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Abstract

This paper is focused on the aspects of limiting in residual distribution (RD)
schemes for high-order finite element approximations to advection problems.
Both continuous and discontinuous Galerkin methods are considered in this
work. Discrete maximum principles are enforced using algebraic manipula-
tions of element contributions to the global nonlinear system. The required
modifications can be carried out without calculating the element matrices
and assembling their global counterparts. The components of element vec-
tors associated with the standard Galerkin discretization are manipulated di-
rectly using localized subcell weights to achieve optimal accuracy. Low-order
nonlinear RD schemes of this kind were originally developed to calculate
local extremum diminishing predictors for flux-corrected transport (FCT)
algorithms. In the present paper, we incorporate limiters directly into the
residual distribution procedure, which makes it applicable to stationary prob-
lems and leads to well-posed nonlinear discrete problems. To circumvent the
second-order accuracy barrier, the correction factors of monolithic limiting
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approaches and FCT schemes are adjusted using smoothness sensors based
on second derivatives. The convergence behavior of presented methods is
illustrated by numerical studies for two-dimensional test problems.

Keywords: advection problems, high-order finite elements, Bernstein
polynomials, matrix-free methods, discrete maximum principles, residual
distribution, limiters

1. Introduction

Many applications of practical interest require numerical solution of ad-
vection problems on unstructured meshes. In the context of finite element
discretizations, robust, accurate, and efficient schemes are far more difficult
to construct than for elliptic problems with smooth exact solutions. The
presence of discontinuities and steep gradients requires a modification of the
standard Galerkin approximation to rule out formation of spurious oscilla-
tions and violations of maximum principles. The design of bound-preserving
high-resolution finite element schemes typically involves construction and
limiting of artificial diffusion operators. Fully algebraic correction techniques
which guarantee the validity of discrete maximum principles (DMP) can be
found, e.g., in [5, 6, 14, 19, 23]. Most of them are designed for low-order
(linear or multilinear) Lagrange elements, and the (element or global) ma-
trices of the target scheme must be provided as input for the computation
of artificial diffusion coefficients. The first successful extensions of matrix-
based flux-corrected transport (FCT) algorithms to high-order finite elements
were recently developed in [4, 24] using the Bernstein basis representation.
Matrix-free approaches belonging to the family of residual distribution (RD)
schemes [1] were extended to high-order Bernstein finite elements in [2, 3, 16].

The RD framework proposed in [16] introduces a set of new tools for the
design of nonlinear low-order schemes and FCT-like methods. In the process
of residual distribution, a given element vector is modified in a manner which
preserves the sums of positive and negative components, while providing the
local extremum diminishing (LED) property as well as conservation of mass.
If no data from neighbor elements and previous time steps or Runge-Kutta
stages is used, the resulting compact-stencil RD schemes are at most first-
order accurate. The optimal ones exhibit p-independent convergence behav-
ior as the polynomial degree p is increased while keeping the total number of
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degrees of freedom fixed. The derivation of such low-order schemes involves
localization of the RD procedure to subcells [16]. To recover the high accu-
racy of the underlying Galerkin approximation at least in smooth regions,
the FCT postprocessing step performs a LED correction of the provisional
low-order solution. Predictor-corrector algorithms of this kind are well suited
for time-dependent advection problems and conservative projections of data
[19, 23]. However, the use of large (pseudo)-time steps leads to increased
levels of numerical diffusion, and convergence to steady state solutions is
inhibited by the alternating use of diffusive and antidiffusive corrections.

In contrast to FCT, monolithic limiting techniques adjust the artificial
diffusion terms before adding them to the residual or matrix of the high-
order target scheme. In the context of low-order continuous finite element
approximations, algebraic flux correction (AFC) schemes of this kind were
developed and analyzed in [7, 8, 17, 18, 19, 23]. Many of them are formally
applicable to high-order Bernstein finite elements but require the knowledge
of matrix entries and/or cannot match the accuracy of a piecewise (multi-)
linear Lagrange approximation with the same number of nodal points.

In the present paper, we make the first step towards the derivation of
matrix-free monolithic correction procedures that have the potential of be-
coming more accurate as the degree p of Bernstein basis functions is in-
creased while keeping the number of nodes approximately fixed. We begin
with the presentation of limiting and mass correction operators that im-
prove the process of residual distribution in an appropriate manner. We also
generalize the FCT algorithms employed in [4, 16, 24] and compare the re-
sults obtained with different limiting approaches. Finally, we equip selected
limiters with smoothness indicators which make it possible to avoid unneces-
sary modifications of the Galerkin discretization without losing any favorable
properties (preservation of local bounds in the neighborhood of discontinu-
ities and steep fronts, continuous dependence on data).

2. Galerkin finite element discretization

First of all, let us summarize the notation introduced in [16] for finite
element discretizations of the linear advection equation

∂u

∂t
+ v · ∇u = 0 in Ω, (1)

where v = v(x) is a continuous velocity field and Ω ⊂ Rd, d ∈ {1, 2, 3} is a
bounded domain. Let Th be a computational mesh composed of Eh = |Th|

3



elements. Inside each element Ke ∈ Th, the solution u is approximated by a
polynomial ueh =

∑N
j=1 u

e
jϕ

e
j of degree p ≥ 1. The Bernstein basis functions

ϕej are nonnegative and form a partition of unity. It follows that [16]

uemin := min
1≤j≤N

uej ≤ ueh(x) ≤ max
1≤j≤N

uej =: uemax ∀x ∈ Ke. (2)

The basis function ϕej : Ke → [0, 1] attains its maximum at the j-th nodal
point xej of element Ke. The global number iej = Ie(j) of the local degree
of freedom uej can be retrieved using the DOF mapping Ie : {1, . . . , N} →
{ie1, . . . , ieN} =: N e to perform the index conversion j 7→ iej . The set
of elements containing a node with the global number i ∈ {1, . . . , Nh} is
denoted by Ei. The global index notation is used, e.g., for the piecewise-
polynomial global basis functions ϕi, i = 1, . . . , Nh, which satisfy ϕi|Ke = ϕej
with i = Ie(j). If global node numbers are used in the same equation as ϕei or
ueh, the required index conversion is performed automatically. For example,
we use the shorthand notation ϕj for ϕIe(j) in such formulas [16].

The continuous or discontinuous Galerkin discretization of (1) yields a
linear system of semi-discrete equations which can be written as

mi
dui
dt

= ρ̇Hi + ρHi + σHi , i = 1, . . . , Nh, (3)

where mi =
∫

Ω
ϕidx is a positive diagonal entry of the lumped mass matrix.

