y")—¢(><))dy

- [ (6(y) — 6(x)) + (6(3*) — S(x))ldy > 0.
(B~ (x,0)NQ*

Since x € , one has |[B~(x,4) N Q| > 0 unless x € 9N and (02 N B~ (x,0)) C (¢(x) N B~ (x,4)). Therefore,
using ([4.21)), when s, > §/2 and 6 < D/5 < (5sup,csq |£(2z)]) 7!, a direct computation gives

/ <ww—¢@mw+/’ (6(y*) — 6(x))dy
[B~(x,6)NQ]*

(B (x,6)NQ)]*

5/2—6/12
2/ 2p? \/527p2dp2/ 2p% /62 — (6/2)2dp
o o 5184

On the other hand, when s, > 6/2 we calculate the integral on the purple region (denoted as F') shown in the
left plot of Figure[5] With the geometric assumption, we have ¢(y5) — ¢(x) > 2dist(y 5, (x)) > 25, sin(a&) >
sin(N)é where yp denotes the coordinate of point B. Since meB+(x SNB- (x.6)n0* LP(y) — d(x))dy >

Jr(o (x))dy and |CD| = /62 —s2/2, |CE| > (6 — s,)/2 k(z)], for y € F we

have
d(y) — ¢(x) = d(yB) — ¢(x) = sin(@)d,

and
1 L1z 3/2
area(F) >area(Acpg) = 3 [0 — 52 |3(0 + s) > §5 (6 —s4)°7%.
We then have

/ — b(x))dy > C(5 — 54)%/25%2.
[QNB+(x,6)]\[B~ (x,6)N€Q]*

Similarly, for s, < /2 we have G C [QNB*(x,d)]\[B~ (x,)NQ* where G is the purple set denoted in the right

1252 ~
plot of Figure For y € G we have ¢(y) —¢(x) > 6 and area(G) > min { (v3 1)86 tan(d) , ?52} = (062,

Therefore

/ (6ly) — 6(x))dy > C&°.
[QNBH(x, )N\ [B~ (x,6)n0]*

i.e. the contribution of a region that lies completely above /(x) is of order O(6?%), provided that it has positive

area.
Thus ([4.19) and ({4.20)) are bounded. Combining with (4.18)), and recalling .J; = A6~* on its support, we
get

—mwwzzéwggmm—ymww—wwmyzc
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for all x € Q\Qys, and

)
Lysp(x) =2 /Q T5(x — YD (6(y) — 6(x))dy + 2M5(x) / () o) = o)l
> O — 5,267+ C, >0

for all x € Qps.
Note that Lemma [£.2) and the above estimates on function ¢ are still insufficient to ensure second order
L () convergence to the local limit, since Lemma gives Ts = O(J) on Q s, while the estimates for ¢
gives only
—Lns¢ > C[6 — s,)3/257°/% + Oy,

and it is unclear if can be uniformly bounded from above by C'§? as x approaches the inner boundary

—LN§
of Qns. The next Lemma aims to provide an estimate for Tj.

Lemma 4.4. The term Ts decays to O(6%) as x approaches the inner boundary of Qns, with the following
bound:
Ts| < C[6 — 5,207 + 0(52).

Proof. By Lemma and the facts fB(x,&) Js(Jx —y))((x —y) -n(X))3dy = 0, fB(x,&) Js(lx—yD((x—y)-
n(X))dy =0 and [, 5 Js(|x = y])((x —y) - n(X)|(x - y) - p(X)[*dy = 0, we have

=2 [ Js(x— y|>8“§f)x) (x—y) - p(®))dy

Es

Gl (5 [ sl 30 3) ()P

[ k= v - y) )y - x|2)
0NNs
[ = YD a0~ ) - n(D x ) i) Py

+ £X)[uo (})]nn (X = %) - n(i))/ Js(Ix = y]) (Iy = %) - pX)?

OQNs
Ny = %) n®)P +|(x — %) - n(®)P) dy + O(F).

We firstly provide the bounds for the first term. Note that |B(x,d) N 9Q| < 21/62 — 52 + Ck(X) (6% — s2),

x

therefore |(x —y) - p(X)| < C' /2 — s2 for y € Es. Moreover, as shown in Appendix for the area of Ej
we have |Es;| < C(6% — s2)? + O(6%). Then

[ st =y D P (- y) - p))dy| < 67 - 207267 < C5 - 5,22
Es 8P

For the rest of terms in Tj, note that the integrands

Js(Ix —y)((x — y) - n(®))[x - x> < €571,
Js(lx —yD((x = y) -n®)I(x ~y) pE)|* < Co7,
Js(Ix = yDI(y — x) - p(R)1*(
Js(1x = y|)I(y = %) - n(X)*(
Js(lx = y)(x = %) n®)*((x - %) (X)) < C5~"



for some constant C. Thus it suffices to estimate the area of the domain of integration 0Qyxs N B(x,0). Since
|As] < €63, it suffices the compute the area of Ds. Since Dy is contained in the rectangle with side lengths
24/6% — s2 and 6 — s, direct computation then gives

|Ds| < 2(5 — 52) /02 — 52 < 2V2[0 — 5,]3/261/2.

