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Focal Area(s)  
This whitepaper addresses to two focal areas – (3) Insight gleaned from complex data using Artificial 

Intelligence (AI), and other advanced techniques (primary), and (2) Predictive modeling through the use 

of AI techniques and AI-derived model components (secondary). This topic is directly relevant to four 

DOE Earth and Environmental Systems Science Division Grand Challenges: integrated water cycle, 

biogeochemistry, drivers and responses in the Earth system, and data-model integration1. 

Science Challenge 
10-year Vision: Use a modular AI/ML framework to understand and predict how stream water quality 

(for a variety of constituents) will respond to perturbations at short (days) and long (years) time 

scales, and at reach to basin spatial scales. Here, we describe how a framework comprising data 

integration, big data analytics, information theory, and knowledge-guided AI can address fundamental 

science questions and predict the impacts of perturbations such as floods and droughts on water quality.  

Rationale 

Motivation - Hydrologic disturbances such as floods and droughts can have drastic, long-term 

consequences to water quality in rivers and streams 2,3. For example, flood events lead to increased 

hydrologic connectivity and runoff, resulting in soil erosion and constituent mobilization 4,5. Droughts 

drive eutrophication and evaporation, resulting in altered redox conditions and increased salt, nutrient, 

and contaminant concentrations 6. Thus, water quality changes due to floods and droughts can have 

direct, sometimes immediate and expensive, repercussions on human and ecosystem health 7,8. Hence, 

there is a pressing need to understand and predict water quality response and resilience to extreme 

water cycle disturbances at local to watershed to regional scales.  

Scientific gaps – Currently, physics-based deterministic watershed models cannot predict river water 

quality, much less the impacts of disturbance, at large spatial scales. High-fidelity multiphysics 

reactive transport models are inherently limited by incomplete process understanding that propagates to 

deficiencies in model structure. Moreover, these models computationally expensive, needing highly 

resolved spatial grids over vast domains to account for heterogeneous watershed characteristics that 

might influence water quality. Hybrid statistical/process-based basin-scale water quality models assume 

long-term steady-state behavior, and are just starting to incorporate temporal dynamics 9.  

Many studies of how water quality varies with space, time, and disturbance, are focused on reach 

to catchment scales and show that local characteristics and complex processes impact solute transport 10–

12. However, it is challenging to determine the persistence and impacts on water quality resulting from 

abrupt hydrologic disturbances and their landscape interactions at watershed to basin scales. Thus, 

studying the impacts of disturbance events also requires new ML strategies to identify and classify 

response patterns to disturbances in complex watershed systems, particularly at larger spatial scales. 

Current barriers – The prediction of water quality response to perturbations is challenging due to: 

1) Process complexity – Water quality involves a wide range of constituents from base physical 

variables (e.g. temperature, salinity) to several chemical and biological constituents, each influenced by 
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different drivers in different regions and at varying timescales. For example, water temperature is 

strongly driven by climate but can also be influenced by snowmelt, groundwater influx, and reservoir 

and power plant operations. The extent to which different drivers control water quality can change 

during a disturbance – e.g., groundwater influences on salinity increase during drought. Biogeochemical 

reactions that impact constituents such as nitrogen (e.g. denitrification) add further complexity. 

2) Scaling and generalizability – Hydrological disturbances span spatial and temporal scales (e.g., from 

highly localized flood events that span a few days to drought events that span several years over large 

regions). The scale of the disturbance also impacts the drivers of water quality. Building ML/hybrid 

models that translate across spatiotemporal scales is a significant challenge. Moreover, due to the spatial 

heterogeneity of watershed characteristics, scaling from data-rich small-scale test beds to other regions 

is challenging. Though parameter regionalization and classification of process-based models by 

catchment have attempted this type of scaling with mixed results 13, a robust way of bridging scales for 

accurate predictions of key water quality variables has not been identified. 

3) Persistence and memory effects – In some cases, the impact can persist well beyond the disturbance, 

particularly in systems with long residence times. Compound events such as alternating flood and 

drought scenarios also impact responses differently due to system memory. These scenarios require 

models that include the lagged effects of drivers over long time-scales (sometimes decades). 

4) Multivariate, high dimensional data – The complex interactions between processes affecting water 

quality necessitate the use of highly diverse multi-scale, multimodal data to improve predictability 

regardless of whether we use deterministic, ML, or hybrid models. These data requirements raise 

barriers such as discovering and integrating relevant data, representing complex data in ML models at 

relevant scales, high data dimensionality, and when necessary, untangling impacts of correlated drivers. 

5) Data discovery/sparsity – Water quality monitoring data are sparse compared to the 

hydrobiogeochemical complexity involved, and often co-located datasets on water quality and its drivers 

are either not available or not easily discoverable if available at all. Traditionally, ML techniques are 

‘data-hungry’ and advances in ML modeling need to overcome the data sparsity challenges.  

