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I Motivation: Predictions Under Uncertainty

We need to make predictions that incorporate both parametric
and model form uncertainties

- Predictions may be interpolatory or extrapolatory

. Central to high-consequence model and simulation activities

Here, we focus on non-intrusive methods to support black-box
simulations

. Perform predictions under uncertainty with explicit
discrepancy models

. Explore challenges from algorithmic and deployment
perspectives



_ Calibration of Computer Models

Experimental data = Model output + error

d(xi) = M(0 , xi) +

o 9 = variables to be calibrated

• x = scenario or configuration variables

Represent different experimental settings at which data is taken
(temperature, pressure, etc)

o M(0, Cr2) = measurement/observation error

The likelihood over n experiments is

L(0) = 1 exp [ (d(xi) 111(6, xi))21
20-2

A surrogate model M(0 , x) may be used in place of the
simulation model M(0 , x) for computational efficiency



_ Calibration of Computer Models

Often, even with calibration, the agreement between the data
and the model is not very close. This can be due to model form
error, also called model discrepancy or structural error

d(xi) = M(0, xi) + 6(x2) + Ei

Goal: Make predictions in the presence of parametric and
model form uncertainties

Philosophical and implementation issues:
• How do we estimate 6?

• What model form is appropriate for (5?

• How can we understand if there is significant confounding
between our estimates of B and (5?

• How can we appropriately use 6 to improve the predictive
capability of the model?

• How do we capture and propagate uncertainty

Kennedy and O'Hagan, "Bayesian calibration of computer models " J R Stat Soc, B63, pg 425-464



. Additional work on model discrepancy

The parameters of a model are non-identifiable when multiple

combinations of 19 and (5 yield equally good fits to the data

. Arendt, P. D., Apley, D. W. & Chen, W. (2012)

. Recommend modular Bayes approach to encourage
identifiability

. Ling, Y., Mullins, J., Mahadevan, S. (2014)

. Introduced a practical method to determine non-identifiability
of parameters

. Examined model discrepancy function selection

- Brynjarsdottir, J. and O'Hagan, A. (2014)

. If model discrepancy is ignored, then predictions (both
interpolations and extrapolations) and inferences about
parameters are biased

. If model discrepancy is used, it must be informed with physical
information and a carefully selected prior



Additional work on model discrepancy

Discrepancy may be embedded in the model instead of
explicitly added

. Sargsyan, K., Najm, H. N., Ghanem, R. (2015)

. Sargsyan, K., Huan, H., Najm, H. N. (2018)

. Explicit discrepancy may not adhere to physical laws

. Explicit discrepancy is confounded with measurement error

. Morrison, R. E., Oliver, T. A., Moser, R. D. (2016)

- Portone, T., McDougall, D. Moser, R. D. (2017)

. Use of a stochastic operator as an inadequacy representation

CLLIM



How do we make the answers to our philosophical questions
general?



I DAKOIA)>11111' Explore and predict with confidence.

Automate typical parameter variation studies with advanced
methods and a generic interface to your simulation

parameters

r DAKOTA 1.
optimization, sensitivity

analysis, parameter

estimation,
uncertainty quantification

Computational Model

response
metrics
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I Discrepancy Formulation in Dakota
Given data, we want to calibrate model parameters 0 and calculate
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• Response = experimental value at a point in time or space
• Field = set of responses for single experiment
• Configuration = experimental setting such as temperature or

pressure



_ Discrepancy Formulation in Dakota

Currently in Dakota

• Parameters 0 are calibrated to experimental data d(x)

• Scalar responses

• For each response function

5(xi) = d(xi) — M(0 xi)

• 6 = 6(x) is only a function of the configuration variables

• Field responses

• For each response in the field

6(4, = d(ti, xi) — M(ti, 0 , xi)

• = 6(t, x) is a function of the configuration variables and
independent field coordinates

• Prediction variance can also be computed

Etotal(t, = d(t, E5(t,



_ Example: Thermal Battery Calibration

We wish to use a single model for temperature calculations for any
initial condition
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° t = time
° = {91, ... 617} = parameters to be calibrated
x = configuration parameter (initial condition)



I Example: Thermal Battery Calibration
Step 1: Parameters 0 are calibrated to experimental data d
using Bayes' Rule

ir(Old) a ir(d119)7r(0)

. Model is an emulator with 7 parameters

. Three cases of "leave one out" calibration

. Calibrate to low and medium, extrapolate to high

. Calibrate to low and high, interpolate to medium

. Calibrate to medium and high, extrapolate to low

. Choose one experiment of each type

. 7(0) -, IA

. 7r(d 0) —JV
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I Example: Thermal Battery Calibration
Step 1: Parameters 0 are calibrated to experimental data d
using Bayes' Rule