We then have [0Qys N B(x,8)| < C[0 — s,]%/26"/2 + C§° which together with the bounds of the integrands
finishes the proof. o

With the above lemmas we obtain the main theorem of this section.

Theorem 4.5. Suppose f € C(f), us solves the nonlocal problem ([A.2) and uqg is the solution to the
corresponding local problem (4.3), then for sufficiently small 0 there exists a constant C independent of § such
that

sup |us(x) — uo(x)| < C6%. (4.22)
x€N

Proof. With the barrier function ¢ defined as in (4.15)), from the above lemmas and bounds we have

|5

—Ls¢

Ts| C1[6 — 8,)3/2071/2 4 €562
—Lnsp — Cs[6 — s5,]3/26-5/2 + C,4

< (062, for x € N\Uns,

, for x € Qps.

T.
Therefore, with Lemma the proof of (4.22)) will be finished once we can show that |L6|q$ < C6? for
—LNS§
X € Qps. Let

) = Cy[6 — r]?/26~1/2 4 Cy62
o 03[5 — T]3/2(5_5/2 +Cy ’

ri= 5, € [0,4].

Then

iy (3 (CaCs —0104)[5_7,]1/25_1/2
= (2> [C3]0 — r]3/26-5/2 4+ C4)2

and thus f is monotone (either increasing or decreasing, depending on the sign of CoC3 — C1Cy). Since

OO+ G2 C18% 4 Oy

Rer:
- C36~ 1 +Cy - C3 + C46 o

Cy’

£(0) <0(6%),  f(5)

the monotonicity of f ensures that f < O(42) for all r € [0, 8], hence we get

|T5| 2
sup ——— < 0O(6%).
XGQIJ)\JJ _LNcsgZS - ( )

5 Meshfree Quadrature Rule and Numerical Solver

In this section we develop a discretization method based upon a meshfree quadrature rule for compactly
supported nonlocal integro-differential equations (IDEs) with radial kernels. This approach is based upon the
generalized moving least squares (GMLS) approximation framework [58], and falls within the scope of the
well-established GMLS approximation theory.

We discretize the domain Q2 and 9§2ps by a collection of points xn = {X;}{i=1,2,. N} CQUINps, where
the fill distance

h:= su min X; — X 5.1
xieE,LlstNp,m‘ el (5.1)
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is a length scale characterizing the resolution of the point cloud, and N, denotes the total number of points.
We define the separation distance

1.
Gy = Gminjz; — 2] (5.2)
and assume that the point set is quasi-uniform, namely that there exists positive cq, satisfying
ax < h < cqugy- (5.3)

In a neighborhood of each point x; € x5, we reconstruct a polynomial approximation s, y, i(x) to the
nonlocal solution us(x) in B(x;,d). Specifically, we define s, , ; as the solution to the optimization problem

PETH (R?)

NP
Su,x;,.i(X) = _min {Z[U(Xj)—p(Xj)]Qw(Xi,Xj)}, (5-4)

j=1
where 7,,(R?) are the m-th order polynomials in R?, and w(x,y) is a translation-invariant positive weight
function with compact support §. For concreteness we take in this work

_ x-yl

gy y) = (1D when|x -y <4
w(x,y) = ®s5(x Y)—{ 0 when |x —y| > 0.

For a quasi-uniform pointset and sufficiently large § the optimization problem possesses a unique solution
[60]. We then use this polynomial reconstruction to approximate the nonlocal operator as follows.
For each point x;, denote the set of indices for points in B(x;,d) as

I(x;) =1(x;,0,xn) :={j € {1,--- ,Np} : |xs — x| < d}, (5.5)

and #1(x;) represents the number of indices in I(x;). Define as a basis for m,,,(R?) the set p1(x), p2(x), - - , po(x),
then the optimization problem has the following analytic solution.

Sun.i(X) = @DP(PTDP) ' R(x), (5.6)
where

= (u(x;):j € I(x;))" € R#IGxi),
= (Pr(x)))jer(xn) 1<kaq € RFICIXQ,
= diag(Ps(x; — x;) : j € I(x;)) € R#Ix)x#I(xi)

R(x) = (p1(x),- - ,pe(x))" € R?.
This process exactly recovers u € m,,(R?). In the GMLS framework, the reconstruction may be used to
approximate a linear bounded target functional w as

U
P
D

w(u) = wp(u) == w(Suy,,i) = @DP(PTDP) 'w(R(x)), (5.7)

where w(R) denotes the application of the target functional component-wise to each element of the polynomial
basis. Classic examples of w include the point evaluation functional to develop meshfree approximants, point
evaluations of derivatives of functions to develop meshfree collocation schemes, and integrals of functions
over compact sets. In this work, we select w as the nonlocal operator in and 7 and thus obtain a
meshfree estimator of the non-local operator that is exact when applied to m,,(R?). To do so will require the
computation of and applied to each member of the polynomial space.

