

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in this paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020-2778C

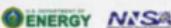
Calibration, Propagation, and Validation of Model Discrepancy Across Experimental Settings

PRESENTED BY

Kathryn Maupin and Laura Swiler

STAM Conference on Uncertainty Quantification

laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract



Administration under contract DE-NA0003525.

Overview

- Motivation
- Background
- Dakota implementation
- Example
- Philosophical Issues

Motivation: Predictions Under Uncertainty

We need to make predictions that incorporate both **parametric** and **model** form uncertainties

- Predictions may be interpolatory or extrapolatory
- Central to **high-consequence** model and simulation activities

Here, we focus on **non-intrusive** methods to support black-box simulations

- Perform predictions under uncertainty with explicit discrepancy models
- Explore challenges from algorithmic and deployment perspectives

Calibration of Computer Models

Experimental data = Model output + error

$$d(x_i) = M(\boldsymbol{\theta}, x_i) + \varepsilon_i$$

- $\boldsymbol{\theta}$ = variables to be **calibrated**
- x = **scenario** or **configuration** variables
 - Represent different experimental settings at which data is taken (temperature, pressure, etc)
- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ = i.i.d. measurement/observation **error**

The likelihood over n experiments is

$$L(\boldsymbol{\theta}) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(d(x_i) - M(\boldsymbol{\theta}, x_i))^2}{2\sigma^2} \right]$$

A surrogate model $\hat{M}(\boldsymbol{\theta}, x)$ may be used in place of the simulation model $M(\boldsymbol{\theta}, x)$ for computational efficiency

Calibration of Computer Models

Often, even with calibration, the agreement between the data and the model is not very close. This can be due to **model form error**, also called **model discrepancy** or **structural error**

$$\Rightarrow d(x_i) = M(\boldsymbol{\theta}, x_i) + \delta(x_i) + \varepsilon_i$$

Goal: Make predictions in the presence of parametric and model form uncertainties

Philosophical and implementation issues:

- How do we **estimate** δ ?
- What model **form** is appropriate for δ ?
- How can we understand if there is significant **confounding** between our estimates of $\boldsymbol{\theta}$ and δ ?
- How can we appropriately use δ to improve the **predictive capability** of the model?
- How do we capture and **propagate** uncertainty

Additional work on model discrepancy

The parameters of a model are **non-identifiable** when multiple combinations of θ and δ yield equally good fits to the data

- Arendt, P. D., Apley, D. W. & Chen, W. (2012)
 - Recommend modular Bayes approach to encourage identifiability
- Ling, Y., Mullins, J., Mahadevan, S. (2014)
 - Introduced a practical method to determine non-identifiability of parameters
 - Examined model discrepancy function selection
- Brynjarsdottir, J. and O'Hagan, A. (2014)
 - If model discrepancy is ignored, then predictions (both interpolations and extrapolations) and inferences about parameters are **biased**
 - If model discrepancy is used, it must be **informed** with physical information and a carefully selected prior

