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Electrical Properties
= Local doping of semiconductors revolutionized our world
= Structural Properties
= Void formation and swelling
= Defect clustering and embrittlement
=  Thermal Properties
= Thermal conductivity reductions
= Reductions and increases in thermal boundary conductance

Radiation
damage can
vastly improve

or devastate
our lives

depending on
how it is

wielded.
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.Major Limitation of In-situ Electron Beam
Characterization of Radiation Damage

I. Excellent capability to corelate the processing — structure
effects resulting from ion irradiation or implantation

I. Either simulate real world radiation environments
In. Create far-from-equilibrium tailored microstretches

(1) Sandia National Laboratories



.Major Limitation of In-situ Electron Beam
Characterization of Radiation Damage

I. Excellent capability to corelate the processing — structure
effects resulting from ion irradiation or implantation

I. Either simulate real world radiation environments
In. Create far-from-equilibrium tailored microstretches

Provides minimal, if any, property information {
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Can We Develop a Simple Non-Intrusive Way to
Listen to Sample During lon Bombardment?

Collaborator: C.A. Dennett, R.C. Choens, C.A. Taylor, N.M. Heckman, M.D. Ingraham, D. Robinson, B.L. Boyce, M.P. Short

Passive Listening: Acoustic Active Listening:
Emission Pump-Probe Laser Techniques
AE ion
beam TGS

sample# vacuum grease

electrical
insulator

mounting /

block

transducer

transducer i )
It is better to listen
mounting i ’

block than assume!
yva It is better to listen
before acting!

\

sample

Dennett, Cody A, et al. "Listening to Radiation Damage In Situ: Passive and
Active Acoustic Techniques." JOM 72.1 (2020): 197-209. '11
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AE Rate (Hits/sec)

15

Acoustic Emission Response to 2 MeV He*

Collaborator: C.A. Dennett,
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Ceramics
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Difference sound resulting
from each acoustic event
that can be associated with
materials catastrophic
response.

Dennett, Cody A., et al. "Listening to
Radiation Damage In Situ: Passive and
Active Acoustic Techniques.” JOM 72.1

(2020): 197-209.
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« Lasers and Particle Accelerators through the Years

Fiber-optic
Fabrikants laser used in
1917 applies theory to C. Townes develops Invention of semi- brain cancer
amplify radiation 1951 microwave “MASER” 1960  conducting diode laser 1982 surgery 2010
Einstein 1939 Kastler proposes 1953 T. Maiman (Hughes 1962 First CD 2008 Movement
proposes idea of method of optical Research Lab, ) creates player towards fusion
stimulated pumping first operational laser (192 laser beams
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*Images from Wikipedia

These technologies have been evolving for over a century,
opening many new fields of research and life 111/ Sandia National Laboratories




« Lasers and Particle Accelerators through the Years
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What if they were converging historical paths?
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How do lon Beams Interact with a Lattice?

(a) ‘ 200 ||||||I'I'| ||||||IT| ||||||IT| ||||||I'I'| ||||||I'I'|_
l o Si(’Si") Si(H")
100 | '\ \n\ .
000000000000 . B \ m] -
© 0000000000000 < - 1
000000000000 - - - 1
0000000000000 'c i ® DY f ]
© 000000000000 = /‘ \
< Si(*si")
= °.
S  |GaNAr) e - .
o +
= SiC(Kr
S O\ (Kr)
© 0000600000000 310 | o =
= fo—o° AP ]
(c) E [ Do\ Z9—TicKr) ]
= S
0000000600000 o) i f ]
o 00 o-o) 0000 = A A
0000 f.\;ooooo i P 1
© 000 0700[0 00000 o0 | AIN/GaN SL(Ar") f i
© 0000006000000 UO_(Ar)
2
(d) [ y
000000000000
®© 0000 O 0 0 0000 0 o0
. . . . . . . . . . . . ||||||||l ||||||||| ||||||ul ||||||ul |||||u|l_
® 000 0 000 0 0 000 0 o 0 L 12 p ” i b 17
© 0000000000 00 ; “Target Depth — 300A 10 10 10 10 10 10
Dose (cm'z)
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interstitials, Frenkel pairs as well as extended defects E;j Shcle Natioeial Labiositikos
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hAI-Diamond
Substrate

~— Kpiamond

=

TDTR is a laser pump probe technique with excellent

temporal and spatial resolution () sandia National Laboratories




“A Typical Time-domain Thermoreflectance (TDTR) Setup

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

| Probe
A2 .
n | SP Tsunami
u Isolator 3.0W, 80 MHz
90 fs pulse width
. a4
Delay line (~7 ns) /
Camera to
Lock-in image E.O. Modulator
amplifier sample BiBO Pump
Photodiode Dichroic
Properties of TDTR Hopkins et al., ISRN Mechanical Engineering, 682586 (2013)

l. Sub-picosecond temporal resolution
Il. Spot sizes as low as ~1 um
1. Modulation frequencies: 10 kHz — 20 MHz

111 Sandia National Laboratories



— PR A What does TDTR Measure?