In this paper we take m = 2 and choose the quadratic basis functions as follows

pix) =1, pa(x) = (x—x)er, ps(x) = (x—x) e, pa(x) = [(x—x) er]?,

ps(x) = [(x = %) - ea]®,  po(x) = [(x —x) - er][(x = x;) - e],
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where e; := n(X;), e := p(X;) for x; € Qns and €1 := (1,0), ez := (0,1) when x; € Q/Qpns. For x; € Q/Qns,
one may obtain the following formula for o, in light of (1.1).

~2DP(ETDR) ! [ gy~ (RG) Ry = <) 6

Similarly, for x; € Qys, we apply the Neumann boundary treatment and obtain the following formula for wy,

in light of (2.3).

—2aDP(PTDP)™! /B( o Js(ly — x:|)(R(y) — R(x;))dy

5
_ 2/&DP(PTDP)71M5(XZ‘) /_5 Hs(|I])(R(x:) — R(x;))dx;
=f(x;) + (2/ Js(ly —xi)(y — xi) - n(X;)dy — Ma(Xi)K(Xi)> 9(%i)
B(x,é)\Q

—/ Js(ly = xil) [|[(y = %) - n(X)[* — |(xi — %) - n(x:)[*] dy f (x:). (5.9)
B(xi,6)\Q

For x € 9Qps, we apply the Dirichlet boundary condition and therefore us(x) is given. We can then solve for
4 with and .

Numerically, the problem now reduces to how to integrate quadratic polynomials over B(x;,d) N Q and
B(x;,0)\Q properly. On simple geometries the integral in and can be calculated analytically,
while for more generalized cases where the boundary curve is more complicated, an analytic quadrature is
intractable. We note that when ¢ is sufficiently small, B(x;,d) N Q and B(x;, )\ can be written as the
regions between two curves, and one can then evaluate the integral via numerical integration, for instance,
with high-order Gaussian quadrature rules.

6 Numerical Results

In this section we present the asymptotic convergence of the proposed boundary treatment by considering
the nonlocal diffusion problem on three types of representative domains: a square domain in section [6.1] which
represents the case with 0 curvature on 9y ; a circular domain in section m which illustrates a case with
constant curvature on 9€; and an elliptical domain in section [6.3] with varying curvatures along the domain
boundary. Here we note that the square domain case does not satisfy the C? regularity requirement and it is
therefore outside the scope of the model problem analysis presented earlier. Hence the results in section [6.1
also demonstrate how robust the convergence rate results are when relaxing the C® assumption on domain
regularity. In this paper we focus on the type (3) convergence, i.e., the convergence of numerical solutions to
the local solution as h,d goes to 0 simultaneously, by fixing h/§ = C and taking h — 0.

6.1 Test 1: curvature k(x) =0

In this numerical example, we demonstrate a case where the Neumann boundary is a line segment.
Specifically, we take the computational domain as Q = [0, 1] x [0, 1], with 9Qx = {(1,y) : y € [0,1]} and
00p = 0N\ONy. The local limit of the nonlocal problem has a smooth analytical solution ug(z,y) =
sin(mz) cos(my), together with f(z,y) = 272 sin(nz) cos(ry) and 9%|,—1 = g(y) = —mcos(my). We apply
the analytical local solution as a Dirichlet boundary condition over 0€2ps by letting us = ug, and impose
the Neumann-type constraint over the region Qs = [1 — 4,1] x [0,1]. With uniform discretization of
mesh size h = {1/16,1/32,1/64,1/128, /256} and fixed ratio §/h = {4.0,3.5}, we demonstrate the difference
between the numerical results and 4 in the L>®-norm and L?-norm in Table It may be seen that as
h,é — 0, the numerical solution from the proposed nonlocal Neumann-type constraint problem converges
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W 5/h =4 5/h =35

[us — upl[oo | order | [lus — ugll2 | order | [Jus —uglleo | order | JJus — uglla | order
273 1 145 x 1071 - 3.06 x 10~2 — 0.04 x 1072 — 3.01 x 1072 —
2741 234x1072 | 263 | 5.80x 1073 | 239 | 1.37x 1072 | 272 | 540 x 1073 | 2.48
2*2 425 %1073 | 238 | 1.30x 1073 | 2.16 | 250 x 1072 | 245 | 1.10 x 1073 | 2.30

1.00 x 1072 | 2.17 | 3.02x 1074 | 2.11 | 565 x 10 | 2.15 | 2.68 x 10~* | 2.04
248 x 107 | 2.01 | 738 x107® | 2.03 | 1.34x10~* | 2.07 | 6.53 x 107 | 2.04

Table 1: Test 1: Convergence to the local solution for the x(x) = 0 case.

h 0/h=14 5/h =35

[us — upl]oo | order | [lus — ugll2 | order | [Jus —uolleo | order | JJus — uglla | order
273 | 3.74x 1071 - 213 x 1071 - 2.98 x 1071 - 1.77 x 1071 -
274 | 1.10x 1071 | 1.77 | 6.88 x 1072 | 1.63 | 821 x 1072 | 1.86 | 5.17x 1072 | 1.78
2*2 2.68x 1072 | 2.04 | 1.68x 1072 | 2.03 | 1.98x 1072 | 2.05 | 1.24x 1072 | 2.06

6.30 x 1073 | 2.09 | 390 x 1073 | 2.11 | 470 x 1073 | 2.07 | 290 x 10~2 | 2.10
1.50x 107% | 2.07 | 937 x107% | 2.06 | 1.10x 1073 | 2.10 | 6.91 x 10~% | 2.07

Table 2: Test 2: Convergence to the local solution for the k(x) = const case.

to the local analytical solution ug as O(§?) = O(h?), which therefore verifies the analysis in section [4| and
demonstrates the asymptotic compatibility of the numerical solver.