Additional work on model discrepancy

Discrepancy may be **embedded** in the model instead of explicitly added

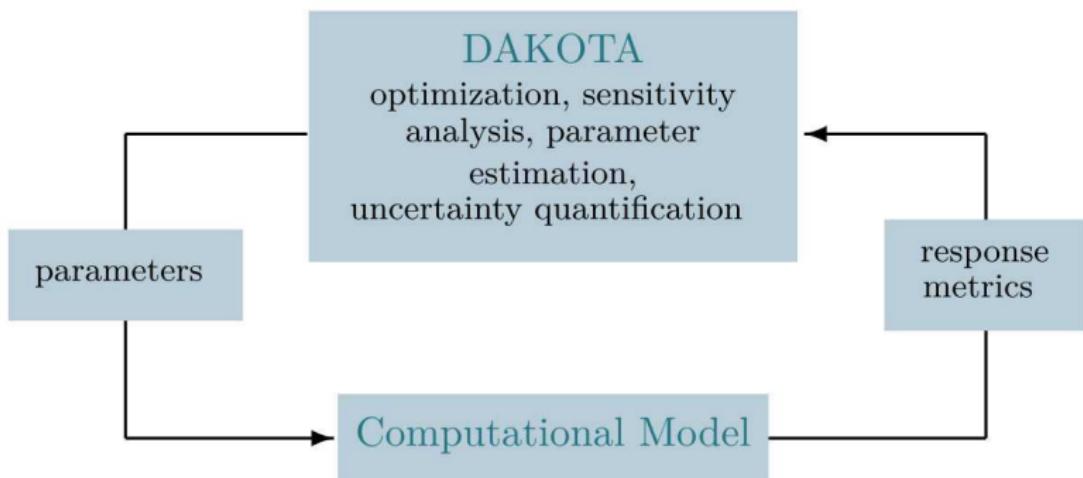
- Sargsyan, K., Najm, H. N., Ghanem, R. (2015)
- Sargsyan, K., Huan, H., Najm, H. N. (2018)
 - Explicit discrepancy may not adhere to physical laws
 - Explicit discrepancy is confounded with measurement error
- Morrison, R. E., Oliver, T. A., Moser, R. D. (2016)
- Portone, T., McDougall, D. Moser, R. D. (2017)
 - Use of a stochastic operator as an inadequacy representation

How do we make the answers to our philosophical questions general?

DAKOTA

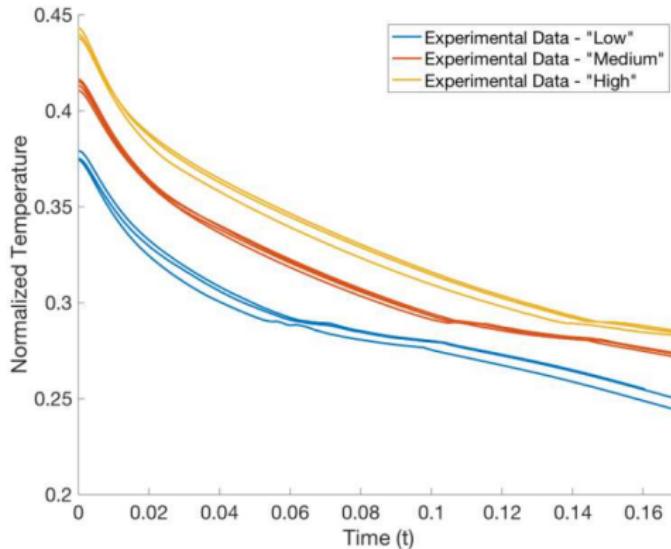
Explore and predict with confidence.

Automate typical parameter variation studies with advanced methods and a generic interface to your simulation



Discrepancy Formulation in Dakota

Given data, we want to calibrate model parameters θ and calculate δ



- **Response** = experimental value at a point in time or space
- **Field** = set of responses for single experiment
- **Configuration** = experimental setting such as temperature or pressure

Discrepancy Formulation in Dakota

Currently in Dakota

- Parameters $\boldsymbol{\theta}$ are calibrated to experimental data $d(x)$
- **Scalar responses**
 - For each response function

$$\delta(x_i) = d(x_i) - M(\boldsymbol{\theta}, x_i)$$

- $\delta = \delta(x)$ is **only** a function of the configuration variables
- **Field responses**
 - For each response in the field

$$\delta(t_i, x_j) = d(t_i, x_j) - M(t_i, \boldsymbol{\theta}, x_j)$$

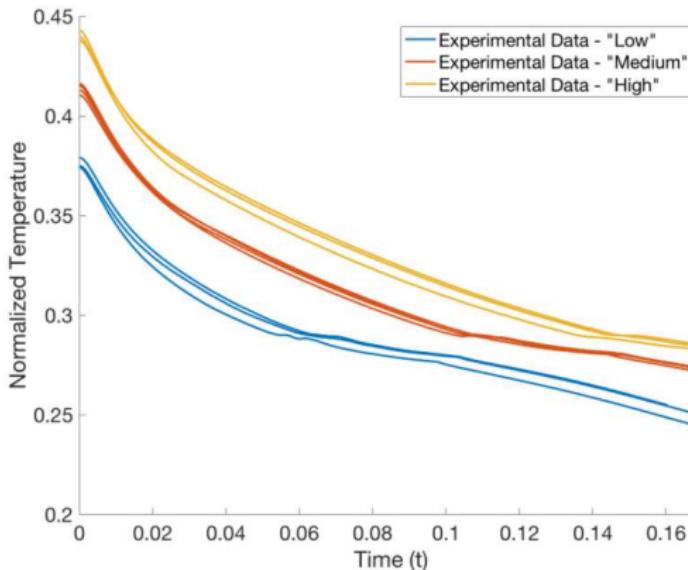
- $\delta = \delta(t, x)$ is a function of the configuration variables and independent field coordinates

