
MELCOR for MSRs:
Modeling, Development and Use

SNL, US NRC, CNL, CNSC, &AECL Meeting
March, 2020

PRESENTED BY

SNL Technical Staff

DEVELOPED BY

B. Beeny, L. Humphries, D. Luxat, R.Schmidt (SNL), H. Esmaili (US NR

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-2736PE



2 Overview

MELCOR molten salt reactor (MSR) and fluoride high temperature (FHR) reactor modeling

o Capabilities

o Survey of phenomena

USNRC/SNL/ORNL non-LWR evaluation model (EM) and source term demonstration calculations

Noteworthy outcomes from FY 2019 LDRD on MELCOR & MSRs

o Molten salt reactor experiment (MSRE) demonstration deck

o Conceptual circulating fuel point kinetics model (accounting for delayed neutron precursor drift)

Areas of future MELCOR development aimed at MSR/FHR

o Fission product and radionuclide transport in molten salt

o Fission product speciation and chemistry (thermochimica)

•



3 MELCOR MSR and FHR Modeling Status

NRC and SNL actively extending MELCOR for MSR/FHR modeling

o NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy (Volume 3)

o LDRD at SNL to develop capabilities to assess safeguard/non-proliferation issues

Leverage existing capabilities

o General EOS library read-in utility (developed for sodium/SFRs) enabled FLiBe

o TRISO fuel and pebble bed models (developed for HTGRs)

Multi-physics and flexible code architecture

Expansion of certain capabilities (e.g. circulating fuel point kinetics)

New capabilities

o Other-than-FLiBe salts (EOS models and transport properties)

o Salt and fission product speciation/chemistry plus radionuclide transport



4 FHR Phenomena

Salt-cooled reactors Environment
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5 MSR Phenomena

Salt-fueled reactors Environment
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6 USNRC/SNL/ORNL Non-LWR Evaluation Model
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7 USNRC/SNL/ORNL Source Term Demonstration Calculations

Near-term goal to complete three non-LWR source term demonstration calculations

o HTGR pebble bed using the PBR-400 reference design

o HPR using MegaPower reference design

o FHR using PB-FHR reference design

Most of the requisite capabilities are presently available in MELCOR, focus on:

o Demonstration of EM concepts (with limited MELCOR/SCALE interfacing at this stage)

o Debugging as necessary

• Generating representative, mechanistic source terms

o Outputs and results (visualization, plot file, HTML, text edits)

o Identifying potential issues with and best practices for SCALE/MELCOR interface

First-pass demonstrations will be simple in terms of input

Future iterations can build complexity and work towards fulfillment of the EMs



8 MSRE Model Description

MSRE model based on available information (ORNL-TM-0728)

o Use currently available MELCOR models and architecture

o Could eventually demonstrate new physics models

System represented using generic MELCOR elements
o 1D core for now with 2D extension straightforward
• 8 control volumes

• No traditional solid core (COR)

o Graphite blocks (heat structures)

o Diversion and drain tanks in primary loop

o Core bypass (leakage flow)

o Primary loop (with heat structures for pipe walls)

o Fuel pump and pump bowl

o Horizontal u-tube heat exchanger

10 MWth MSRE built at ORNL in 1964 & went critical in 1965

Operated until 1969 (20,000 hr)
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9 MSRE Simulation Steady-State Results

Successful benchmarking (steady-state at nominal MSRE conditions (10 MWth, Tin/Tout = 1175/1225 °F)
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Initial efforts for analysis of FHR-type reactor underway
o Sample analysis based on PBR-400 (HTGR) with FLiBe as the working fluid
O Error-free execution
o Physically sensible plant response
o Will expand validation efforts

Efforts for developing source term estimates for MSR and FHR will commence in FY20

•



10 Conceptual Circulating Fuel Point Kinetics Model

Assessment

o MELCOR2 PRKF, model currently applies to conventional, stationary, solid fuel

o Nuclear data for thermal, 235U-fueled systems

o Certain reactivity feedback models (data from separate neutronics calculations)

o Special technique to approximate a matrix exponential and deal PRKE stiffness

o Require modifications to capture circulating fuel effects and delayed neutron precursor drift

O Require other source code "rewiring' due to when/how the solid-fuel PRKE model is implemented

Proposal(s)

O Take a lumped approach to delayed neutron precursor accounting — divide the DNP inventory "in-core" and "ex-core"

o New model with conservation equations capturing precursor "drift" (to/from) "in-core" (from/to) "ex-core"