6.2 Test 2: constant curvature x(x)

We now consider as domain the unit circle Q = {(z,y)|z? + vy < 1}, 9Qyx = 0Q and with the value
us(0,—1) = ug(0, —1) given to make the problem well-posed. Similarly as in test 1, we consider a smooth
local solution ug(z,y) = sin(7z) cos(ry), with f(z,y) = 22 sin(rx) cos(my) and 22|, coay = 9(z,y) =
mx cos(mx) cos(my)—my sin(mwz) sin(my), with uniform discretization of mesh-size h = {1/8,1/16,1/32,1/64,1/128}
and 6/h = {4.0,3.5}. The L*-norm and L?-norm convergence results are presented in Table[2| It can be
observed that the convergence rate is O(62) = O(h?) as & approaching 0, consistent with the analysis in
section [

6.3 Test 3: non-constant curvature x(x)

In our previous two tests, the problem domains have either zero curvature or a constant curvature
on the Neumann boundary. In this section we further consider a more generalized domain with a non-
constant curvature on its boundary. We consider the ellipse Q = {(z,y)|z%/4 + y? < 1} with 9Qx = 9Q}.
us(0,—1) = up(0,—1) is given to guarantee the compatibility condition. Here we note that when § < 1/2,
the orthogonal projection X is well-defined for any x € Q5. We again consider a smooth local solution
up(z,y) = sin(rx) cos(my) with f(z,y) = 272 sin(wz) cos(ry), and we demonstrate the convergence of the
numerical solution to the local solution with mesh-size h = {1/8,1/16,1/32,1/64,1/128} and 6/h = {4.0,3.5}.
As shown in Table [3] second order convergence is achieved which therefore verifies the estimates in section [4]
and illustrates the asymptotic compatibility for a domain with nonuniform boundary curvature.

Moreover, we note that in the cases with constant curvature boundary, the Neumann-type constraint
problem gives the analytical solution us = ug for the patch test problem with a linear solution ug(z,y) = z+y.
Therefore, in the previous two tests, the numerical solver passes the linear patch test with machine precision.
In the elliptical domain with non-constant curvature, we further investigate the linear patch test problem,
and the numerical results are illustrated in Table @] It can be observed that although the numerical solution
is no longer within machine precision accuracy, the numerical solution converges to the analytical solution
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0/h=4 5/h =35
[fus — upl[oo | order [ [lus — ugll2 | order | [Jus — uglleo | order | Jlus —uglla | order
2771 213x10° " - [18x107'] - [ 1.73x10°" - [960x107% [ -
2741 6.00x1072 | 1.83 | 3.32x1072 | 1.78 | 459 x 1072 | 1.91 | 2.53x 1072 | 1.92
2*2 1.43x 1072 | 2.07 | 790 x 1072 | 2.07 | 1.08 x 1072 | 2.09 | 6.03 x 1073 | 2.07

340 x 1073 | 2.07 | 1.90 x 1072 | 2.06 | 2.60 x 10~2 | 2.05 | 1.40 x 10=3 | 2.10
8.22x 10™* | 2.05 | 449 x 10~ | 2.08 | 6.25x10~* | 2.06 | 3.41 x10~* | 2.04

Table 3: Test 3: Convergence to the local solution for the non-constant x(x) case.

0/h=14 5/h =35
[us — upl]oo | order | [lus — ugll2 | order | [Jus —uolleo | order | JJus — uglla | order
277 [ 171 x 107! - [ 787Tx1077 ] - [ L14x107' [ - [594x10° [ -
2741 289x 1072 | 257 | 1.55x 1072 | 2.34 | 216 x 1072 | 2.39 | 1.16 x 1072 | 2.36
2*2 6.01 x 1072 | 2.27 | 3.20x 1073 | 2.28 | 450 x 1073 | 2.26 | 2.40 x 1072 | 2.27

1.20x 1072 | 2.32 | 6.04 x 1074 | 2.40 | 835 x10~* | 243 | 411 x10~* | 2.55
1.26 x 107% | 3.25 | 4.69x107° | 3.69 | 1.39x 107* | 2.58 | 6.20 x 107° | 2.72

Table 4: Test 3: Linear patch test for convergence to the local solution for the non-constant x(x) case.

with an O(h?) rate as h — 0.