The contribution of element Ke ∈ Th to the right-hand side is given by

ρ̇e,H = (M e
L −M e

C)u̇e,H , ρe,H = Ceue, σe,H = Se(ûe − ue), (4)

where M e
C is the consistent element mass matrix and M e

L is its lumped coun-
terpart. The element matrices Ce and Se are composed from volume and
surface integrals associated with the discretization of the advective term.
The entries of all element matrices are defined in [16]. The element vector
ûe is used to express σe,H as a matrix-vector product. If xei ∈ Ke lies on the
inflow boundary Γ− of Ω, then ûei is a Bernstein coefficient of the Dirichlet
boundary data. If xei /∈ Γ− lies on the boundary of Ke, then ûei is the Bern-
stein coefficient of the upwind-sided trace. For all nodes xi ∈ Ω at which uh
is continuous, we have ûei = uei . The element vector u̇e,H is a sub-vector of
u̇H = M−1

C (Cu + S(û − u)), where matrices without superscripts are global
matrices. In a practical implementation, the element contributions ρ̇e,H , ρe,H ,
and σe,H can be calculated in a matrix-free manner, see [16] for details.
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3. Residual distribution framework

Let us now present a general framework for converting a semi-discrete
problem like (3) into a bound-preserving discretization of the form

mi
dui
dt

= fi(u), i = 1, . . . , Nh, (5)

where the right-hand side fi =
∑

e∈Ei f
e
i is assembled from element contribu-

tions f e = ρ̇e + ρe + σe. If integration in time is performed using a strong
stability preserving (SSP) Runge-Kutta method, the fully discrete scheme
fulfills the LED property if the time step ∆t satisfies

ui,min ≤ ui +
∆t

mi

fi(u) ≤ ui,max ∀i = 1, . . . , Nh, (6)

where ui,min and ui,max are defined in terms of uemin and uemax as follows:

ui,min = min
e∈Ēi

uemin, ui,max = max
e∈Ēi

uemax. (7)

The set Ēi contains the numbers of all elements to which the point xi belongs.
The low-order LED schemes presented in [16] use ρ̇e = 0 and σe =

S̃e(ûe−ue), where S̃e is a lumped diagonal approximation to Se. The element
contribution ρe = R(Ceue, u) is constructed using a correction operator R
which transforms ρe,H into ρe,L = R(ρe,H , u) subject to the mass conservation
constraint

∑N
i=1 ρ

e,L
i =

∑N
i=1 ρ

e,H
i and the following LED criterion.

Theorem 1 (Localized LED criterion). Suppose that the coefficients

κei =

    
fei

ui,max−uei
if f ei > 0,

fei
ui,min−uei

if f ei < 0,

0 if f ei = 0

(8)

are bounded for all e ∈ Ei. Then the LED conditions (6) hold if

∆t
∑
e∈Ei

κei ≤ mi ∀i = 1, . . . , Nh. (9)

Proof. See Theorems 1 and 2 in [16].
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Example 1. The simplest example of a residual distribution procedure that
produces ρe,L = R(ρe,H , u) with the above properties is [16]

ρe,Li =
ρe∗,+(uemax − uei )∑N
j=1(uemax − uej) + ε

+
ρe∗,−(uemin − uei )∑N
j=1(uemin − uej)− ε

, (10)

where

ρe∗,+ =
N∑
i=1

max{0, ρe,Hi }, ρe∗,− =
N∑
i=1

min{0, ρe,Hi }. (11)

The infinitesimally small positive number ε is used in formulas like (10) to
avoid indeterminacy in the case of a vanishing denominator. In a practical
implementation, the use of if-statements is preferable since the mass conser-
vation constraint is satisfied exactly only in the limit ε↘ 0.

As shown in [16], the simple definition of weights in (10) leads to a low-
order LED approximation which becomes increasingly diffusive as the degree
p of Bernstein basis functions is increased while keeping the total number of
degrees of freedom Nh fixed. To achieve p-independent convergence behavior,
a localized subcell residual distribution operator R was defined in [16].

Remark 1. If the coefficients (8) are bounded and the corresponding LED
scheme converges to a steady state solution, this solution can be shown to
satisfy generalized discrete maximum principles (see Lemma 4.16 in [23]).

4. Monolithic limiting strategy

To achieve higher than first-order accuracy, a bound-violating element
contribution ηe,Hi ∈ {ρ̇e,Hi , ρe,Hi , σe,Hi − σe,Li } should be corrected using the
nodal bounds (7) which depend on the data in neighbor elements if xei ∈ ∂Ke.
Using limiting functions based on the theory of algebraic flux correction
schemes [7, 8, 23], we will define nodal correction factors αei ∈ [0, 1] such that
the limited element contributions η̄e,Hi = αeiη

e,H
i satisfy

|η̄e,Hi | ≤ qei min{ui,max − uei , uei − ui,min} (12)

for some bounded coefficients qei ≥ 0 and local extrema defined by (7). If
η̄e,Hi ≥ 0, then (12) implies that η̄e,Hi ≤ qei (ui,max − uei ). If η̄e,Hi ≤ 0, then

−η̄e,Hi ≤ qei (u
e
i − ui,min), whence η̄e,Hi ≥ qei (ui,min − uei ). In either case, the

contribution of η̄e,Hi to κei defined by (8) cannot exceed qei .
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By Theorem 1, condition (12) implies the LED property of η̄e,Hi . However,
the mass conservation constraint

∑N
i=1 η

e
i =

∑N
i=1 η

e,H
i does not generally hold

for ηe = η̄e,H . Hence, an additional RD step is required to adjust the LED
part η̄e,H or the bound-violating remainder ηe,A = ηe,H − η̄e,H .

The adjustment of ηe,A can be performed, e.g., using one of the residual
distribution procedures developed in [16] to convert ρe,H into ρe,L. Replacing
ηe,A with η̄e,A = R(ηe,A, u), where R is a suitably chosen RD operator, we
will construct an element vector ηe = η̄e,H + η̄e,A satisfying the conditions of
Theorem 1 as well as the mass conservation constraint.