- Prediction variance can also be computed

$$\Sigma_{total}(t, x) = \Sigma_d(t, x) + \Sigma_{\delta}(t, x)$$

Example: Thermal Battery Calibration

We wish to use a single model for temperature calculations for **any** initial condition



- t = time
- $\theta = \{\theta_1, \dots, \theta_7\}$ = parameters to be calibrated
- x = configuration parameter (initial condition)

Example: Thermal Battery Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

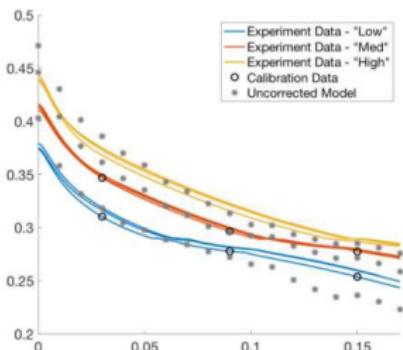
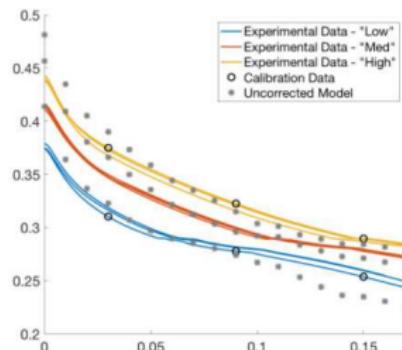
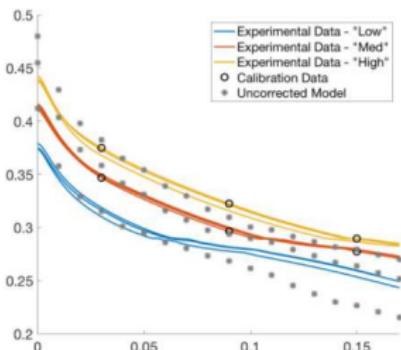
$$\pi(\theta|\mathbf{d}) \propto \pi(\mathbf{d}|\theta)\pi(\theta)$$

- Model is an emulator with 7 parameters
- Three cases of “leave one out” calibration
 - Calibrate to low and medium, extrapolate to high
 - Calibrate to low and high, interpolate to medium
 - Calibrate to medium and high, extrapolate to low
- Choose one experiment of each type
- $\pi(\theta) \sim \mathcal{U}$
- $\pi(\mathbf{d}|\theta) \sim \mathcal{N}$

Example: Thermal Battery Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

- Using $\bar{\theta}$, the model is **inadequate**



Example: Thermal Battery Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d}_d using Bayes' Rule