7 Extension: domain with corners

In many popular nonlocal problem applications, it is common that the Neumann-type boundary contains
corners. For example, on a peridynamic problem with damage, once a crack initiates and bifurcates, new
zigzag boundary forms and the Neumann-type boundary condition must be applied on these new boundaries.
To investigate how well the new Neumann-type constraint formulation extrapolates to the setting of Lipschitz
domains, in this section we further extend the proposed formulation to boundaries with corners. We also
numerically show the performance as well as asymptotic compatibility properties on a sample test problem
with Neumann-type boundary on two sides of a square domain. Specifically, in section we derive the
formulation near a corner by approximating —2 faﬂm Js(x —y)(u(y) — u(x))dy. Then in section we
adopt a similar problem domain as in test 1 of section but with Neumann-type boundary conditions
applied on two sides of the boundary including their intersecting corner, and demonstrate the convergence of
the nonlocal solution to the corresponding local limit as h,§ — 0.

7.1 Flux Condition and Numerical Setting

In this section we extend the numerical algorithm to a domains with corners. For simplicity, here we
assume that there are two boundaries with Neumann-type boundary conditions:

ou

o, =g1, on JdQy1, (7.1)
ou on 05} (7.2)
ony = 92, N2, .

and the two boundaries intersect at ¢ = 9Qn1 [ 0Qn2. For any point x satisfying |x — ¢| < 0, we project x
onto the two boundaries respectively, i.e., x = X; — 8,111 (X1) = Xo —Szon2(X2). In this section, we assume that
both 0Q N1 and 0o are straight lines near the corner c, although the formulation can be further extended
to more general cases. Denote 6 as the angle between 0Qy, and 0Qy,, without loss of generality we further
denote n; = (0,1) and ny = (sin, — cos#). Correspondingly, we have p; = (1,0) and py = (—cosf, —sin6).
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01

Q1 ()02

Figure 6: Geometric assumptions and notation for the corner case. Here the yellow region denotes B(x,d) N
8QAm.

We illustrate geometric assumptions and notation in Figure For each point x = (z1,z2), with Taylor
expansion we have the following approximation for u(y) — u(x) with y = (y1,y2) € B(x,d) N IQnys:

u(y) = ) = 4, 2D S R, + 3B s + a0 + OF)

—ign (0 + daga () + (= (=1 =) 0 ) (<160 G0

+(;a4m—xym@)eﬂw—wumm>
1 091(X1)  0g2(X2)
+2s Gdld ( ) " pe

+ f(x)sin 6 cos 9) +0(8%),

op1 Op2
where
cosf 1
dq Sine(y1*$1)+(y2*z2)a dg = Sine(ylfl’l)
Moreover, we have
0g1 (X dg1 (X
[0 papn + (X paps = — 1) + cot 8 L _ 29152 4 )
8p1 ap2

Let )
D, = 2/ Js(|x —yl) {zd% — (X1 — x) 'nldl} dy,
Ons

1
Dy = 2/ Js(|x —yl) {2(13 — (X2 — x) 'H2d2:| dy,
nNs

substituting the above approximations into the nonlocal formulation and neglecting the higher order terms
give the algorithm. For D; > D5, we take d; as the arc length from x to 0€y following the contour parallel
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5/h =4 5/h =35
[us — upl[oo | order [ [lus — ugll2 | order | [Jus — uglleo | order | JJus —uglla | order
273 1 743 x 1072 - 1.91 x 1072 — 5.45 x 1072 — 1.46 x 1072 -
274 | 152x 1072 | 229 [ 401x1073 | 226 | 1.13x1072 | 2.27 | 3.10x 1073 | 2.24
2*2 330x 1073 | 220 | 9.12x107% | 213 | 240x 1073 | 2.24 | 6.97x10°* | 2.15

742 %1073 | 2.15 | 2.17x107* | 2.06 | 560 x 10=* | 2.11 | 1.66 x 10~=* | 2.07
1.74x107% | 2.09 | 5.32x107° | 2.03 | 1.31 x10=* | 2.09 | 4.04 x 105 | 2.03

Table 5: Convergence to the local solution in the case with corner.

to 0N 1 and use 2 ffgl Hs, (1)) (u(x1) — u(x))dx;1 to denote the integral on this contour which approximates
[w(x)]pip::
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—2 [ Js(lx = yDlu(y) = uG)dy + 4Dy = Do) [ s (1) (uxr) = )i
—f(x) = D1f(x) = Dot (89811()’1‘1) = 89;;’:”) + 2/{)9 Js(|x — yl) <d1g1(x1)
+ dag2(X2) + 2si1n9 1da (3951(:1) — 39621(;2(2) + f(x)sin 6 cos 0) >dy. (7.3)

FElse, we similarly take ds as the arc length from x to 9Qy following the contour parallel to 0Qy2 and use
f , Ha, (|1 (u(x12) — u(x))dx;2 to denote the integral on this contour which approximates [u(x)]p,p,:

62
- 2/Q Js(Ix = y)(u(y) — u(x))dy +4(D2 — D1) [ Hs, (|1])(u(x12) — u(x))dx2

— 5o

— f(x) = Daf(x) — Dy cot 6 (69551‘1) _ 69;;’:”) + 2/8% Ts(1% = y|) (d191 (%1)

9g91(%1)  0g2(X2)
op: op2

- 1
+ d2g2(X2) + mdmb (

+ f(x)sinf cos 9) ) dy. (7.4)
Here we note that we lose coercivity in this formulation. However, numerical experiments in Section [7.2]
suggest that the method remains robust in practice.

