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impact and consequence of scale on safety

Consumer Cells

(0.5-5 Ah)

Large Format Celis
(10-200 Ah)

Transportation
Batteries (1-50 kWh)

Utility Batteries
(WM)

Safety issues and complexity increase with battery size
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1 Current approaches to safety enhancement

Safety and reliability are connected to electrochemistry of materials, cell-
level interactions, packaging, control architecture, overall engineering

Research typically siloed:

Cell Level
(MatSci, Chem, ChemE)

• New positive electrode chemistries

• Non-flammable and solid electrolytes

• Electrode coatings

• Overcharge protection

• Higher melting separators

System Level
(EE, MechE)

• Battery spacing

• Battery management system

• Advanced failure detection

• Suppressants

• Deflagration venting
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ell-level: challenges of conventional Li-ion batteries

Li-ion batteries represent >90% of electrochemical energy storage and are
expected to dominate for at least next 5 years

Thermal runaway in a Li-ion battery:

• Heating starts
• Anode protective layer (SEI) breaks down
• Anode breaks down with electrolyte
• Separator melts, possibly causing short circuit
• Cathode breaks down, generating oxygen
• Oxygen reacts with electrolyte

Power 8 Energy Society
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ell-level: challenges of conventional Li-ion batteries

Various abusive conditions can trigger Li-ion battery thermal runaway

Short
circuit

Over-
charge/
discharge

Swelling
Lithium-ion cell

temperature increase
Battery material

decomposition
Venting
Rupture 1m* Propagation

Fire
Physical
damage

External
heating

Thermal
runaway

(without adequate detection and mitigation)
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New materials for safer Li-ion cells
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Development of non Li-ion battery chemistries

Increasing push toward 'safe' aqueous batteries

• Aqueous redox flow batteries
(mostly vanadium so far)

• Zn-based batteries

Power 8 Energy Society
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https://www.advancedsciencenews.com/new-air-
electrodes-zinc-air-batteries/

http://energystoragereport.info/redox-flow-batteries-for-energy-storage/

https://www.greentechmedia.com/articles/read/eos-inks-deal-with-
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1 'Safer than Li-ion' does not mean 'safe'

Aqueous electrolyte does not mitigate all hazards

• H2 generation is possible in aqueous systems

• Generation of other gases is possible depending on chemistry

• Thermal runaway is possible in some non-flow batteries

Due diligence is necessary for any battery to
understand degradation and failure modes
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1 Current approaches to safety enhancement

Safety and reliability are connected to electrochemistry of materials, cell-
level interactions, packaging, control architecture, overall engineering

Research typically siloed:

Cell Level
(MatSci, Chem, ChemE)

• New positive electrode chemistries

• Non-flammable and solid electrolytes

• Electrode coatings

• Overcharge protection

• Higher melting separators

( System Level
(EE, MechE)

• Battery spacing

• Battery management system

• Advanced failure detection

• Suppressants

• Deflagration venting
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1 Safety developments beyond cell materials

Kshetrimayum et al. Appl. Therm. Eng. 2019, 159, 113797.
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Understanding component interdependency is key to safety

No one material or device is the silver bullet

The key is understanding how they interact with one another
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Safety considerations incorporate diverse issues

• Siting (location, protection, egress/access, separation)

• Ventilation, thermal management, exhaust

• Interconnection with other systems (electrical, non-electrical sources)

• Fire protection (detection, suppression)

• Containment of fluids (from ESS and incident response)

• Signage

Power 8 Energy Society
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1 Analysis methodologies to enhance safety

Approaches involve qualitative/quantitative risk assessment or hazard mitigation analysis

• Each has pros and cons

• Applicable to any ESS (e.g. Li-ion or flywheel)

Probabilistic Risk Assessment

Accidents happen because the
components of a system fail

Power 8 Energy Society

Systems Theoretic Process Analysis

Accidents happen when component
interactions violate safety constraints

IEEE

16



Probabilistic risk assessment

Accidents happen because the components of a system fail

Analysis answers three questions:
1. What can go wrong?
2. How likely is that?
3. How bad would that be?

Techniques: Fault tree, FMEA, etc.

Where it works
• Lots of historical knowledge on failure modes

Problems
• Hard to apply in early products
• Probability assessment can be subjective

Power 8 Energy Soaety•
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ri

UJ • • • •

Human
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Image Credit: David Rosewate
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1 Example: failure modes and effects analysis

Component

BMS

Battery Cell

Inverter

Power 8 Energy Soaety•

Failure Mode

System doesn't
operate safely
through normally
expected
temperature
operating range

Group of failures

Inverter fails to
detect/react to
over temperature
IGBTs

Hazard
Effect

Consequence Prevent Detect
Probability,
Severity

Expected Value
for Risk

Fire Safety incident BMS testing
Independent
temperature
sensor

3, 10 30

Fire Safety incident
Abuse
testing

Fire alarm 3, 9 27

Loss of
function

Power output
de-rating

Rely on
supplier

3, 4 12

Table Credit: David Rosewater
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Systems theoretic process analysis Mgr

System = collection of interacting control loops

Accidents happen when component interactions violate safety constraints

Analysis answers three questions:
1. What are hazardous control actions?
2. What are the causal factors?
3. Unsafe interactions between multiple controllers?

Where it works
• New development of complex systems

Problems
• Complexity and volume of results can

make it unmanageable

Power 8 Energy Soaety•
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1 Regardless of the analysis approach...

Not a box checking exercise for code compliance

• All relevant codes/standards are applicable regardless of assessment conclusion

• Codes and standards are a starting point

Not about manipulating the numbers to pass requirements

• Does not serve anyone in the end

Power 8 Energy Society
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Limitations of codes and standard

Standards developed in working groups using accident data + operational experience

• Useful for specific guidance for most common accidents

• Slower to respond to new technologies, applications, and hazards

Insufficient to prevent accidents, but still critical

• Difficult to judge quality of full system safety analysis, but easy to check if
system complied with standard
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1 Accidents are still happening — what's missing?

23 ESS fires in South Korea since 2017 4 -500 ESS units shut down in Jan. 2019

Gaps identified in what may best be described as "Random errors in design, installation"

• Faults developed in installation (e.g. wiring)

• Limited protection against electrical shocks (e.g. ground faults)

• Poor integration between battery/energy/power management systems

• Inadequate environmental control (e.g. humidity/temperature swings degrade electronics)

Outcome was Li-ion battery fires, but causes are not battery-specific
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Accidents are still happening — what's missing?

"One of the major lessons learned from [that] project and others was the idea of "Day two"
management and anticipation, in other words, how will maintenance look once the project itself is
completed?"

- National Grid (Utility Dive, Feb. 2020)

Preventative maintenance may help identify reliability issues that crop up after initiating
operation

Limited emphasis in standards (so far)

Possible approach:
• Create list of faults linked to leading indicators
• Determine if indicators are tracked in current systems
• Finalize check-list of indicators
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Conclusions
 /

• Many research efforts to enhance safety at both battery and system level

• No silver bullets; everything needs to be properly integrated

• Need to analyze degradation/failure modes of any battery, even if not Li-ion

• Adherence to codes and standards is the minimum

• Need risk assessment/hazard mitigation analysis for integrated system

• Moving beyond Day 1: what does maintenance look like after the project is

completed?
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