Using 0, the model is inadequate
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I Example: Thermal Battery Calibration
Step 1: Parameters 0 are calibrated to experimental data dd

using Bayes' Rule

Step 2: Calculate discrepancies

6(4, xj) = d(ti, xj) — NAti, 0, xj)



I Example: Thermal Battery Calibration
Step 1: Parameters 0 are calibrated to experimental data d
using Bayes' Rule

Step 2: Calculate discrepancies

Step 3: Calibrate discrepancy model

Discrepancy model corrected some areas better than others

Experimental data is contained within the prediction
intervals of the corrected model
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I Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration

The original Kennedy and O'Hagan paper proposed
simultaneous estimation of 0 and 5 parameters

71-(61,i1d) oc 7r(c110, 1)7(0 , 1)

• / = {/x, /t} = correlation lengths of 5

• 0 = {01, , 07}

• ir(O, t)

• 7(0,1) N
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Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration
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I Example: Thermal Battery Calibration
Comparison to Simultaneous Calibration

Case 1 Case 2 Case 3

Uncorrected Model 3.24% 3.88% 4.22%

Corrected Model 1.74% 2.26% 3.03%

KOH Corrected Model 1.96% 2.32% 4.47%

For the simultaneous approach:

. Smaller variance along calibration temperatures

. Some validation data falls outside of the 95% confidence intervals

. Larger variance along prediction temperatures
. Larger G, likely due to difficulty exploring full parameter space

during MCMC

. Calibration times increased by 49%, 39%, and 41% for Cases 1, 2,
and 3, respectively
. Rejection rate much higher (> 30%)
. Need to build new GP for each sample



I Example: Material Failure Calibration
We wish to use a single phenomenological model for stress
calculations for any temperature

7
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• t = strain

o 0 = {01, 02} = parameters to be calibrated

• x = configuration parameter (Temperature)



I Example: Material Failure Calibration
Step 1: Parameters 0 are calibrated to experimental data d
using Bayes' Rule

• Calibrate against data from x = 373K, 673K, 973K

• Calculate mean and variance for each
• ir(0) U
• ir(d10) Ar

• Using e, the model is
inadequate

• Experimental Data
--Uncorrected Mcdel
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I Example: Material Failure Calibration
Step 1: Parameters 0 are calibrated to experimental data d

using Bayes' Rule

Step 2: Calculate discrepancies

6(4, xj) = d(ti, xj) — NAti, 0, xj)



I Example: Material Failure Calibration
Step 1: Parameters 0 are calibrated to experimental data d
using Bayes' Rule

Step 2: Calculate discrepancies

Step 3: Calibrate discrepancy model

6 is able to correct the
model for the calibratio
configurations

How well does the
corrected model perforn
for the prediction
configurations?
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I Example: Material Failure Calibration

Interpolation

of 6

Extrapolation

of 5

o. o.

▪ 473.1514

- Omar.. model
_Prodlorion moms
—Corroced Model

Engineering Strain

▪ 208.1511

0.3 0.4 0.6 06
Engineering Strain

0.7 0.. 0

T.8T3.161(

Engineering Strain

0.3
En

1079.151(

0 4 0.
neenng Strain

cie•
--Unmerociod Model
Merediteon wane
—Corromod

0 6

0.6 0.) 0.8



I Example: Material Failure Calibration
Comparison to Simultaneous Calibration

As before,
7(0, tIcl) cx 7(0, t)7(0, t)

t = {tx, et} = correlation lengths of 6
0 = {01, 02}
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Example: Material Failure Calibration

For each temperature, the original model is inadequate

Sequential calibration approach:

- Experimental data is contained within the prediction
intervals of the corrected model

- Corrected model captures general shape of experimental data

. Point of failure is difficult to predict

Simultaneous calibration approach:

. Larger variance along prediction temperatures

. Extrapolation predictions yield unphysical shapes

. Point of failure is difficult to predict



_ Philosophical Issues

How do we know when a discrepancy model is appropriate?

. Zero mean residuals?

- Autocorrelation of errors?

Simultaneous optimization of discrepancy parameters and
calibration parameters

. How do we know whether 0 and 6. are identifiable?

How/can we properly use ö in prediction?

. Especially from the sub-system level to larger, more complex
scenarios

How do we propagate and capture extrapolation uncertainty?

. In the model form

- In the parameters

. In the discrepancy



. Summary

Developed a capability to calculate model discrepancy with field
data

Addresses problems with data under different experimental
conditions (configurations)

. Example: Calibration of material models using stress-strain
data at different temperatures

This capability allows us to investigate tradeoffs between
amount of data, number of parameters, and identifiability to
better assess future R&D needs

. How do discrepancy predictions perform with less data and
more parameters?

. Plan to add diagnostics, such as test for residuals and test
for parameter identifiability



Questions?