Step 2: Calculate discrepancies

$$\delta(t_i, x_j) = d(t_i, x_j) - M(t_i, \bar{\theta}, x_j)$$

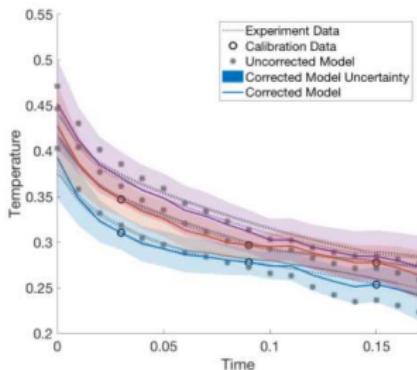
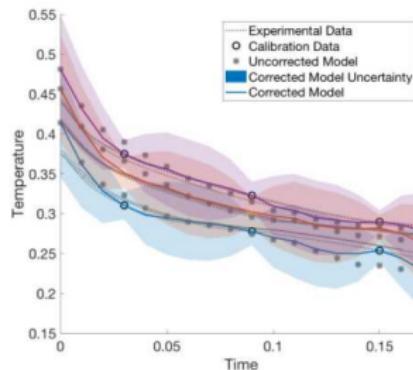
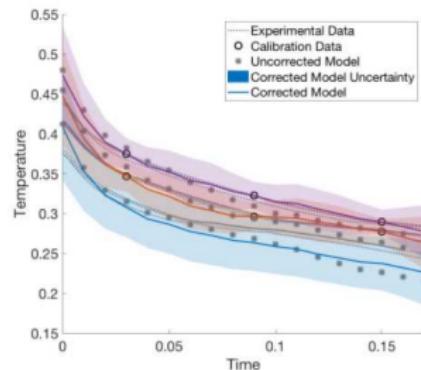
Example: Thermal Battery Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

Step 2: Calculate discrepancies

Step 3: Calibrate discrepancy model

- Discrepancy model corrected some areas better than others
- Experimental data is contained within the prediction intervals of the corrected model



Example: Thermal Battery Calibration

Comparison to Simultaneous Calibration

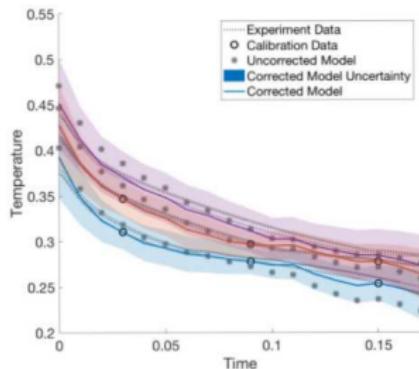
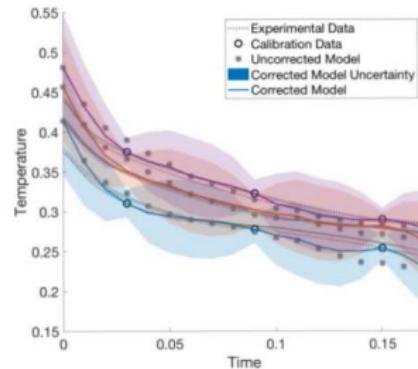
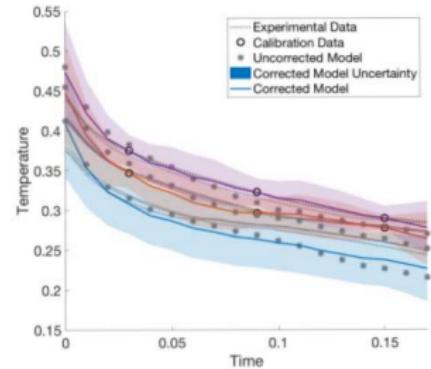
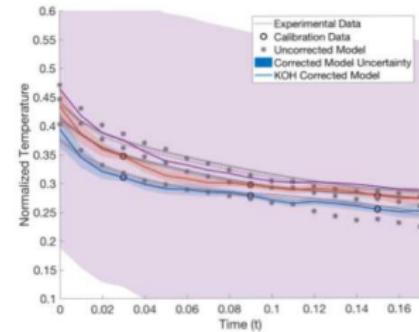
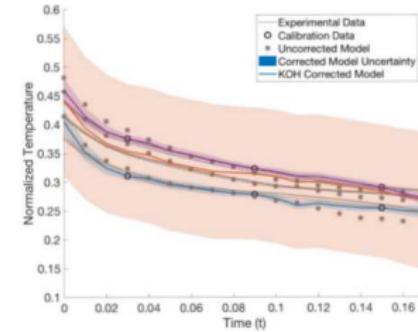
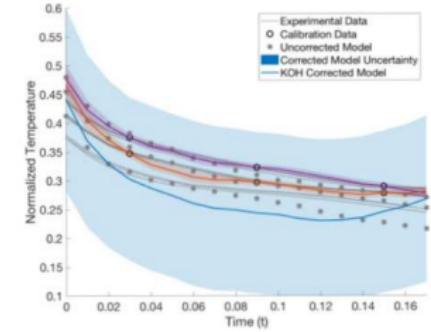
The original Kennedy and O'Hagan paper proposed **simultaneous** estimation of θ and δ parameters

$$\Rightarrow \pi(\theta, \ell | \mathbf{d}) \propto \pi(\mathbf{d} | \theta, \ell) \pi(\theta, \ell)$$

