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Problem Set Up:
• Infer the event parameters: Longitude, Latitude, Depth, Magnitude, Time

• Observations: Seismometer waveforms at various locations

• Uncertainty to integrate: Travel time uncertainty, earth structure
heterogeneity, event focal mechanism, background noise process
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Challenge:
• Detecting and locating very weal< seismic signals requires sensor fusion

and utilizing more information signal waveforms

• Uncertainty quantification is essential since there is limited knowledge
about the complexities of models, sensors, and data

• Historic data or simulations will need to be used to understand these
complexities and synthesize them into tractable models

Potential Impact:
• Provide event information with well calibrated confidences for decisions

• Provide a framework to fuse multi fidelity and phenomenology data

• Enable experimental design methods to quantify a network's ability to
detect events and test improvements to the processing system

Existing Methods:
• Detection-Based (e.g. BayesLoc 1, NET-VISA2): The event likelihood is

based on comparing the predicted seismic wave arrival time to the
observed arrival time. This uses a simple travel time model but has
difficulty with weak signals when it is hard to detect the arrival.

• Signal-Based (e.g. SIG-VISA3): The likelihood is based on comparing a
predicted waveform to the observed waveform. This requires a
complex predictive waveform model but can identity weak signals.

Our Approach:
• Formulate an inference problem based on predicting waveform features

instead of the waveforms themselves since this is more tractable

• Simulate waveforms4 to build a statistical model of waveform features
with uncertainty to accelerate inversion

• Use Sequential Tempered MCMC to sample posterior event parameters

ature-Based Inference
Inference Model:
• Feature-based inference requires building statistical models for the lq<elihood of a

signal given features and the likelihood of the features given the eveA hypothesis
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Identification of Synthetic Events:

Identification of strong event
Power Time Series
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Identification of weak event
Power Time Series
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Conclusion:
• Feature-based inference provides a promising approach to signal-based full
waveform monitoring that reduces the complexity of the statistical problem

• Advanced MCMC techniques can be employed to reduce the computational burden
and allow for the explicit integration of uncertainty

• Future work will focus on developing a richer set of features to better isolate
information from the event and integrating more complex uncertainty models
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Sequential Tempered MCMC5,6 (STMCMC) :
• Update prior to posterior through intermediate distributions to aid

exploration through an annealing factor 13 to gradually introduce data,
sensors, or adjust model fidelity
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• A population of parallel MCMC chains quickly explore and sample the intermediate
distributions
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