If the components of ηe,H sum to zero, then the zero sum property of
ηe = R(η̄e,H , u) can be readily enforced using an RD operator R which
performs additional limiting of positive or negative components. The LED
part η̄e,H of ηe,H violates the zero sum condition if η̄e∗,+ 6= −η̄e∗,−, where

η̄e∗,+ =
N∑
j=1

max
{

0, η̄e,Hj

}
, η̄e∗,− =

N∑
j=1

min
{

0, η̄e,Hj

}
. (13)

The two-step FCT algorithms employed in [16, 24] correct the mass conser-
vation error (if any) using the following kind of residual distribution:

ηei =
η̄e∗∑N

j=1 Φe
j,+ + ε

Φe
i,+ −

η̄e∗∑N
j=1 Φe

j,− − ε
Φe
i,−, (14)

where η̄e∗ = min{η̄e∗,+,−η̄e∗,−} and the RD weights Φe
i,± are defined by

Φe
i,+ = max{0, η̄e,Hi }, Φe

i,− = min{0, η̄e,Hi }. (15)

Note that the positive components of η̄ei remain unchanged if there is a loss
of mass (η̄e∗ = η̄e∗,+ =

∑N
j=1 Φe

j,+). Their negative counterparts remain un-

changed if there is a surplus of mass (η̄e∗ = −η̄e∗,− =
∑N

j=1 Φe
j,−).

A more sophisticated nonlinear correction procedure was proposed in [4]
to penalize changes of η̄e,Hi at nodes where η̄e,Hi = ηe,Hi .

In the remainder of this section, we discuss the definition of nodal cor-
rection factors and the choice of limiting strategy for different components
of the element contribution f e = ρ̇e + ρe + σe to the right-hand side of (5).

4.1. Limiting for volume integrals

The advective Galerkin element contribution ρe,Hi is defined by [16]

ρe,Hi = −
∫
Ke

ϕeiv · ∇uehdx, i = 1, . . . , N. (16)
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Using the diagonal matrix Ae of nodal correction factors (to be defined
shortly), we decompose ρe,H into the nonconservative LED part ρ̄e,H = Aeρe,H

and the remainder ρe,A = ρe,H−ρ̄e,H which requires residual distribution. The
resulting element vector can be formally written as

ρe = ρ̄e,H +R(ρe,A, u), (17)

where R is a residual distribution operator. In this work, we use the subcell
RD procedure which was found to produce the best results for ρe,A = ρe,H

in [16]. As we will see later, the idea of leaving the LED-part ρ̄e,H of the
Galerkin residual unchanged and applyingR to the (possibly vanishing) non-
LED-part ρe,H − ρ̄e,H results in further marked improvements.

When it comes to calculating the nodal correction factors αei ∈ [0, 1] for
ρ̄e,Hi = αeiρ

e,H
i , we use the following definition (cf. [18, 23])

αei = min

{
1, βei

min{ui,max − uei , uei − ui,min}
max{ui,max − uei , uei − ui,min}+ ε

}
. (18)

In accordance with the LED design criterion, this formula produces αei = 0 if
uei = ui,max or uei = ui,min. The free parameter βei > 0 determines the amount
of limiting away from local extrema. It can be chosen sufficiently large for
(18) to produce αei = 1 at least for locally linear functions uh. This property
is known as linearity preservation. As shown in [18], it is guaranteed for

βei ≥
maxe∈Ei h

e

maxe∈Ei r
e
, (19)

where he is the diameter of Ke and re is the diameter of the largest inscribed
ball. In general, larger values of βei result in more accurate approximations
but imply larger values of the LED coefficients qei which make condition (9)
more restrictive and may require the use of inordinately small time steps
(or cause convergence problems in the steady-state limit). In all simulations
employing the monolithic limiter we set βei = 10.

Theorem 2 (LED property of ρe
i ). Let αei defined by (18) be the nodal

correction factor for ηe,H = ρe,Hi . Then condition (12) holds for

qei = βei

N∑
j=1
j 6=i

∣∣∣∣∫
Ke

ϕeiv · ∇ϕejdx

∣∣∣∣ . (20)
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Proof. By definition of the Galerkin element contribution ρe,Hi to the dis-
cretized advective term, we have the estimate

|ρe,Hi | =

∣∣∣∣∣∣∣
N∑
j=1
j 6=i

(uej − uei )
∫
Ke

ϕeiv · ∇ϕejdx

∣∣∣∣∣∣∣ ≤
N∑
j=1
j 6=i

|uej − uei |
∣∣∣∣∫
Ke

ϕeiv · ∇ϕejdx

∣∣∣∣ ,
where |uej − uei | ≤ max{ui,max − uei , uei − ui,min} because

uej ≥ uei ⇒ |uej − uei | = uej − uei ≤ uemax − uei ,
uej ≤ uei ⇒ |uej − uei | = uei − uej ≤ uei − uemin.

Invoking (18), we conclude that

αei |ρ
e,H
i | ≤ βei min{ui,max − ui, uei − ui,min}

N∑
j=1
j 6=i

∣∣∣∣∫
Ke

ϕeiv · ∇ϕejdx

∣∣∣∣ ,
which proves the statement of the Theorem. �

Remark 2. Similarly to the FCT algorithms employed in [4, 16, 24], the
pointwise limiting of ρe,H is followed by a bound-preserving correction of the
possibly nonconservative LED part ρ̄e,H = Aeρe,H . The difference lies in the
fact that the components of ρe,H may not sum to zero and mass conservation
is enforced using residual distribution rather than additional limiting.

4.2. Limiting for boundary terms

In the DG version, the Galerkin discretization of the advective term pro-
duces additional boundary terms which are stored in the element contribution
σe,H = Se(ûe − ue). The symmetric element matrix Se is defined by [16]

seij = −
∫
∂Ke

ϕeiϕ
e
j min{0,v · ne}ds, i, j = 1, . . . , N, (21)

where ne is the unit outward normal to the boundary of Ke. The diagonal
element matrix S̃e of the low-order LED approximation σe,L = S̃e(ûe − ue)
is constructed from Se using row-sum lumping, i.e., [16]

s̃eij = δij

N∑
k=1

seik, i, j = 1, . . . , N. (22)
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The components of the element vector ηe,H = σe,H−σe,L sum to zero. There-
fore, we can constrain ηe,H using the zero sum preserving limiting strategy
described at the beginning of this section.