- $\ell = \{\ell_x, \ell_t\}$ = correlation lengths of δ
- $\theta = \{\theta_1, \dots, \theta_7\}$
- $\pi(\theta, \ell) \sim \mathcal{U}$
- $\pi(\mathbf{d} | \theta, \ell) \sim \mathcal{N}$

Example: Thermal Battery Calibration

Comparison to Simultaneous Calibration



Example: Thermal Battery Calibration

Comparison to Simultaneous Calibration

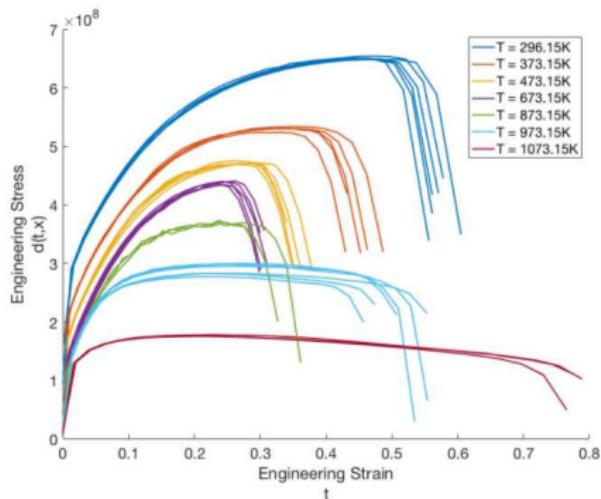
	Case 1	Case 2	Case 3
Uncorrected Model	3.24%	3.88%	4.22%
Corrected Model	1.74%	2.26%	3.03%
KOH Corrected Model	1.96%	2.32%	4.47%

For the simultaneous approach:

- Smaller variance along calibration temperatures
- Some validation data falls outside of the 95% confidence intervals
- Larger variance along prediction temperatures
 - Larger ℓ_x , likely due to difficulty exploring full parameter space during MCMC
- Calibration times increased by 49%, 39%, and 41% for Cases 1, 2, and 3, respectively
 - Rejection rate much higher ($> 30\%$)
 - Need to build new GP for each sample

Example: Material Failure Calibration

We wish to use a single phenomenological model for stress calculations for **any** temperature



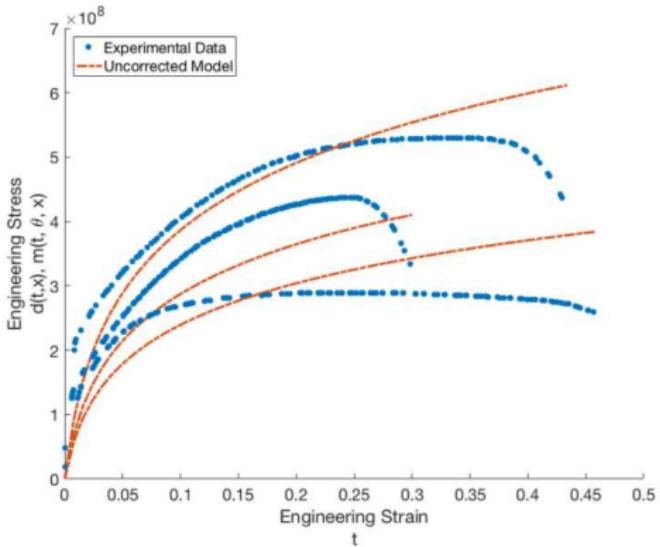
$$m(t, \theta, x) = \theta_1 \left[\frac{\log(100t+1)}{x^{0.5}} - \frac{1}{x^{0.2} (100t - 1.05(\frac{x}{100} - 6.65)^2 \theta_2)^2} \right]$$

- t = strain
- $\theta = \{\theta_1, \theta_2\}$ = parameters to be calibrated
- x = configuration parameter (Temperature)

