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Why Focus on Radiation Interactions?

lon implantation offers a unique way to tailor material properties
Electrical Properties

Local doping of semiconductors revolutionized our world

Structural Properties

Void formation and swelling

Defect clustering and embrittlement

Thermal Properties

Thermal conductivity reductions

Reductions and increases in thermal boundary conductance
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Radiation
damage can

vastly improve
or devastate
our lives

depending on
how it is
wielded.
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Major Limitation of In-situ Electron Beam
Characterization of Radiation Damage

Excellent capability to corelate the processing - structure
effects resulting from ion irradiation or implantation

Either simulate real world radiation environments

Create far-from-equilibrium tailored microstretches

Pertcrmance

Sandia National Laboratories



Major Limitation of In-situ Electron Beam
Characterization of Radiation Damage

Excellent capability to corelate the processing - structure
effects resulting from ion irradiation or implantation

Either simulate real world radiation environments

Create far-from-equilibrium tailored microstretches

Provides minimal, if any, property information

Pertcrmance
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Can We Develop a Simple Non-Intrusive Way to
Listen to Sample During Ion Bombardment?

Collaborator: C.A. Dennett, R.C. Choens, C.A. Taylor, N.M. Heckman, M.D. Ingraham, D. Robinson, B.L. Boyce, M.P. Short

Passive Listening: Acoustic
Emission

AE

sample

mounting
block

electrical
insulator

AV

transducer

vacuum grease

sample

Active Listening:

Pump-Probe Laser Techniques
TGS

heating element

Sample

It is better to listen

than assume!

It is better to listen

before acting!

Dennett, Cody A., et al. "Listening to Radiation Damage In Situ: Passive and
Active Acoustic Techniques." JOM 72.1 (2020): 197-209.
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Acoustic Emission Response to 2 MeV He+
Collaborator: C.A. Dennett, R.C. Choens, C.A. Taylor, N.M. Heckman, M.D. Ingraham, D. Robinson, B.L. Boyce, M.P. Short
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Difference sound resulting
from each acoustic event
that can be associated with

materials catastrophic
response.

Dennett, Cody A., et al. "Listening to
Radiation Damage In Situ: Passive and
Active Acoustic Techniques." JOM 72.1

(2020): 197-209.
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Lasers and Particle Accelerators through the Years

1917
Fabrikants

applies theory to
amplify radiation

C. Townes develops
1951 microwave "MASER"

Invention of semi-
1960 conducting diode laser 1982

Fiber-optic
laser used in
brain cancer

surgery 2010

Einstein
proposes idea of

stimulated
emission

1895

411.11 

1939 Kastler proposes 1953 T. Maiman (Hughes
method of optical Research Lab, ) creates 1962

pumping

Van de Graaff
generator 1929-1930
developed

Rontgen
discovers x-rays
with a cathode

ray tube

1929
Cyclotron

developed by E.
Lawrence

first operational laser

Cockroft and Walton
accelerate protons to 800
keV with the CW generator

1932

1945

M. Oliphant
designs and
builds the first

proton
synchrotron

E. McMillan
constructs first

electron
synchrotron

1952

First CD
player

1962

2008

Establishment of
Stanford Linear
Accelerator

These technologies have been evolving for over a century,
opening many new fields of research and life

Movement
towards fusion

(192 laser beams
compress

deuterium/tritium)

*Images from Wikipedia
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Lasers and Particle Accelerators through the Years
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Our efforts to align lon Beam Modification and

Laser —based Pump Probe Analysis
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How do Ion Beams Interact with a Lattice?
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How Can We Quantify the Thermal Effects?

At = 0 12.5 ns

1

fmodulation = 10 kHz —) 20 MHz

Amplitude A

frepetition = 80 MHz 0415116i.
io"

10-2

e-e thermalization
and e-p coupling

picosecond
acoustics

: a
.

I I 111111 • •

1Kapitza conductance
and thermal _
conductivity

10-1 10° 101 102
Pump-probe time delay (ps)

Giri et al., JAP, 117, 105105 (2015)

hAl-Diamond

KDiamond

TDTR is a laser pump probe technique with excellent
temporal and spatial resolution

Iu
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A Typical Time-domain Thermoreflectance (TDTR) Setup
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Lock-in

amplifier

Blue

filter

Phatodiode
Properties of TDTR
• Sub-picosecond temporal resolution

Spot sizes as low as -1 pm

Modulation frequencies: 10 kHz - 20 MHz

Probe

  X/4
Delay line (-7 ns)

Camera to

image

sample
I E.O. Modulator 1'

BiBO

Red

filter

Dichroic

SP Tsunami

3.0 W, 80 MHz

90 fs pulse width

/
Pump

Hopkins et al., ISRN Mechanical Engineering, 682586 (2013)