Theorem 3 (LED property of σe
i ). Let αei defined by (18) be the nodal

correction factor for ηe,H = σe,H − σe,L. Then condition (12) holds for

qei = 3βei

N∑
j=1
j 6=i

seij. (23)

Proof. Recall that
∑N

j=1 s
e
ij = s̃eii and s̃eij = 0 for j 6= i. We have

∣∣∣∣∣
N∑
j=1

(seij − s̃eij)(ûej − uej)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
N∑
j=1
j 6=i

seij(û
e
j − ûei − uej + uei )

∣∣∣∣∣∣∣
≤

N∑
j=1
j 6=i

seij(|ûej − uei |+ |ûei − uei |+ |uej − uei |)

≤ 3
N∑
j=1
j 6=i

seij max{ui,max − uei , uei − ui,min},

where we have used the triangle inequality and the sparsity pattern of Se.
Invoking definition (18), we obtain the desired result as in the proof of The-
orem 2. �

Remark 3. In our experience, the effect of correcting σe,L is marginal com-
pared to improvements that are achieved by correcting ρe,L. Therefore, the
correction of σe,L may sometimes be skipped to speed up calculations.

4.3. Limiting for mass matrices

The Galerkin element contribution ρ̇e,H to the right-hand side of the semi-
discrete high-order system (3) is defined by ρ̇e,H = (M e

L−M e
C)u̇e,H . A matrix-

free approach to calculating u̇e,H and ρ̇e,H is described in [16]. In the context
of monolithic limiting, the vector of time derivatives u̇e is defined by

miu̇i =
∑
e∈Ei

(η̇ei + ρei + σei ), (24)

10



where ρei and σei are the LED element contributions of the RD scheme and
η̇ei is a limited counterpart of the correction term

η̇e,Hi = ρ̇ei + θei (ρ
e,A
i + σe,Ai ), (25)

depending on a parameter θei ∈ [0, 1] and the element contributions

ρ̇e = (M e
L −M e

C)u̇e, ρe,A = ρe,H − ρe, σe,A = σe,H − σe. (26)

Note that the original Galerkin discretization (3) is recovered for ρ̇ei = ρ̇e,Hi
and θei = 1. The corresponding correction term η̇e,Hi = ρ̇e,Hi + ρe,Ai + σe,Ai
can be limited using the FCT algorithm presented in Section 5. However,
it is not well suited for monolithic limiting because correction factors that
provide the LED property while producing the same steady-state solutions
as the lumped-mass RD scheme are difficult to define. The use of (25) with
θei = 0 makes it easy to find such correction factors but tends to produce
large phase errors during the transient phase because the sign of η̇e,Hi = ρ̇ei
may differ from that of the limiting target η̇e,Ti = ρ̇ei +ρ

e,A
i +σe,Ai , the addition

of which to ρei + σei would produce ρ̇ei + ρe,Hi + σe,Hi . To make sure that η̇e,Hi
defined by (25) has the same sign as η̇e,Ti or equals zero, we use

θei = min

{
1,

|ρ̇ei |
|ρe,Ai + σe,Ai |+ ε

}
. (27)

Obviously, this definition produces η̇e,Hi = ρ̇ei = 0 in the steady state limit.
If the steady state solution is of primary interest or the problem at hand
is weakly time dependent, the right-hand side of the RD scheme (24) can
be assembled using η̇e = 0. This approximation corresponds to full mass
lumping which may significantly degrade the overall accuracy of high-order
finite element discretizations for strongly time dependent problems.

Since the components of η̇e,H sum to zero, the limiting strategy based on
(14) and (15) is applicable. In view of (27), the choice of the corresponding
correction factors α̇ei should guarantee the validity of (12) for η̄e,Hi = α̇ei ρ̇

e
i .

Time derivative limiters based on this design criterion were recently proposed
in [18, 23]. Adapting them to our RD setting, we define α̇ei as follows:

α̇ei = min

{
1, β̇ei

min{ui,max − uei , uei − ui,min}
max{u̇emax − u̇ei , u̇ei − u̇emin}+ ε

}
. (28)
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The parameter β̇ei should have units of the reciprocal second. Larger values
of β̇ei reduce the amount of limiting but the LED property is guaranteed for
smaller time steps. In the numerical examples below, we use (cf. [18, 23])

β̇ei = βei
max1≤i≤N |v(xei )|

2he/p
, (29)

where βei is the parameter used in (18) and he is the diameter of Ke, and
p ∈ N is the polynomial degree of Bernstein basis functions.

Theorem 4 (LED property of ρ̇e
i ). Let α̇ei defined by (28) be the nodal

correction factor for ηe,H = ρ̇e. Then condition (12) holds for

qei = β̇eim
e
i . (30)

Proof. We have ρ̇ei =
∫
Ke ϕi(u̇

e
i − u̇eh)dx. Since u̇eh is bounded by its Bern-

stein coefficients and
∫
Ke ϕ

e
idx = me

i , we have

α̇ei |ρ̇ei | ≤ α̇eim
e
i max{u̇emax − u̇ei , u̇ei − u̇emin}.

The statement of the Theorem follows by definition of α̇ei . �

Due to the dependence of the element contributions ρ̇e and correction
factors α̇ei on u̇e, system (24) is solved using the fixed-point iteration

miu̇
(m+1)
i =

∑
e∈Ei

(η̇ei (u̇
(m)) + ρei + σei ) (31)

which can be initialized using u̇(0) = 0. In the DG version, Ei = {e} consists

of a single element and (31) simplifies to me
i u̇

(m+1)
i = η̇ei (u̇

(m))+ρei +σ
e
i . Upon

convergence, the corrected element contributions f ei = η̇ei (u̇) + ρei + σei are
inserted into the right-hand side of the monolithic LED scheme (5).

5. Flux-corrected transport

In contrast to the above limiting procedures, which were largely inspired
by recent advances in the development of monolithic algebraic flux correction
schemes [7, 18, 23], classical FCT algorithms update the Bernstein coefficients
of the finite element solution uh using a low-order LED approximation

uLi = ui +
∆t

mi

∑
e∈Ei

f e,Li (32)

12



and perform LED antidiffusive corrections in the following manner:

ūi = uLi +
∆t

mi

∑
e∈Ei

R(f e,Ai , uL). (33)

The low-order element contributions f e,Li and the antidiffusive correction
terms f e,Ai for the RD-FCT schemes to be considered in this work are defined
in [16]. The components of f e,A sum to zero. The limiting operator R should
preserve this property while enforcing the local maximum principle

ui,min ≤ ūi ≤ ui,max. (34)

This task can again be accomplished using the zero sum preserving limiter
presented in Section 4. The FCT correction factor αei for the antidiffusive
element contribution f e,Ai is formally defined by [16, 24]

αei =


min

{
1,

me
i (ui,max−ue,Li )

∆tfe,Ai

}
if f e,Ai > 0,

min
{

1,
me

i (ui,min−ue,Li )

∆tfe,Ai

}
if f e,Ai < 0,

1 otherwise,

(35)

where me
i is a diagonal entry of the lumped element mass matrix M e

L. As
shown in [16, 24], this definition guarantees the validity of (34).

Remark 4. In practical implementations of the FCT algorithm based on
componentwise limiting of f e,A and mass correction [4, 16], the nonconserva-
tive LED approximation η̄e,Hi = αeif

e,A
i is calculated using the formula

η̄e,Hi =
me
i

∆t
(ūe,Hi − ue,Li ), (36)

where ūe,Hi = min{ui,max,max{ue,Hi , ui.min}} is a limited approximation to

the high-order value ue,Hi = ue,Li + ∆t
me

i
f e,Ai of the Bernstein coefficient.