7.2 Numerical Results

In this section we investigate the numerical performance of formulation — on a square domain
Q = [0,1] x [0,1] with Neumann-type boundary conditions applied on dQy1 = {(1,¥) : y € [0,1]} and
0Qn2 = {(z,1) : © € [0,1]}. Note that the Neumann-type boundary contains a corner ¢ = (1, 1) where the
numerical algorithms (7.3)- . are employed We set the analytical local solution as uo(x y) = x2y2, which
then yields f(x,y) = —2(z* + 3?), dn|T_1 g1(y) = 2y? and 8“|y 1 = g2(x) = 222. The Dirichlet-type
condition w = wg is provided in a layer 0Qps = {(z,y)|(z,y) € [—0,1] x [—0,1]/2}. With mesh-sizes
h=1{1/16,1/32,1/64,1/128,1/256} and a fixed ratio 6/h = {4.0,3.5}, the numerical results are shown in
Table |5} illustrating an O(62) = O(h?) convergence rate to the local limit.

8 Conclusion and Future Work

In this paper we have introduced a new nonlocal Neumann-type constraint for the 2D nonlocal diffusion
problem which is an analogue to the local flux boundary condition and for the first time achieved the optimal
second-order convergence rate O(62) to the local limit in the L° () norm. The formulation is applied on a

29



collar layer inside the domain and therefore requires no mesh or extrapolation outside the problem domain,
which enables the possibility of applying the physical boundary conditions on a sharp interface. We have
shown that when the problem domain is bounded, convex, connected and possesses sufficient regularity, the
proposed nonlocal Neumann-type constraint with the nonlocal diffusion equation is well-posed. The nonlocal
solution us converges to the solution ug from the corresponding local problem in the L?(£2) norm as the
horizon size § — 0. Moreover, when the solution is continuous in Q and the Neumann type boundary is
convex, we have further proved the second-order convergence of us in the L>°(Q2) norm. Numerically, we
have developed an asymptotically compatible particle method based on a meshfree quadrature rule for the
Neumann-type constraint problem. Numerical examples on domains with representative geometries and
boundary curvatures were investigated, and the optimal convergence rate O(62) in the L®(£2) norm was
observed in all instances, verifying the asymptotic compatibility of both the Neumann boundary treatment
and discretization. Finally, we have demonstrated that the regularity assumption may be relaxed in practice
and the formulation can be extended to domain with corners, which greatly improves the applicability of the
proposed formulation for more complicated scenarios. Although the formulation does not preserve formal
coercivity near the corner, numerical experiments indicate that the formulation is robust in practice and
achieves the optimal convergence rate to the local limit.

We note that the formulation described in this paper actually provides an approach for applying the
Neumann-type boundary condition on general compactly supported nonlocal integro-differential equations
(IDEs) with radial kernels. As a natural extension, we are working on a nonlocal trace theorem which will
immediately extend the current analysis results in the L? norm to problems with inhomogeneous boundary
conditions, and we are also developing a sharp traction boundary condition for peridynamics which is
consistent with the classical elasticity theory.

9 Appendix

9.1 Proof of Lemma [3.9

In this section we aim to provide the detailed proof for Lemma Since Bs(ts,v) = (f,v)r2(q) for any
v € S5, with Lemma we have

\lis]|3, < CBs(tis, tis) = C(f,tis) 120) < Clf L2 llislrz@) < CllLz@) sl ss

which yields the uniform boundedness of {@s}. With Lemma we have the convergence of a subsequence
of {@is} in L?(€2). Here we use the same 75 to denote the convergent subsequence, then s — u. € Sy. To
proof the lemma, it suffices to show that u, = ug or

Bo(ux,v) := (Vux, V) = (f,v)12(0), Vv e OCF(Q). (9.1)
Taking a standard mollifier ¢, satisfying fB(O o de(x)dx = 1 and letting s, = fB(O 9 ts(x — y)¢e(y)dy,

we define Q. = {x € Q : dist(x,00) < €} and Q¢ = {x € Q : dist(x,09Q) > €}. Assuming that € > J, for
v € C*(Q) we denote

Biwo) = [ [ Is(x = yl)(uty) —u(x)(0(y) = o)y,

Bi(u,v) = | Vu-Vudx.
QE
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Since

Bilse) = [ [ sl = ¥)5. () = 55, 60) (0(3) — v(x))dyex

:/6 / Js(|x —y|) </B(07€) oc(2z)us(y — z)dz — /3(076) Oe(z)Us(x — z)dz) (v(y) — v(x))dydx

-/ ) ([ [ sthe = ytasty —2) ~ as(x ~ 2)(u(3) ~ vlayex ) ds
- /B . BB Es(x 7)),

to show (9.1) it suffices to prove that when § — 0 first then ¢ — 0, we have
Bj§(tis,e,v) = Bo(ux,v),

and
/ 6 (2) B (115 (x — ), v(x))dz — (f,0)12(c)-
B(0,¢)

To show we first fix € and let 6 — 0. Since € > §, Q°(Qs = ® and Q5 C Q.. Then
B (i, 0) — /Q /Q T5(1% — 1) (@5e(y) — 5. (1)) (u(y) — v(x))dydx
- / / T5(% — y]) (@ (y) — 5,e()) (v(y) — v(x))dydx.

