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3 | Economical storage of hydrogen is critical for enabling a
variety of zero emission technologies I

Commercially available fuel cell vehicles with
physical-based hydrogen storage:
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https://www.businessinsider.com/ this-toyota-fuel-cell-car-can-power-your-house-2014-11
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A material that meets all DOE technical targets
for on board hydrogen storage could help send
the technology mainstream:

How is hydrogen stored?
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+ | Physisorbents are attractive due to fast kinetics, but suffer from
low volumetric capacities due to weak H, interactions

Solution 1: Rationally design best H, binding sites at
highest possible volumetric density

Record physisorptive
H, capacity in the
MOF Ni,(m-dobdc)

Kapelewski, M. et al. Chem. Mater. 2018, 30, 22, 8179-8189
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+ | Physisorbents are attractive due to fast kinetics, but suffer from
low volumetric capacities due to weak H, interactions

Solution 1: Rationally design best H, binding sites at Solution 2: High-throughput screening of known
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High-throughput screening may miss promising H, physisorbents K=

due to two approximations (made for computational tractability)

1. Oft-the-shelf “transferable” force fields don’t accurately capture the interactions of H,
with the strongest binding sites in MOFs
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s | High-throughput screening may miss promising H, physisorbents
due to two approximations (made for computational tractability)

1. Oft-the-shelf “transferable” force fields don’t accurately capture the interactions of H,
with the strongest binding sites in MOFs

2. Structures are assumed to be static
Otders of magnitude

difference in Henry coefficients
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non-porous, but are sufficiently flexible that H, adsorption 1s energetically favorable?

]
|
3. Research question: How do we efficiently identity these materials that are nominally |
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¢ | Graph theory-based, high-throughput porous materials'’
analyses are enabled by open-source LAMMPS Interface

vertices =
{ ‘15 :
{ ‘element’: ‘C’,
*hybridization’ : ‘sp3’,
o}
edges =
LAMMPS Interface (O 2)
{‘order’: 2,
v b}
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E.g. LAMMPS Interface + graph theory screening has enabled: |
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1. High-throughput FF assignment and
determination of mechanical properties:
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s | Graph theory-based, high-throughput porous materials'
analyses are enabled by open-source LAMMPS Interface
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E.g. LAMMPS Interface + graph theory screening has enabled: |

1. High-throughput FF assignment and 2. Min cut analysis of zeolite graphs 3. High-throughput identification of
determination of mechanical properties: reveals 2D forming topologies: flexible MOFs via graph search
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7 | Hypothesis: MOFs containing saturated organic components

are likely to display a significant degree of flexibility

1. Preliminaties:
G = (V,E) be the MOF’s connected, undirected graph
R = the set of all nodes considered rigid
F = the set of all nodes considered flexible
V' = the vertices in a connected subgraph of G
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4. Objectives:
L={V{, Vs, . Vi J (Vi nV; .0V =) AWV UV, ..UV} =F)
N ={[Vi], V3], e, IV 1}

I.e. what are all the independent, flexible subgroups in the MOF (L, ) and how big are

they (N,) ?
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Visualized: Graph theoretic identification of flexible subunits

2D sketch of a MOF building unit (4 linkers per unit cell):
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2D sketch of a MOF building unit (4 linkers per unit cell):
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Automated extraction of CoRE MOFs deemed to be flexible
from graph theory descriptors
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0 ‘ Structurally diverse flexible moieties are identified by the
graph theory screening

Flexible side chains: Fully aliphatic backbone:
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n 1 Computational adsorption experiments portend favorable H, o
adsorption despite “non-porous” OK structure !

DFT calculations on materials with:
1. min(Ng) > 2
2. Pore size similar/slightly smaller than H,
3. Contain open metal sites (strong H, binding sites)
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adsorption despite non-porous OK structure !

DFT calculations on materials with:
1. min(Ng) > 2
2. Pore size similar/slightly smaller than H,
3. Contain open metal sites (strong H, binding sites)

Compute energies/geometries of various adsorption states:

DFT relaxation and compute final energy

—

Experimental
Structure 4. MOF+H,
Remove
adsorbates and
recompute 2 ASR Opt AEdef T A
energy

1. ASR 3. MOF-H,
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Computational adsorption experiments portend favorable H,
adsorption despite non-porous OK structure

DFT relaxation and compute final energy
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2 I Computational adsorption experiments portend favorable H,
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3. Rigorous 1sotherm prediction would require
osmotic ensemble simulations and ab nitio
accuracy, how to circumvent?
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2 | Experimental adsorption studies are ongoing to validate
computational predictions

To be determined
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Key Takeaways

H, adsorption in nominally (i.e., 0 K DFT
optimized) nonporous can still be an
energetically favorable process

10,000s of porous materials can be efficiently
screened with graph-theory based indicators of
tlexibility

DFT can be used to assess the adsorption
viability of a handful of high potential, flexible
candidates

For robust quantitative screening of
adsorption, we need ab initio accuracy in the
osmotic ensemble... How to circumvent?



Thank you for your attention.

Questions?




