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Signal-Based (e.g. SIG-VISA®): The likelihood is based on comparing a

predicted waveform to the observed waveform. This requires a

complex predictive waveform model but can identity weak signals. Conclusion:

* Feature-based inference provides a promising approach to signal-based full
waveform monitoring that reduces the complexity of the statistical problem

Our Approach:

Formulate an inference problem based on predicting waveform features

. ] . e Advanced MCMC techniques can be employed to reduce the computational burden
instead of the waveforms themselves since this is more tractable 9 ploy P

, , . and allow for the explicit integration of uncertainty
Simulate waveforms?* to build a statistical model of waveform features

. . . . * Future work will focus on developing a richer set of features to better isolate
with uncertainty to accelerate inversion

, . information from the event and integrating more complex uncertainty models
Use Sequential Tempered MCMC to sample posterior event parameters

Sequential Tempered MCMC>¢ (ST-MCMC) :

* Update prior to posterior through intermediate distributions to aid * A population of parallel MCMC chains quickly explore and sample the intermediate
exploration through an annealing factor 3 to gradually introduce data, distributions
sensors, or adjust model fidelity Single MH Markov Cham Parallel MH Markov Chain
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