O Apply similar numerical solution strategy to that of the solid fuel PRKEs

Mathematical formulation derived and some required code input/architecture changes already made



11 Conceptual Circulating Fuel Point Kinetics Model
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P= Thermal power due to fission

4= Thermal power due to delayed neutron precursor group

So= Thermal power generation rate due to neutron source
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P(t)= Themial power due to fission

CF= delayed neutron precursor group r inventory/concentration in-core

CP= delayed neutron precursor group i inventory/concentration ex-core (in loop)

So= Thermal power generation rate due to neutron source

p(t) =
k- 1 
- Reactivity for k the effective multiplication factor

fi= Effective delayed neutron fraction

fl= Delayed neutron fraction (static, in absence of drift effects)

A — 1A,v1 - Neutron generation time

MC a ito, = th = Residence time of precursors (core, loop, respectively)

Vor Fluid volume (core, loop, respectively)

A,.= Decay constant of delayed neutron precursor group i
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12 Conceptual Circulating Fuel Point Kinetics Model

Revised statements of delayed neutron precursor conservation to account for drift
o In-core (core) delayed neutron precursors are:

O Born by fission in the vessel

O Gained by drift, i.e. transport from ex-core inventory (in-flow to core) according to loop transit time

O Lost by decay

O Lost by drift, i.e. transport to ex-core inventory (out-flow from core)

o Ex-core (loop) delayed neutron precursors are:

O Gained by drift, i.e. transport from in-core inventory (in-flow to loop)

O Lost by decay

O Negligible gain due to delayed neutron-induced fission ex-vessel

One equation for fission thermal power magnitude, but now twelve equations for the two DNP groups

Can follow same numerical solution approach
o Cast in matricial form, but now a 13x13 coefficient matrix

o Compute/estimate a matrix exponential with the Pade(3,3) approximant

o Do same series of matrix inversions and algebraic operations

•



13 Conceptual Circulating Fuel Point Kinetics Model

A 2D spatial (r,z) distribution of DNPs at time t + dt can be computed if distribution is known at time t

•

Within the core of a fluid-fuel reactor, delayed neutron precursor conservation may be expressed:

a•Cf(r, z, t) 0 qc (r, z, t) aCr (r,z, t) (Iii
 + vz az + vr ar - A )n.(r,z, t) - itiC ,Cat Ifr , z , t)

A general solution can be pursued with the method of characteristics. Treating t as a parameter, one

obtains two characteristic equations:

dz dr
=

(it 2 dt
= v 
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Integrating both and allowing the constants of integration to be a and ,6" and letting functions A (z, t)

and Bfr, t) equal those constants:

z(t ; a,fl) = vzt + a A (z t) = a = - t

r(t ; a, )9) = + B(r,t) = = r - vrt

The PDE can be reduced to an ODE by changing coordinates to R = B (r,t),Z = A(z,t),T = t. The

resulting ODE can be integrated (integrating factor method) to yield a general solution - up to a function

F(R = r - virt, Z = z - vzt) - after transforming variables back to (r, z, t) :

Cac.(r, z,t) = (OVA) n(r,z, t) -F F (r - vrt, z - vzt)e-lit

In the context of this delayed neutron precursor solve, the function n(r, z,t) is known. To resolve the

function F(r - z - rzt), a side condition is required. Assuming the condition:

cr(,,,z,t= = z)

Results in a solution:

cr z, = (13(747... 
A 
z.. - Et) + (r - vrt, z - vzt)ie-Ait

Practically, this could be used in tandem with the lumped-parameter circulating fuel PRKE solution to

discern the delayed neutron precursor distribution in-core. Note that Cro-,z,t) and Cr (t) from the PRKE
solution are related as:

Cic = iff cf (r, = 274
11

CF(r, Ordrdz
o o



14 Future Code Development Areas

Fission product (radionuclide) transport in molten salt
On-going development of fission product transport modeling (Fred Gelbard)

o Several outstanding questions
• Appropriateness of equilibrium assumptions

• Fission product vapor/aerosol bubble transport in molten salt pool, migration to and
vaporization at a free interface

• Aerosol (micron-sized) formation from bubble burst at free surface

Fission product (radionuclide) speciation/chemistry in/with molten salt
o Thermochimica (thermochemical equilibrium solver) a useful tool in this respect?

o New/revised capabilities for RN class transitions according to chemical
transformation

Lhuissier, H and Vilermau, E.
"Bursting bubble aerosols," J Fluid
Mech (2012), vol 696, pp 5-44
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