6. Smooth extrema preserving limiting

The LED criterion imposes a second-order barrier on the accuracy of
numerical approximations in the neighborhood of local extrema [29]. To
avoid unnecessary limiting, smoothness indicators and troubled cell detectors

13



are commonly employed in the literature [9, 10, 12, 15, 20, 21, 27]. A suitably
defined smoothness indicator γei can be used to adjust the range [ui,min, ui,max]
of admissible values or the correction factor αei which provides the LED
property w.r.t. this range. Ideally, the definition of αei should guarantee

• optimal convergence behavior in smooth regions;

• preservation of local bounds in nonsmooth regions;

• preservation of global bounds in the whole domain;

• continuous dependence of η̄ei = αeiη
e,H
i on the data.

Let Ṽ CG
h = span{ϕ̃CG

1 , . . . , ϕ̃CG
NCG

h
} and Ṽ DG

h = span{ϕ̃DG
1 , . . . , ϕ̃DG

NDG
h
} de-

note the finite element spaces corresponding to the continuous and discon-
tinuous piecewise-linear (P1) or multilinear (Q1) approximations on subcells
of Th. Given the Bernstein coefficients ui, i = 1, . . . , Nh of a high-order finite
element approximation uh, we will define the nodal smoothness indicators
γei using reconstructed second derivatives of the piecewise-linear interpolant
ũh ∈ Ṽh, where Ṽh = Ṽ CG

h if Nh = NCG
h and Ṽh = Ṽ DG

h if Nh = NDG
h .

The nodal values ũeh(x
e
i ) = ũei = ueh(x

e
i ) are determined using pointwise in-

terpolation. Note that ũei may not coincide with the value of the Bernstein
coefficient uei if xei is not a vertex of the macroelement Ke.

Using a suitably defined discrete Laplacian operator ∆h : Ṽh → Ṽ CG
h to

calculate gi = (∆hũh)i, we define the nodal smoothness indicators

γei =

{
1−

(
|gi,min−gi,max|
|gi,min|+|gi,max|+ε

)q
if xei ∈ Ω,

1 if xei ∈ Γ
(37)

and

γei =

{
min

{
1,

C max{0,gi,mingi,max}
max{g2i,min,g

2
i,max}+ε

}
if xei ∈ Ω,

1 if xei ∈ Γ,
(38)

where q ≥ 1 and C ≥ 1 are sensitivity parameters. In the numerical studies
below, we use q = 5 and C = 3. The minimum and maximum

gi,min = min
j∈ÑCG

i

gj, gi,max = max
j∈ÑCG

i

gj (39)

are taken over the set ÑCG
i of nodes that share a subcell with node i. This

set contains the index i and the numbers of nearest neighbors.

14



For any q ∈ N, formula (37) produces γei = 0 if the signs of gi and gj
differ for any j ∈ ÑCG

i . If the signs of gi and gj are the same for all j ∈ ÑCG
i ,

then the value of the smoothness sensor γei ∈ [0, 1] depends on the difference
between gi,min and gi,max, i.e., on the local variations of the reconstructed
Laplacians. The value γei = 1 is obtained only if gj = gi for all j ∈ ÑCG

i .
Formula (38) produces γei = 0 as well if the signs of gi,min and gi,max differ.
The maximal value γei = 1 is attained if the signs of the two extrema are the
same and their magnitudes do not differ by more than a factor of C.

The discrete Laplacian operator ∆h : Ṽh → Ṽ CG
h that we use to calcu-

late the input data gj for the smoothness indicator is based on the direct
variational recovery of nodal Laplacians via (cf. [25], Section 5.3.1)

NCG
h∑
j=1

gj

∫
Ω

ϕ̃CG
i ϕ̃CG

j dx =

∫
∂Ω

ϕ̃CG
i n · ∇ũCG

h ds

−
∫

Ω

∇ϕ̃CG
i · ∇ũCG

h dx, i = 1, . . . , NCG
h , (40)

where ũCGh ∈ Ṽ CG
h is the consistent-mass L2 projection of ũh ∈ Ṽ DG

h in the
DG version and ũCGh = ũh in the CG version.

If row-sum mass lumping is performed, the formula for gi simplifies to

gi =

∫
∂Ω
ϕ̃CG
i n · ∇ũCG

h ds−
∫

Ω
∇ϕ̃CG

i · ∇ũCG
h dx∫

Ω
ϕ̃CG
i dx

, i = 1, . . . , NCG
h . (41)

This definition produces a rather smooth approximation to the nodal Lapla-
cians and, therefore, tends to overestimate the local regularity of ũh.

Remark 5. The reader may wonder why we reconstruct the second deriva-
tives of ũh instead of differentiating uh to compute gi. The reason for this
lies in the fact that the second derivatives of ueh are continuous at all inter-
nal nodes of Ke. Therefore, formula (37) would produce γei = 1 at these
nodes. Indeed, polynomials are smooth by definition, so smoothness indica-
tors based on jumps of second (or higher-order) derivatives are useful only
for nodes located at the corners of Ke. The idea of interpolating the corner
values to define γei at the remaining nodes, as proposed in [20], produces
reasonable results for p = 2 on relatively fine meshes. However, sharp peaks
may remain undetected in the interior of large high-order elements.
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In the context of RD-FCT schemes, we relax the local bounds using γei
and the coefficient ue,Hi of the unlimited high-order solution as follows:

ue,∗i,min = γei u
e,H
i + (1− γei )ui,min,

ue,∗i,max = γei u
e,H
i + (1− γei )ui,max.

(42)

For γei = 1, the so-defined relaxed bounds reduce to ue,∗i,min = ue,Hi = ue,∗i,max

leading to ūe,Hi = ue,Hi , i.e. no limiting. This property makes it possible
to avoid unnecessary limiting in smooth regions, while enforcing the LED
bounds ue,∗i,min = ui,min and ue,∗i,max = ui,max at troubled nodes where γei = 0.