Sandia National Laboratories



J

What does TDTR Measure?
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski
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Avenue for Exploration:
Straining a Lattice through Implantation

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Can we use ion implantation to isolate scattering paramters?
Klemens' model for defect scattering

Scattering cross section combines effects of mass impurities and strain
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A L

mass strain

2 2
AMi

= xi ( + 2 ((AGi) - 2 * 3.2y (66i))

(k)4 63 Fi
1-Def 470 (k)

f
K = 

1 

7r2 
hC01(k)k2 —

H
y
/ 
(k)- r (k)dk6

Ion irradiation in combination with TDTR can be used to
experimentally investigate classical theories



Implanting Isotopes to Create Strain
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

28si+, 29si+

lons implanted at 3.75 MeV, up to 6.24(1016) cm-2

Negligible mass difference

Large measured difference in strain
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Isotopic Sensitivity
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

TDTR Findings 
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Negligible frequency
dependence

Reduction as a function of
dose

Reduction with larger isotope

Thermal Boundary
Conductance

Increase with dose

Increase with isotope size

Th
er
ma
l 
Bo
un
da
ry
 C
o
n
d
u
c
t
a
n
c
e
 [
M
W
 rr
i2
K

-1
]
 

Concentration [%]

0.000 0.001 0.007 0.067 0.667
300 —/

250

200

150

100

50

#

• Unirradiated

• "Si

• 29,r,

101' 101° 10' 10' 101'

Dose [cm 2]

Th
er
ma
l 
Co
nd
uc
ti
vi
ty
, 

lc
 (
W
m
-
1
K
-
)
 

Modulation Frequency (MHz)

Concentration (ions/atom)

0 6.67x1 0-6 6.67x1 0-5 6.67x104 6.67x10-3

Unirradiated

29si+

•
•

(b)

0

1014 1015 1016 1017

Dose (cm-2)

Reductions in thermal conductivity cannot be explained by1._
ion mass, rather, increased lattice strain

Sandia National Laboratories



14 15 16

Diamond Doping
6 7 8

C N O
carbon nitrogen oxyg en
12.011 14.007 15 999

[12.009, 12.012] [14.006, 14.008] [15.999, 16.000]

Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Diamond Implanted with C3+, 03+, N3+ 
i. 16.5 MeV, 4(1013) — 4(1016) cm-2

i. Longitudinal straggle more spatially localized

ii. Projected range produces amorphous bands

iii. Lesser strain produced compared to Si implant
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Thermal Degradation of Diamond
Collaborator: Ethan A. Scott, Patrick Hopkins, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Orders of Magnitude Reduction in Kdiamond
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Investigating the Amorphous Band
Collaborator: Jeff Braun, Mark Goorsky, Chao Li, Tingyu Bai, Claire Ganski

Steady State Thermoreflectance (SSTR) 
l. Advancements from TDTR

I. Thermal penetration depth is limited in TDTR

11. SSTR can probe further, allowing for analysis of amorphous region
In a 2 layer model, SSTR measures a lower thermal conductivity
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Creating and Characterizing Unique Defect Structures

Implanting Noble Gases 
Crystalized "bubble"

Beyond strain, and implanted point
defects can also produce unique defect
structures

At high enough doses, implanted noble
gas ions will cluster into crystalline
regions

1) Crystalline gas regions can be created 1
through implantation of noble gases

2) Nearly perfect Lenard-Jones example

3) Greatly reduce thermal conductivity



Movement Toward In-situ Measurements
Collaborator: Cody A. Dennett and Mike P. Short

Transient Grating Spectroscopy (TGS) 
Properties

Fewer required optics

Potential for in-situ measurements

Faster results

IP R OIBF lASFR

(1)

4'HASE

MASK

(2) (3)

NEUT RA L DENSITY
FILTER

DETECTOR

(6)
REFERENCE BEAM

EXCITATION (PUMP) BEAM

EXCITATION (PUMP) BEAM

PHASE

(4) ADJUST.