Potential impacts – This approach would enable predictions of changes to water quality for different 

disturbances, provide decision makers an understanding of the drivers for more optimized management, 

and determine where measurements are needed to reduce prediction uncertainties. 

Narrative 
Machine learning models have shown early promise in predicting stream temperatures, a master 

water quality variable, and are much more computationally efficient compared to multiphysics reactive 

transport models. For example, Jia et al. (In Press) used a graph-based LSTM neural network pre-trained 

with deterministic model output to predict basin-scale stream temperatures across the Delaware River 

Basin 14. Rahmani et al. (2021) used an LSTM neural network to predict point-scale stream temperatures 

for 118 catchments in the continental United States 15. ML-based models for stream water quality 

variables beyond temperature are in development, but exist for lakes 16.  Machine learning approaches 

have shown promise for understanding episodic hydrochemical dynamics and can help interpret 

complex concentration-discharge (C-Q) relationships if the relationships are non-stationary 17,18.  

There is an opportunity to have a modular, open source framework that brings together a 

variety of ML and related approaches to address the barriers, as described below.  

1) Data discovery, integration, assimilation - Capabilities that enable discovery and integration of 

relevant water cycle and disturbance data for modeling would accelerate ML(Cholia et al., submitted)19. 

Assimilation of new data into models (e.g. Brajard et al. 2020) can also improve prediction outcomes20. 
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2) Representation of complex data in ML models - Creating advanced multiscale graph-based data 

representations could represent river network structure and carry a diverse set of node/edge attributes to 

embed multimodal, multiscale, and multitemporal information, and correlate structures across different 

scales and time steps. Probabilistic Graphical Models are a powerful method to potentially incorporate 

prior knowledge. New optimization methods for data representation are needed and could include, e.g., 

removing dependencies on array-like representations and convolution operations. 

3) Hypotheses and knowledge generation - Accurate, efficient ML models can be built by first 

conducting data-driven analyses to infer physical information – such as identifying key drivers of 

changes in water quality to inform ML model selection, architecture, hyperparameters and input 

features. The data-driven analyses can include a combination of statistical analyses, causal inference, 

feature detection and classification 21,22. These analyses would improve ML model performance, reduce 

computational run-times and avoid overfitting, as compared to traditional machine learning approaches. 

4) ML model improvements for extremes – Typical ML loss functions based on mean squared error 

make the ML models best suited to predict mean behavior. New approaches are needed to predict 

extremes. One possibility is to encode prior knowledge of data representing extreme events as an 

additional feature in the ML training. Another option is to devise new types of loss functions, which 

could, for example, use weight multipliers to encode the importance of certain events. Using an adaptive 

model refinement approach (see Mueller et al., submitted23), scale-aware ML will switch between 

different scales, using coarse models when no rapid changes are expected and finely-resolved models 

when a disturbance event is expected.  

5) Physics-informed machine learning - Future climate projections anticipate more intense extreme 

events, which make it challenging to use ML models because they can only predict the range of events 

in the historical record.  Physics-driven ML that uses deterministic model output for pre-training could 

help fill this gap, and additionally enable extrapolation of predictions to other regions without data.  

6) Meta transfer learning - Recently, meta transfer learning has enabled the strategic transfer of models 

to improve prediction of data-sparse locations. This approach uses a meta-learning model to predict 

transfer performance of ML models using geophysical attributes and past performance metrics 24. Meta 

transfer learning flexibly allows the use of any type of model built on well-observed locations, including 

the aforementioned ML models for extreme events, and is thus suitable for increased regional scaling.  

7) Ensemble approaches - Most current ML approaches are brute-force and train several models with 

different architectures to identify the model with the least error. Ensemble approaches aim to exploit the 

diversity of predictive skill from different models and are showing promise at improving predictions and 

uncertainty quantification 25. These approaches can be formulated in many ways such as running 

simulations on a class of models, pre-training ML models on different process models, or transferring 

models from similar locations that are better observed within a meta transfer learning framework. 

8) Optimizing data collection - Arguably the best way to improve model predictions is to acquire 

relevant data when and where needed for reducing model uncertainties. Observing System Simulation 

Experiments (OSSEs) aim to identify how many and what types of observations are needed to reach a 

desired model performance metric 26. OSSEs could be improved to expand beyond using process- based 

models to also include ML models, which may value a different set of observations. Other ML 

techniques in conjunction with OSSEs such as active learning methods can inform data collection 14.  

This research will utilize unique DOE capabilities and datasets such as NERSC, data in the 

ESS-DIVE repository and AmeriFlux, and other software tools built for DOE projects. The 

framework will enable reproducible analysis and be open source to allow contributed plug and play 

modules. Data products will follow FAIR principles (e.g. standards for data integration). 
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