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3 Economical storage of hydrogen is critical for enabling a
variety of zero emission technologies

Commercially available fuel cell vehicles with
physical-based hydrogen storage:

https://www.businessinsider.com/this-toyota-fuel-cell-car-can-power-your-house-2014-11
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Currently, the NEXO Fuel Cell is only available in California.

haps://www.hyundaiusa.com/nexo/index.aspx
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A material that meets all DOE technical targets
for on board hydrogen storage could help send
the technology mainstream:

How is hydrogen stored?
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4 Physisorbents are attractive due to fast kinetics, but suffer from
low volumetric capacities due to weak H2 interactions

Solution 1: Rationally design best H2 binding sites at
highest possible volumetric density

Record physisorptive
H2 capacity in the
MOF Ni,(m-dobdc)

Kapelewski, M. et al. Chem. Mater. 2018, 30, 22, 8179-8189
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Witman, M. et al. J. Phys. Chem. C 2017,  121, 2, 1171-1181
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to fast kinetics, but suffer from G-D
weak H2 interactions

Solution 2: High-throughput screening of known

chemical space to identify top adsorbents
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5 High-throughput screening may miss promising H2 physisorbents
due to two approximations (made for computational tractability)

1. Off-the-shelf "transferable" force fields don't accurately capture the interactions of H2
with the strongest binding sites in MOFs
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5 High-throughput screening may miss promising H2 physisorbents
due to two approximations (made for computational tractability)

1. Off-the-shelf "transferable" force fields don't accurately capture the interactions of H2
with the strongest binding sites in MOFs

2. Structures are assumed to be static
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3. Research question: How do we efficiently identify these materials that are nominally
non-porous, but are sufficiently flexible that H2 adsorption is energetically favorable?
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6 Graph theory-based, high-throughput porous materials'
analyses are enabled by open-source LAMMPS Interface

build passing docs passing pypi package 0.1.2

LAM M PS Interface

vertices =
{ '1' :

`elernent' : 'C',
`hybridization' : ̀sp3',
... }}

edges =
{ '2') :
{'order' : 2,

... }}
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6 Graph theory-based, high-throughput porous materials'
analyses are enabled by open-source LAMMPS Interface

build passing docs passing pypi package 0.1.2

LAMMPS Interface

vertices =
{ 1' :
{ 'element' : 'C',

`hybridization' : sp3

• • • }}
edges =
{ (` 1', '2') :
Corder' : 2,

• • • 11

E.g. LAMMPS Interface + graph theory screening has enabled:

1. High-throughput FF assignment and
determination of mechanical properties:

Boyd, et al. J. Phys. Chem. Lett. 2017, 8, 2, 357-363
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•

2. Min cut analysis of zeolite graphs
reveals 2D forming topologies:

Graph
Theory

Minimum
Cut 5

Surface
t

Witman, et al. ACS Cent. Sci. 2018, 4, 2, 235-245 1
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3. High-throughput identification of
flexible MOFs via graph search

This Work
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7 Hypothesis: MOFs containing saturated organic components
are likely to display a significant degree of flexibility

1. Preliminaries:
G = (V,E) be the MOF's connected, undirected graph

R E the set of all nodes considered rigid

F E the set of all nodes considered flexible
V' E the vertices in a connected subgraph of G
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4. Objectives:

L = f17;, , I (V; n T7 n = 0) A (17; U U = F)

N = 1 1/1)

I.e. what are all the independent, flexible subgroups in the MOF (La) and how big are
they (Na) ?
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8 Visualized: Graph theoretic identification of flexible subunits

2D sketch of a MOF building unit (4 linkers per unit cell):
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8 Visualized: Graph theoretic identification of flexible subunits

2D sketch of a MOF building unit (4 linkers per unit cell):
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f a objectives:
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2D sketch of a MOF building unit (4 linkers per unit cell):
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9 Automated extraction of CoRE MOFs deemed to be flexible
from graph theory descriptors

*.tvi 4*
lit* .4P

es

—10,000 CoRE MOFs

—2600 with min(Na) > 2

—1500 with min(N) > 2
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io Structurally diverse flexible moieties are identified by the
graph theory screening

Flexible side chains:
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1
ii  Computational adsorption experiments portend favorable H2

adsorption despite "non-porous" OK structure I

DFT calculations on materials with:

1. min(N) > 2

2. Pore size similar/slightly smaller than H2
3. Contain open metal sites (strong H2 binding sites)

i

1
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ii  Computational adsorption experiments portend favorable H2
adsorption despite non-porous OK structure

DFT calculations on materials with:

1. min(N) > 2

2. Pore size similar/slightly smaller than H2
3. Contain open metal sites (strong H2 binding sites)

Compute energies/geometries of various adsorption states:

Remove
adsorbates and

recompute
energy

Experimental

Structure

I
1. ASR

DFT relaxation and compute final energy

2. ASR:opt AEdef
AEb

3. MOF-H2
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DFT relaxation and compute final energy

Remove
adsorbates and

recompute
energy

Experimental

Structure

1
1. ASR

2. ASR:opt AEdef

4. MOF+H2
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DFT relaxation and compute final energy
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adsorbates and
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energy
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Structure

1
1. ASR

2. ASR:opt

1. Entirely non-porous minimum energy state:
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1. Entirely non-porous minimum energy state: 2. Highly favorable H2 binding yields overall
favorable process

0.6 -

0.4

(Z

0.2 -

0.0

ASR

ASR: opt
  MOF — H2

M.

IMIN MiN •

1 5 2.0 2 5

D [Å]
31.0 3 5

AEdef = 7.1 kJ/mo1H2

AEb = —11.3 kJ/mo1H2

H2 Intro > Lammps Interface Intro > Graph Theory Materials Screening Experiments



I 2 Computational adsorption experiments portend favorable H 2
adsorption despite non-porous OK structure

DFT relaxation and compute final energy

Remove
adsorbates and
recompute
energy L

1. ASR

2. ASR:opt AEdef AEb

3. MOF-H2

1. Entirely non-porous minimum energy state: 2. Highly favorable H2 binding yields overall
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3.0 3 5 3. Rigorous isotherm prediction would require
osmotic ensemble simulations and ab initio

accuracy, how to circumvent?
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12 Experimental adsorption studies are ongoing to validate
computational predictions I

1

To be determined

1
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13 Key Takeaways

1 H2 adsorption in nominally (i.e., 0 K DFT
optimized) nonporous can still be an
energetically favorable process

2. 10,000s of porous materials can be efficiently
screened with graph-theory based indicators of
flexibility

3. DFT can be used to assess the adsorption
viability of a handful of high potential, flexible
candidates

4. For robust quantitative screening of
adsorption, we need ab initio accuracy in the
osmotic ensemble... How to circumvent?
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Thank you for your attention.

Questions?