Since fig,e — Ux,e as 0 — 0, with [57, Proposition 3.4] and the Dominated Convergence Theorem,

lim lim / /QJ(;(‘X — ¥ (s, (¥) — Us,e(x)) (v(y) — v(x))dydx = lg% B§(ts,e,v) = Bo(us, v).

e—06—0

On the other hand, for the second term, with the uniform boundedness

lim lim
e—06—0

Hence (9.2)) has been proved. For (9.3) it suffices to show that

lim lim | B5 (5 (x — 2), v(x)) = (f(x),v(%)) 2 ()|

e—006—0

=lim lim |B§(is(x — z),v(x)) — Bs(s(x),v(x))| = 0.

e—=06—0
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/6 /Q Js(|x — y])(Us,e(y) — ts,e (%)) (v(y) — v(x))dydx| < Cl% area(€) = 0.

(9.2)

(9.3)

(9.4)



Denote Q%€ = {x € Q: x — z € Q°}, we have
|B§(u5(x — 2), v(x)) — Bs(s(x), v(x))|

=| [ =y asty — ) - astx - @) 0(3) ~ oy

- / / Js([x = y]) s(y) — is(x))(v(y) — v(x))dydsx

— [ My /Ha D[ () — @ ()[oxt) — v()]dxrdx
Qs

/

/Q /_ {Mé (x1) ||; N a0 B (a8 x0) — 8 () der () dx

- Js(Px = yD)(as(y) — 5(x))(v(y +2) — v(x +2) — v(y) + v(x))dydx

e Js(lx = yD)(as(y) — s5(x))(v(y) — v(x))dydx

- / / Ts(1% — y))(@s(y) — 5 (%)) (0(y) — v(x))dydx

| [ st / Hi (1) (x) — @ ()] [v(3x1) — v(x)dxadx
+f / [Ms x) 'r,"‘ — My()| Hs (1) [3(x1) — 37 (0)}dxuv ()
=1+ IT+1II.

For the first term we have
I <[[ts]|s,[|v(x +2) —v(x)l|s, < [|s]]s,|[v(x+2z) —v(x)|]s,

which goes to 0 as € — 0 since |z| < € and v € C°(Q2). For the second term, since |z| < €, Q\Q% C Q.
Therefore

17 <

/ / Ts(x — y))(@s(y) — s (%)) (0(y) — v(x))dydx
o\Qz¢ JO

+ / / Js(1x — y1) (@s(y) — 55 (%)) (u(y) — v(x))dydx
Q\QZE Qze

1/2
<alliislls, ( / - [ 3sx = ¥ie) —v<x>>2dydx>
1/2

<alliisls, ( L Ja<|xy|><v<y>v<x>>2dydx> .

Since v € C®°(Q), we have lim,_,¢ lims_,o fQQ Jo Js(x—y)(v(y)—v(x))?dydx = 0 and therefore lim_,o lims_,o [T =
0. For the third term we first consider the curvature= 0 case. When § is sufficiently small, since
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M;5(x) < 3msup,<; J(|r|) we have

<[ s / Hy (1) fia (1) — 5 (0w (oxr) — v()]dxidx
6 1/2
<cljit|ls, ( | ans i sup | %) 1 x> < Clli s, sup | %52 farea(0)) 2.
(9.6)
Since v € C*°(£2), sup,cq, agii)z) < o0. Since Q2 is bounded, lim;_,q area(§25) = 0. Hence lim,_,o lims_,o [11 =

0. To prove the case of nonzero curvature, when ¢ is sufficiently small (3.19) and yield

11T <

/ My(x / Hi () 3 (x0) — (0] [(x2) — w0

|:M§ |I‘ ::)“ M&(X):| Hg(‘l')[ﬂg(xl) — a&(x)}XmU(X)dX
ov(z) |”
< Cl)a’|s, \// x)dx + sup ov(z area(f2s) 20,
z€Q; ap
Due tov € C*(92),as0 — 0 fQ x)dx — 0. Moreover, lims_,q area({2s) = 0. Therefore lim,_,o lims_,o ITT =