Example: Material Failure Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

- Calibrate against data from $x = 373K, 673K, 973K$
 - Calculate mean and variance for each
 - $\pi(\theta) \sim \mathcal{U}$
 - $\pi(\mathbf{d}|\theta) \sim \mathcal{N}$
- Using $\bar{\theta}$, the model is **inadequate**



Example: Material Failure Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

Step 2: Calculate discrepancies

$$\delta(t_i, x_j) = d(t_i, x_j) - M(t_i, \bar{\theta}, x_j)$$

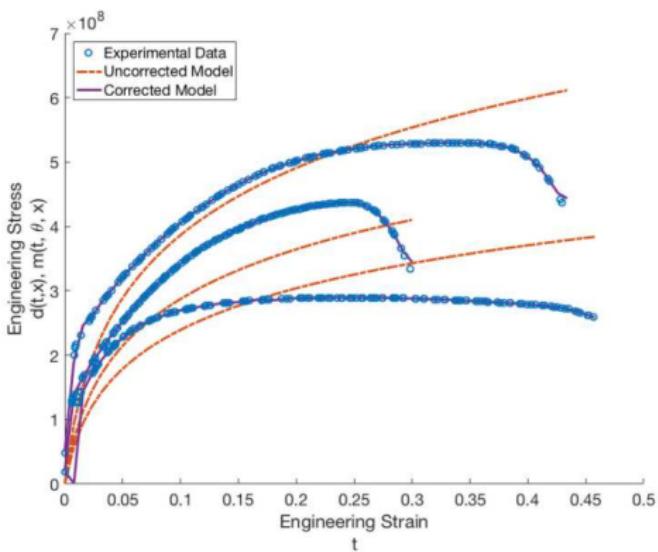
Example: Material Failure Calibration

Step 1: Parameters θ are calibrated to experimental data \mathbf{d} using Bayes' Rule

Step 2: Calculate discrepancies

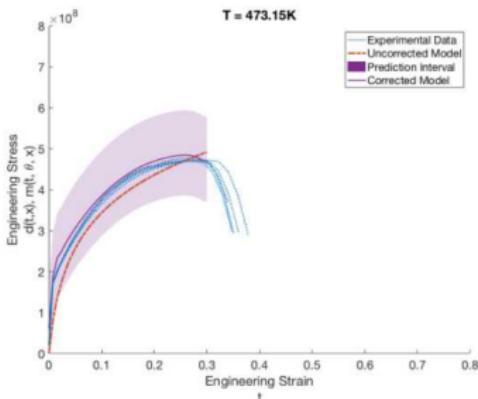
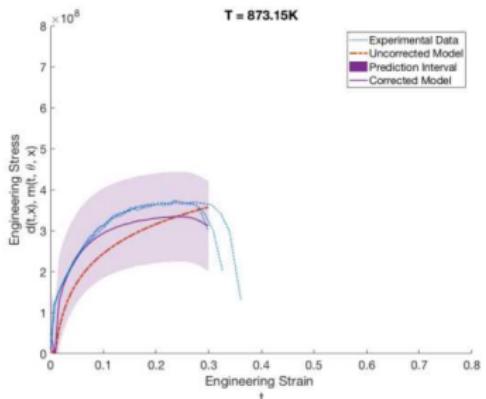
Step 3: Calibrate discrepancy model

- δ is able to correct the model for the calibration configurations
- How well does the corrected model perform for the prediction configurations?

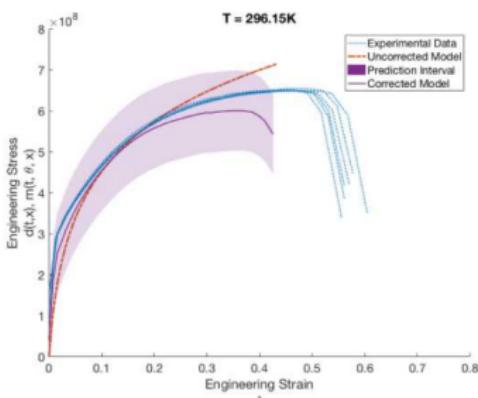
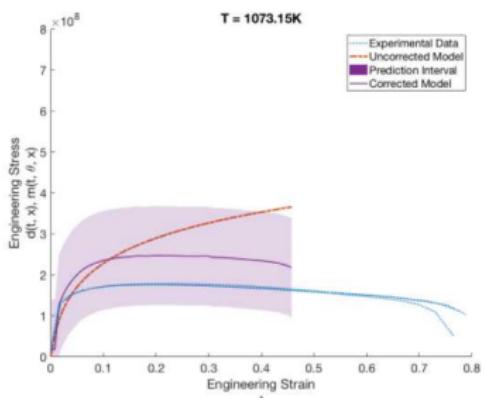