To rule out violations of a priori known global bounds uglob
min and uglob

max, the
relaxed bounds (42) are further confined to be in the interval [uglob

min , u
glob
max] via

uei,min = max{ue,∗i,min, u
glob
min }, uei,max = min{ue,∗i,max, u

glob
max}. (43)

The bounds (43) are then utilized in the FCT step instead of ui,min, ui,max.
An extremum preserving version of the monolithic limiter based on (18)

can be defined using the modified correction factors

αei =


min

{
1,
βei (u

e
i − u

e,∗
i,min)

ui,max − uei + ε

}
if ui,max − uei > uei − ui,min+ε,

min

{
1,
βei (u

e,∗
i,max − uei )

uei − ui,min + ε

}
if ui,max − uei < uei − ui,min − ε,

(44)

defined in terms of the relaxed local bounds

ue,∗i,min = γei (2u
e
i − ui,max) + (1− γei )ui,min,

ue,∗i,max = γei (2ui − ui,min) + (1− γei )ui,max.
(45)

Again, preservation of global bounds can be enforced by confining the relaxed
bounds (45) within the global ones through (43). The time derivative limiters
α̇ei defined by (28) require similar modifications.

7. Numerical examples

In this section, we assess the accuracy of presented limiters and smooth-
ness indicators in a series of numerical experiments for the DG version of
the high-order Bernstein finite element approximation. As in the numerical
study presented in [16], computations are performed with different values of
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p for mesh sizes h(p) corresponding to exactly the same number of unknowns
Nh. The schemes under investigation are abbreviated by

RDS(p) subcell RD scheme without limiting (as defined in [16]);
MON(p) subcell RD with monolithic limiting (Section 4);
FCT(p) subcell RD with FCT-type limiting (Section 5).

The extremum-preserving versions of MON and FCT will be identified using
the suffix S1 for γei defined by (37) and S2 for γei defined by (38). The grid
convergence studies for MON-Si and FCT-Si, i ∈ {1, 2} are restricted to
stationary and time-dependent test problems, respectively.

The implementation of subcell RD procedures, limiting techniques and smooth-
ness indicators is based on the open-source C++ finite element library MFEM
[26]. Steady problems are solved using pseudo time stepping, whereas in the
time dependent case we employ the third order SSP Runge Kutta method.

7.1. Unsteady advection in 1D

In the first series of numerical experiments, we perform grid convergence
studies for the 1D smoothed step function

u0(x) =
1

4

(
1 + tanh

(
x− 0.15

0.03

))(
1− tanh

(
x− 0.35

0.03

))
which is advected in Ω = (0, 1) using the constant velocity v = 1. The ex-
act solution and boundary condition are given by u(x, t) = u0(x − vt) and
uin(t) = u(0, t), respectively. We solve this unsteady advection problem us-
ing the FCT version of the limited RD scheme. At the final time T = 0.5,
we compute the errors ‖uh(x, T ) − u(x, T )‖L1(Ω) and the corresponding ex-
perimental orders of convergence (EOC). The convergence behavior of the
unconstrained DG scheme is summarized in Table 1. The L1 error converges
at the rate p + 1 or faster for finite elements of degree p. The results pre-
sented in Table 2 illustrate the fact that even nonlinear LED schemes are at
most second-order accurate. As stated earlier, the use of a smoothness indi-
cator is a prerequisite for achieving higher than second order accuracy even
for problems with smooth solutions. Tables 3 and 4 demonstrate the ability
of FCT-S1 and FCT-S2 to deliver optimal convergence rates for advection
problems with smooth exact solutions. These two extremum preservig FCT
schemes produce virtually identical L1 errors which differ from those pre-
sented in Table 1 only for polynomials of degree p = 1, 2 on coarse meshes.
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Hence, both versions of the Laplacian-based smoothness indicator identify
the advected profile as a smooth function and prevent unnecessary limiting.

h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/ 48 9.12E-03 7.46E-04 2.27E-05 1.45E-06
1/ 64 5.06E-03 2.05 2.65E-04 3.60 4.66E-06 5.50 2.56E-07 6.02
1/ 96 1.97E-03 2.32 6.42E-05 3.50 6.83E-07 4.74 3.21E-08 5.12
1/128 9.56E-04 2.52 2.48E-05 3.30 2.08E-07 4.14 7.49E-09 5.05
1/192 3.34E-04 2.60 6.67E-06 3.24 4.06E-08 4.03
1/256 1.61E-04 2.53 2.71E-06 3.13
1/384 5.96E-05 2.45

Table 1: ‖ · ‖L1(Ω) errors and corresponding EOC for standard DG using p ∈ {1, . . . , 4}.

h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/ 48 7.02E-03 1.06E-03 1.02E-04 1.43E-04
1/ 64 4.84E-03 1.29 4.47E-04 3.01 4.44E-05 2.90 6.32E-05 2.84
1/ 96 1.99E-03 2.19 1.22E-04 3.20 1.55E-05 2.59 2.12E-05 2.69
1/128 9.66E-04 2.51 5.36E-05 2.87 7.78E-06 2.40 1.01E-05 2.58
1/192 3.39E-04 2.59 1.73E-05 2.78 2.99E-06 2.36
1/256 1.64E-04 2.52 8.02E-06 2.68
1/384 6.08E-05 2.45

Table 2: ‖ · ‖L1(Ω) errors and corresponding EOC for FCT and p ∈ {1, . . . , 4}.

h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/ 48 7.29E-03 1.08E-03 2.27E-05 1.45E-06
1/ 64 4.97E-03 1.33 3.64E-04 3.78 4.66E-06 5.50 2.56E-07 6.02
1/ 96 1.97E-03 2.28 6.42E-05 4.28 6.83E-07 4.74 3.21E-08 5.12
1/128 9.56E-04 2.52 2.48E-05 3.30 2.08E-07 4.14 7.49E-09 5.05
1/192 3.34E-04 2.60 6.67E-06 3.24 4.06E-08 4.03
1/256 1.61E-04 2.53 2.71E-06 3.13
1/384 5.96E-05 2.45

Table 3: ‖ · ‖L1(Ω) errors and corresponding EOC for FCT-S1 and p ∈ {1, . . . , 4}.