0 and we have then finished the proof

9.2 Proof of Lemma [4.2]
In this section we aim to provide the detailed derivation for Lemma For x € Q\Q s,

Ty =Louo — Lo = —Aug +2 / Js(1x — y1) (o y) — uo(x))dy
QUINps

= Aug+ / Ts(% = yD)uo(x)]p((x — y) - p(%))*dy
QUIN s

+ / Is5(Jx = y])[uo(x)]nn ((x — ¥) - n(x))*dy + 0(6%) = 0(5%).
QUINDs

For x € Qngs, we will first estimate fjé H()])[uo(x:) — up(x)]dx;. With Taylor’s expansion we have

200 (1~ 30 () + 280 5 ) i)
(o(0anl (= %) 1R + 5 o)1~ ) D

o (¥)]pn (1 = %) - (X)) ((x1 = x) - p(X)) + é[uo(X)]nnn((Xz -x) n(x))’
[0 ()l (x1 — %) - P(X))” + %[UO(X)]pnnl(Xz —x) - n®)((x —x)  pX))

[0 (%)]ppn (%1 = %) - 0(X))|(x1 = x) - pF)]* + O(1*).

uo(x;) =up(x) +

+

NN

+

+

+
| = O

Assuming the boundary 92 is C® regular, we can approximate 92 N B(x, §) with the osculating circle C(X).
When 02 does not coincide with C(X), we denote Px; as the point with distance [ to x along C(X) following
the p direction. For point x, take the Cartesian coordinate system as shown in the right plot of Figure
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and let (c1(s),ca(s)) be the curve of boundary 9 which is parameterized by the arclength s. Then we have

x; = (c1(l), e2(1))", and
0 s I 4
xlzx+((l)>+( K(XT)P )—&-(C;,,Eg;lg)-i-O(l ),

T
while Px; = x + (ﬁ(lx) sin(lk(x)), %(1 - cos(lm(x)))) . Therefore
e (057 () 3 \
6

With Es to denote the region in As which is asymmetric with respect to the y axis in the right plot of Figure
we then have the area of Es as |Ejs| < C(6% —s2)? +O(6°). Moreover, adopting the coordinates as shown in

the right plot of Figure we have (x; —x)-n(X) = — 517 — #13 +0(1*), (x;—x)-p(X) =1+ %ZS—FO(F‘).

Therefore
o) — o) = - 280 (Bpp KO 2 (1, SO 4 g,
P 3 3
- 0(lon + a0 (Xl + O,
up(x—y) — ug(x) = — 8uaor(lx) (';l2 — 6/1/16(0) 13> + 6u5r()x) (—Z — 6/2”6(0)13> + %[uo(x)]pp
K 3 3
o)l — G luo (S +OC),

which yield

2 Quo(x)

uo(xy) + ug(x—;) — 2up(x) = Kl + Puo (x)]pp + O(1h)

on
auaor(li) + “lQ[UO(X)}vm((X —X)-n(X)) + l2[u0(x)]pp + 0(14)

=2 [0 (%)]nn (x = X) - 0(X)) + o (x)]pp + OY).

=xkl?

Therefore
[ ot~ woxla
= [ HD [ t)on (¢~ )05 + Pl + 00"
5 000 (G = ) 0() + 5o () + O2), (©.1)
and

o
2005(x) [ H (1) o) = oo,
M ()10 (X)]p -+ 1M (3) 110 ()] (% — %) - 1) + O(5?)

=rM; (%) [uo (¥)]nn ((x = X) - n(X)) + [UO(X)]pp/ Js(Ix —yDI(y — x) - p(x)|*dy

N§

- [uo(X)]pp/aQ s(x =y (Iy =%) - n®)” = |[(x = %) - n®)) dy + O(5%).
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With the above properties one has the following approximation via Taylor expansion:

5 / Js(1x — y]) (uo(y) — uo(x))dy
Q
= 2/9J5<\x—y\>[uo<x>]m<<x_y> (% - x))dy +2 / J5<|x—y|>a“5ff) (x—y) p(x®)dy

Es

+/ Ja(leyl)[ﬂo(X)]nnn((X*Y)~n(i))(*li*><|2+%l(xf>')'n(i)\Q)dy
Q

n / T5(1% = YD[0()]nl(x — ¥) - n(®)Pdy + / J5(% = yD) [0 (O]l (x — ¥) - )Py
n / Js(1% = 1) o (%) ]mpp (x — y) - n(R))|(x — y) - p(F) 2dy + O(6?), (9.8)
and the estimate for Ty with x € Qpyy5:
Ts =(Louo — Lnsuo) + (fs — f)
)
= Bug() +2 [ Js(lx~ y1)(un(y) ~ wo o))y + 2050x) | H(D{un(x0) - uo()dx
Q -4

7/09 Js(lx = y)(I(y = %) - n®)]* — [(x = %) - n(X)]*) (= Luo(x))dy

<2 [ asx = y) 5 e y) - pis)y

" / (1% = y[) [0 (3)]nnn ((x = ¥) - n(X) (—[x - x|* + . (x —y) - nX®)*)dy
Q

3
+ / T (1% = y[)[uo(3)]npp((x = ¥) - n(X))|(x — y) - P(X)|*dy
Q

+ &M (%) [0 (%)]n (x — X) - n(X)) + O(6?). (9.9)
We have then finished the proof.
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