Mirror

(5)

Short et al, JOM, 67, 1840 (2015)

TGS is a faster technique than TDTR, permitting for
the possibility of in-situ measurement

Sandia National Laboratories



TGS Signal Analysis

reco ded

siE nal_

+ 1 Ifr
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What does TGS Measure?
Collaborator: Cody A. Dennett and Mike P. Short
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Acoustic oscillations return elastic
mechanical properties, the grating
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In-situ Experiments with TGS
Collaborator: Cody A. Dennett and Mike P. Short

I3TGS at Sandia National Laboratories

(a)

'laser path
*ion beam path

laser
launch
optics

(b)

heater

sample /

to ion

(e) beamline

high vacuum
chamber

detection
electronics

(c)

heater

sample

Calibration
target

Surface
thermocouple

Dennett et. al., Nucl. instrum. Meth. Phys. Res. B 440 (2019)

Due to the compact nature of the TGS optical
design, an in-situ TGS system has been

integrated into Sandia's lon Beam Laboratory

Heat shield

Sandia National Laboratories



Proof of Concept: Static High T Tests
Collaborator: Cody A. Dennett and Mike P. Short

Static temperature test 
{001} Single crystal Nickel

Chamber pumped to 4.4E-6 Torr

Sample heated from 23 to 600 C (25 C increments)

At each temp., SAW speed measured with TGS

IV. Data compared to literature calculations
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Agreement of the SAW data with literature-based
calculations demonstrates temperature stability of the

beamline end station

500 600
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In-situ TGS for Light lon Exposure

Light lon Implant 
3.7 MeV He+ into {001} W crystal

High interest in W in radiation community due to its potential for fusion applications

Total fluence: 6.7E16 cm-2 over 10 hrs

Slow temperature rise due to ion beam heating

No discernable trends in data (SAW speed, thermal diffusivity)
He bubble formation does not occur until 300 — 3000 appm
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In-situ TGS for Heavy lon Exposure
Collaborator: Cody A. Dennett and Mike P. Short

Heavy lon Implant 
31 MeV Ni5+ into {001} Ni crystal

Important to many engineering alloys

Has displayed void swelling under self-ion irradiation
Sample heated to 550 C to promote void swelling

SAW speed decreases with dose
Consistent with ex-situ Cu results; material is softened
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ln-situ TGS can be used to detect the onset of
void swelling in irradiated metais
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Unexpected ln situ Results
Collaborator: Cody A. Dennett, Jeff Aguiar, and Mike P . Short
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Next Steps...

1) Investigate Larger Sample Set 
Both through passive acoustic listening and laser based pump-probe techniques

2) Add Raman to I3TEM 
Following on approach from R. Sharma at NIST (TEM) and L. Beck at CEA Saclay (SEM)

Add a multi-laser Raman system to the In-situ Ion Irradiation TEM

Insert
Raman
Here j

JEOL 2100 TEM

Magnet

Ex-situ Chamber 1
10 kV Colutron

Beam Line\

6 MV Tandem

Beam Line

Vacuum Syste m Elity Sandia National Laboratories



Summary (-11i5LIF

ci Nuclear Science
User Facilities

Intersection of particle accelerators and laser metrologies is providing
new avenues of study

Use listening tools o investigate solid-radiation interactions

AE is a quick and robust technique to identify catastrophic failure.

TDTR provides an excellent technique to probe thermal conductivity

I3TGS offers a means of in-situ measurement of structural properties

1111111
U~IIVERSITY

IRGINIA

Collaborators: 
Idaho National Laboratory

< 37

34

0 31

2436

2434

E
-0 2432

o_
Cr) 2430

ci) 2428

2426

(:5 551

a. 55 0

▪ Sandia: Daniel Buller, Thomas Beechem, Chris Saltonstall, Elbara Ziade, R.C. Choens, C.A. , 549

Taylor, N.M. Heckman, M.D. Ingraham, D. Robinson, B.L. Boyce,

External: Ethan Scott, Cody Dennett, Michael Short, Patrick Hopkins, Mark Goorsky, Keivan
Esfarjani, Jeffrey Braun, Christina Rost, John Gaskins, Mehrdad Fazli, Claire Ganski, Chao Li,
Tingyu Bai, Yekan Wang

Irradiation Time [hr]
O 0.8 1.6 2.4 3.2 4 4.7 5.5 6.2 7

1 1 1 1 1 1

-

1 1

-

.111,.%.

e

.

1

a

I I I I I I 1 1

1.011.4114444+100,410440000411141/00114

O 2 4 6 8 10 12 14 16 18

Average Dose [dpa]

Sandia National Laboratories



Sandia's User and Position c441SUF

www.cint.lanl.gov 
• Spring and Fall

proposals for 18
months

• Rapid Access
proposal anytime for
3 months

Core Facility - SNL

Gatewa Facilit LANL

Oppurtunities 

•

Nuclear Science
User Facilities

D. Hanson, W. Martin, M. Wasiolek

www.nsuf.inl.gov 
• Three proposal

a year for 9
months

9" Dry Central Cavity

ly 20" Dry External Cavity

ACRR Core
Fueled Ring External

Cavity

Position Oppurtunities at:

https://www.sandia.gov/careers/

Post-doc = 671121

Grad Student = nruono

Undergrad Student = 670864
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