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski
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Avenue for Exploration:
Straining a Lattice through Implantation

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Can we use ion implantation to isolate scattering paramters?
I. Klemens’ model for defect scattering
. Scattering cross section combines effects of mass impurities and strain
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experimentally investigate classical theories ol N bt




- W Implanting Isotopes to Create Strain
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski
28Gj+ 29Gj* 28S;*
I.  lons implanted at 3.75 MeV, up to 6.24(10'%) cm ‘

. Negligible mass difference
Il.  Large measured difference in strain
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Isotopic Sensitivity

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski
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Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Diamond Implanted with C3*, O3+, N3*

I. 16.5 MeV, 4(1013) — 4(10"%) cm-2
. Longitudinal straggle more spatially localized
Il.  Projected range produces amorphous bands
. Lesser strain produced compared to Si implant
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lon irradiating polycrystalline diamond allows for
heavier masses, and lesser induced strain
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Thermal Degradation of Diamond

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski
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Investigating the Amorphous Band

Collaborator: Jeff Braun, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Steady State Thermoreflectance (SSTR)

AR/R

Advancements from TDTR
. Thermal penetration depth is limited in TDTR

II.  SSTR can probe further, allowing for analysis of amorphous region
I In a 2 layer model, SSTR measures a lower thermal conductivity
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Development of a new technique, SSTR, is allowing for
thermal analysis deeper into irradiated materials
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-:ecgfgéting and Characterizing Unique Defect Structures

Implanting Noble Gases
I. Crystalized “bubble”

. Beyond strain, and implanted point
defects can also produce unique defect
structures

Il. At high enough doses, implanted noble
gas ions will cluster into crystalline
regions

1) Crystgliline gas regions c;n be created
through implantation of noble gases

2) Nearly perfect Lenard-Jones example
3) Greatly reduce thermal conductivity
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“~ < Movement Toward In-situ Measurements

Collaborator: Cody A. Dennett and Mike P. Short

Transient Grating Spectroscopy (TGS)
I. Properties

. Fewer required optics

II.  Potential for in-situ measurements

. Faster results

MASK NEUTRAL DENSITY
FILTER

DETECTOR
(8]

REFERENCE BEAM

EXCITATION (PUMP) BEAM

PROBE LASER

PLUMP LASER

EXCITATION (PUMP) BEAM

PROBE BEAM L5
PHASE Mirror
(1) (2) (3) (4) ADJUST (5)

Short et al, JOM, 67, 1840 (2015)

: TGS i”sia faster tercimirque than TDTR, permiﬁihg for :
6 the possibility of in-situ measurement

(1) Sandia National Laboratores




o What does TGS Measure?

Collaborator: Cody A. Dennett and Mike P. Short

TGS Signal Analysis
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Acoustic oscillations return elastic
mechanical properties, the grating
decay returns thermal properties

Image or associated Citation
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IBF'TGS at Sandia National Laboratories

In-situ Experiments with TGS

Collaborator: Cody A. Dennett and Mike P. Short

(a)

flaser path
*ion beam path

laser
launch
optics

(b)

“toion
(e) beamline

‘//,chamber

high vacuum

heater

Due to the compact nature of the TGS optical

integrated into Sandia’s lon Beam Laboratory

Calibration
target

Surface
thermocouple

design, an in-situ TGS system has been

Heat shield

(1) Sandia National Laboratores




Proof of Concept: Static High T Tests

Static temperature test

{001} Single crystal Nickel

Collaborator: Cody A. Dennett and Mike P. Short

. Chamber pumped to 4.4E-6 Torr

Il.  Sample heated from 23 to 600 C (25 C increments)
. At each temp., SAW speed measured with TGS

Iv. Data compared to literature calculations
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Dennett et. al., Nucl. Instrum. Meth. Phys. Res. B, 440, 126 (2019)

Agreement of the SAW data with literature-based

beamline end station

calculations demonstrates temperature stability of the

QL
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- & In-situ TGS for Light lon Exposure

Light lon Implant

I. 3.7 MeV He* into {001} W crystal
. High interest in W in radiation community due to its potential for fusion applications
Il.  Total fluence: 6.7E16 cm2 over 10 hrs
. Slow temperature rise due to ion beam heating

Iv.  No discernable trends in data (SAW speed, thermal diffusivity)

. He bubble formation does not occur until 300 — 3000 appm
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In-situ TGS for Heavy lon Exposure

Collaborator: Cody A. Dennett and Mike P. Short

Heavy lon Implant
I. 31 MeV Ni** into {001} Ni crystal Irradiation Time [hr]
i § 0 08 16 24 32 4 47 55 62 7
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In-situ TGS can be used to detect the onset of
void swelling in irradiated metals e
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In situ means interesting failures
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mteps. "

1) Investigate Larger Sample Set
. Both through passive acoustic listening and laser based pump-probe techniques

2) Add Raman to I’'TEM
. Following on approach from R. Sharma at NIST (TEM) and L. Beck at CEA Saclay (SEM)
Il.  Add a multi-laser Raman system to the In-situ lon Irradiation TEM
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- Vacuum System @ Sandia National Laboratories
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Summary
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I. Intersection of particle accelerators and laser metrologies is providing

new avenues of study
. Use listening tools o investigate solid-radiation interactions

. AE is a quick and robust technique to identify catastrophic failure.
. TDTR provides an excellent technique to probe thermal conductivity
Iv. PBTGS offers a means of in-situ measurement of structural properties
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