Example: Material Failure Calibration

Interpolation
of δ



Extrapolation
of δ



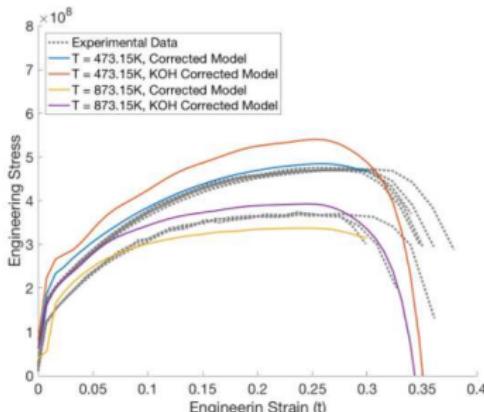
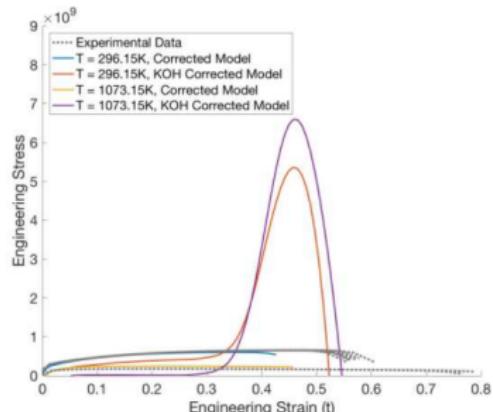
Example: Material Failure Calibration

Comparison to Simultaneous Calibration

As before,

$$\pi(\boldsymbol{\theta}, \boldsymbol{\ell} | \mathbf{d}) \propto \pi(\mathbf{d} | \boldsymbol{\theta}, \boldsymbol{\ell}) \pi(\boldsymbol{\theta}, \boldsymbol{\ell})$$

- $\boldsymbol{\ell} = \{\ell_x, \ell_t\}$ = correlation lengths of δ
- $\boldsymbol{\theta} = \{\theta_1, \theta_2\}$
- $\pi(\boldsymbol{\theta}, \boldsymbol{\ell}) \sim \mathcal{U}$
- $\pi(\mathbf{d} | \boldsymbol{\theta}, \boldsymbol{\ell}) \sim \mathcal{N}$



Example: Material Failure Calibration

For each temperature, the original model is **inadequate**

Sequential calibration approach:

- Experimental data is contained within the prediction intervals of the corrected model
- Corrected model captures general shape of experimental data
- Point of failure is difficult to predict

Simultaneous calibration approach:

- Larger variance along prediction temperatures
- Extrapolation predictions yield unphysical shapes
- Point of failure is difficult to predict

Philosophical Issues

How do we know when a discrepancy model is **appropriate**?

- Zero mean residuals?
- Autocorrelation of errors?

Simultaneous optimization of discrepancy parameters and calibration parameters

- How do we know whether θ and δ are **identifiable**?

How/can we properly use δ in **prediction**?

- Especially from the sub-system level to larger, more complex scenarios

How do we **propagate** and capture extrapolation uncertainty?

- In the model form
- In the parameters
- In the discrepancy

Summary

Developed a capability to calculate model discrepancy with field data

Addresses problems with data under different experimental conditions (configurations)

- Example: Calibration of material models using stress-strain data at different temperatures

This capability allows us to investigate tradeoffs between amount of data, number of parameters, and identifiability to better assess future R&D needs

- How do discrepancy predictions perform with less data and more parameters?
- Plan to add diagnostics, such as test for residuals and test for parameter identifiability

Questions?