7.2. Unsteady advection in 2D

A standard 2D test problem involving the solution of the unsteady linear
advection equation (1) is the solid body rotation benchmark [22]. In this
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h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/ 48 7.29E-03 1.03E-03 2.27E-05 1.45E-06
1/ 64 4.96E-03 1.34 3.98E-04 3.33 4.66E-06 5.50 2.56E-07 6.02
1/ 96 1.97E-03 2.27 6.42E-05 4.50 6.83E-07 4.74 3.21E-08 5.12
1/128 9.56E-04 2.52 2.48E-05 3.30 2.08E-07 4.14 7.49E-09 5.05
1/192 3.34E-04 2.60 6.67E-06 3.24 4.06E-08 4.03
1/256 1.61E-04 2.53 2.71E-06 3.13
1/384 5.96E-05 2.45

Table 4: ‖ · ‖L1(Ω) errors and corresponding EOC for FCT-S2 and p ∈ {1, . . . , 4}.

example, the velocity field v(x, y) = (0.5 − y, x − 0.5)T is used to rotate
a slotted cylinder, a sharp cone, and a smooth hump around the center of
Ω = (0, 1)2. The initial condition, as shown in Figs. 1a–1c, is given by

u0(x, y) =



uhump
0 (x, y) if

√
(x− 0.25)2 + (y − 0.5)2 ≤ 0.15,

ucone
0 (x, y) if

√
(x− 0.5)2 + (y − 0.25)2 ≤ 0.15,

1 if

{(√
(x− 0.5)2 + (y − 0.75)2 ≤ 0.15

)
∧

(|x− 0.5| ≥ 0.025 ∨ y ≥ 0.85) ,

0 otherwise,

where

uhump
0 (x, y) =

1

4
+

1

4
cos

(
π
√

(x− 0.25)2 + (y − 0.5)2

0.15

)
, (46)

ucone
0 (x, y) = 1−

√
(x− 0.5)2 + (y − 0.25)2

0.15
. (47)

Homogeneous Dirichlet boundary conditions are prescribed at the inlets.
After each full rotation, the exact solution u(x, y, 2πk), k ∈ N coincides

with u0(x, y). The challenge of this test is to preserve the shape of the
projected initial condition uh(·, 0) as accurately as possible.

We approximate the solution of this test problem using unstructured
quadrilateral meshes with the total number of unknowns Nh = 31968 in
each case. The results after one revolution (T = 2π) are shown in Figs. 1–3
for different schemes and discretizations. In contrast to the low-order version
of the subcell RD scheme (cf. Figs. 1d–1f), its limited high-order extensions
based on FCT do not exhibit p-independent convergence rates (cf. Figs. 2a–
2c). As the polynomial degree p is increased while keeping Nh fixed, peak
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(a) initial condition for p = 2 (b) initial condition for p = 5 (c) initial condition for p = 11

(d) RDS(2), uh ∈ [0.00, 0.68] (e) RDS(5), uh ∈ [0.00, 0.69] (f) RDS(11), uh ∈ [0.00, 0.71]

Fig. 1: Initial conditions and corresponding low-order solutions uh(·, 2π) obtained with
RDS for p ∈ {2, 5, 11}.

clipping effects become more pronounced. The results presented in Figs. 2d–
2f confirm that significant improvements in preservation of the smooth and
sharp peaks can be achieved by using a smoothness indicator to avoid un-
necessary limiting in regions where the second derivatives vary smoothly and
γei approaches 1.

The RD results obtained with the monolithic limiter (MON) illustrate
the importance of including the element residuals η̇ei and the viability of the
limiting strategy proposed in Section 4.3. The numerical solution shown in
the left column of Fig. 3 was calculated using η̇ei = 0. The failure to include
the contribution of the consistent mass matrix gives rise to significant phase
errors. The addition of η̇ei leads to a marked improvement but the MON
solutions shown in the middle column of Fig. 3 are far less accurate than
the corresponding FCT results in Fig. 2b. This state of affairs is due to
the increased importance of mass matrix contributions for larger p and the
fact that the FCT approach is designed to produce the least diffusive results
for time-dependent problems and small time steps. The ability of MON to
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(a) FCT(2), uh ∈ [0.00, 0.99] (b) FCT(5), uh ∈ [0.00, 0.97] (c) FCT(11), uh ∈ [0.00, 0.96]

(d) FCT(2)-S1, uh ∈ [0.00, 0.99] (e) FCT(5)-S1, uh ∈ [0.00, 0.98] (f) FCT(11)-S1, uh ∈ [0.00, 0.98]

Fig. 2: Numerical solutions uh(·, 2π) obtained using using FCT (top) and FCT-S1 (bot-
tom) for p ∈ {2, 5, 11}.

resolve steep gradients and smooth peaks can be greatly improved by using
the proposed smoothness indicators. The accuracy of the MON-S1 results
presented in Fig. 3f is similar to that of the FCT-S solutions in Fig. 2e.

7.3. Steady advection in 2D

To show the merit of monolithic limiting, we solve the steady linear ad-
vection equation

v · ∇u = 0 in Ω = (0, 1)2 (48)

using the divergence-free velocity field v(x, y) = (y,−x) for two test config-
urations which differ in the choice of the inflow boundary data.

The Test 1 inflow boundary condition and the exact solution in Ω̄ are
given by

u(x, y) =
1

4

(
1 + tanh

(
r(x, y)− 0.4

0.03

))(
1− tanh

(
r(x, y)− 0.6

0.03

))
,
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(a) without mass matrix correction,
uh ∈ [0.00, 0.90]

(b) with mass matrix correction, uh ∈
[0.00, 0.96]

(c) with mass matrix correction and
S1, uh ∈ [0.00, 1.00]

(d) without mass matrix correction,
uh ∈ [0.00, 0.91]

(e) with mass matrix correction, uh ∈
[0.00, 0.93]

(f) with mass matrix correction and
S1, uh ∈ [0.00, 0.98]

Fig. 3: Numerical solutions uh(·, 2π) obtained using different versions of MON for p = 2
(top) and p = 5 (bottom).

where r(x, y) =
√
x2 + y2 denotes the distance to the corner point (0, 0). In

Test 2, we use

u(x, y) =


1, if 0.15 ≤ r(x, y) ≤ 0.45,

cos2
(

10π r(x,y)−0.7
3

)
, if 0.55 ≤ r(x, y) ≤ 0.85,

0, otherwise.

(49)

Predictor-corrector algorithms of FCT type do not converge to station-
ary solutions and their accuracy depends on the (pseudo-)time step. For
that reason, no grid convergence studies are performed for the FCT ver-
sion. To study the convergence behavior of MON in the well-defined steady
state limit, we calculate experimental orders of convergence for L1(Ω) er-
rors on successively refined uniform quadrilateral meshes. In Tables 5–6, we
show the outcomes of the grid convergence study for Test 1 with smoothness
indicators S1 and S2. The convergence rates are optimal for all considered
polynomial degrees. Thus, both S1 and S2 perform well in the case of smooth
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h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/48 1.63E-03 8.94E-05 5.88E-06 6.82E-07
1/64 9.66E-04 1.82 3.22E-05 3.55 1.77E-06 4.17 1.38E-07 5.56
1/96 3.59E-04 2.44 8.48E-06 3.29 3.44E-07 4.04 1.58E-08 5.35
1/128 1.76E-04 2.48 3.48E-06 3.10 1.09E-07 4.01 3.70E-09 5.04
1/192 6.63E-05 2.41 1.02E-06 3.02 2.15E-08 4.00
1/256 3.43E-05 2.29 4.32E-07 3.00
1/384 1.42E-05 2.17

Table 5: ‖ · ‖L1(Ω) errors and corresponding EOC for MON-S1 and p ∈ {1, . . . , 4}.

h p = 1 EOC p = 2 EOC p = 3 EOC p = 4 EOC
1/48 1.62E-03 8.94E-05 5.88E-06 6.82E-07
1/64 9.66E-04 1.80 3.22E-05 3.55 1.77E-06 4.17 1.38E-07 5.56
1/96 3.59E-04 2.44 8.48E-06 3.29 3.44E-07 4.04 1.58E-08 5.35
1/128 1.76E-04 2.48 3.48E-06 3.10 1.09E-07 4.01 3.70E-09 5.04
1/192 6.63E-05 2.41 1.02E-06 3.02 2.15E-08 4.00
1/256 3.43E-05 2.29 4.32E-07 3.00
1/384 1.42E-05 2.17

Table 6: ‖ · ‖L1(Ω) errors and corresponding EOC for MON-S2 and p ∈ {1, . . . , 4}.

solutions, in 1D as well as 2D scenarios. The steady-state MON, MON-S1,
and MON-S2 results for Test 2 are shown in Fig. 4. It can be seen that
the use of smoothness indicators improves the peak preservation capability
of MON without generating spurious undershoots and/or overshoots in the
neighborhood of discontinuities.

7.4. Application to advection based remap

The tests in this section are used to assess the behavior of the proposed
methods in the framework of advection remap. As explained in Section 7
of [4], solving the transport equation on a fixed grid is similar to remapping
fields on a moving mesh. A difference in the methodology is that the latter
approach requires updating the mesh positions and recomputing mass and
convective matrices corresponding to the moved mesh. The limiting proce-
dure, however, is identical.

Advection based remap is performed by evolving the numerical solution
in pseudotime τ ∈ [0, 1]. The parametrization limits τ ∈ {0, 1} correspond
to the initial and final mesh, respectively. Given a domain Ω and two corre-
sponding meshes with the same topological structure, we define the velocity
ν(xei ) of a mesh node xei as the difference between its final and initial posi-
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(a) MON(1), uh ∈ [0.00, 1.00] (b) MON(3), uh ∈ [0.00, 1.00] (c) MON(7), uh ∈ [0.00, 1.00]

(d) MON(1)-S1, uh ∈ [0.00, 1.00] (e) MON(3)-S1, uh ∈ [0.00, 1.00] (f) MON(7)-S1, uh ∈ [0.00, 1.00]

(g) MON(1)-S2, uh ∈ [0.00, 1.00] (h) MON(3)-S2, uh ∈ [0.00, 1.00] (i) MON(7)-S2, uh ∈ [0.00, 1.00]

Fig. 4: Numerical solutions uh obtained with MON(p) (top), MON(p)-S1 (middle) and
MON(p)-S2 (bottom) for p ∈ {1, 3, 7}.
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tions ν(xei ) = xei |τ=1 −xei |τ=0. The goal is to leave a function u, defined in
Ω, unchanged during mesh movement. This requirement is expressed by the
PDE system

du

dτ
= ν · ∇u, dx

dτ
= ν in Ω× [0, 1]. (50)

Since advection based remap fits in the framework of time dependent
problems, it is worthwhile to solve (50) with FCT rather than MON. We
present results for two remap configurations, where we start with uniform
Cartesian meshes in either case. In the first test, the initial condition is
identical to that of Section 7.2. The initial condition for the second test is

u(x, y) =
1

16
[ξ(10(x− 0.45)) ξ(−10(x− 0.45))

ξ(10(y − 0.05)) ξ(−10(y + 0.45))] ,

where

ξ(z) =
1√
π

∫ z

−z
e−s

2

ds

is the Gauss error function.
In both tests, we assess the ability of the scheme to prevent violations of

maximum principles for Bernstein polynomials of degree p ∈ {2, 5, 11} using
a fixed total number of unknowns. All experiments are run using third order
curved meshes. The final mesh configurations and remapped solutions are
shown in Figs. 5–6. We observe that the initial bounds and shapes of the
initial conditions are preserved despite substantial mesh deformations.

8. Conclusions

The theoretical and numerical studies presented in this work indicate that
a properly designed RD scheme for high-order finite elements can suppress
undershoots/overshoots without degrading the order of accuracy in smooth
regions. However, the design of accuracy-preserving LED approximations
is more difficult than for P1 and Q1 elements. Instead of modifying the
bound-violating element contributions of a high-order Bernstein finite ele-
ment approximation directly, discrete maximum principles can be enforced
using hp-adaptive schemes in which algebraic fixes are restricted to P1/Q1
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(a) Final mesh, p = 2 (b) Final mesh, p = 5 (c) Final mesh, p = 11

(d) FCT(2), uh ∈ [0.00, 1.00] (e) FCT(5), uh ∈ [0.00, 1.00] (f) FCT(11), uh ∈ [0.00, 1.00]

Fig. 5: Mesh (top) and solution uh (bottom) at τ = 1 obtained using FCT(p) with
p ∈ {2, 5, 11} for the Taylor-Green vortex.

(a) FCT(2), uh ∈ [0.00, 1.00] (b) FCT(5), uh ∈ [0.00, 1.00] (c) FCT(11), uh ∈ [0.00, 1.00]

Fig. 6: FCT(p) results of uh at τ = 1 for p ∈ {2, 5, 11} for the Gresho vortex.

subdomains. In the context of stationary elliptic problems (including sin-
gularly perturbed advection-diffusion equations), novel hp-FEM approxima-
tions of this kind were recently proposed in [20]. Their extension to time-
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dependent conservation laws would further advance the state of the art in
the field of bound-preserving high-resolution finite element schemes.
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