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Magnetic Direct Drive (MDD) uses strong currents and
2 magnetic fields to achieve high drive pressure.

Drive Pressure Scales as (I/R)2 Drive Pressure vs. Radius

B2
P = 

 
= 105

87z-

(
/MA /26

R

J x B

Mbar
0.01

• Drive pressure increases as the
target implodes

• Z can deliver >100 Mbar drive
pressure and >2 MJ drive energy
depending on the target inductance

60 MA

20 MA

0 1 2

Radius (mm)
3



3 Key takeaways from the ICF Red Team review process:

• MDD is an alternative approach to achieving multi-MJ yield and ignition with different risks.

• Compared to the other ICF approaches, MDD in its present form has been studied for the least amount
of time and has the least amount of total investment

• MDD target technologies have multiple scaling paths to achieve multi-MJ yield:

• Direct energy conversion (non-ignition, zero gain)

• Volume ignition (moderate gain)

• Hot-spot ignition and propagating burn (high gain)

• Key scaling risks for MDD have been identified in the categories of target preheat, implosion stability,
and current delivery and distribution.

• Improvements in modeling and measurement capabilities together with integrated scaling experiments
are needed to answer questions about present performance and reduce scaling uncertainty.

• Presently estimate it will require 2.5-3.5 times more current (6-12 times more energy) to achieve
multi-MJ yield and ignition with magnetic direct drive

• Known pulsed-power technologies can generate the necessary drive energy and power

• Need to get that energy to the target and safely handle tritium and yield
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Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial
fusion approach that uses an axial applied B-field and laser preheat.
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• Laser Energy = 1-4 kJ
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• Reduce required implosion

velocity

B8

Compress

• CR 35-45
• pR — 0.003 g/cm2
• P 1-5 Gbar
• BR 0.4 MG-cm



I The simulated MagLIF scaling path requires enhanced preheat
5 and current drive to achieve multi-MJ yield.
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Simulations optimized on laser preheat energy,
initial liner radius, and DT fill pressure:
• Initial liner aspect ratio stays fixed
• Target length stays fixed
• Current rise time stays fixed
➢ As peak current increases, initial radius

increases and convergence ratio decreases
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3D effects impact the MagLIF performance, and the bulk
6 parameters are approximately captured by 3D Hydra models.

Time-Integrated X-ray Images
Sim Exp
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We need to dig deeper than time-integrated bulk parameter estimates
to understand the true nature of the plasma conditions and dynamics
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Efforts over the next 5 years will include increasing applied
7 field and preheat on Z and testing preheat 'at scale' on NIF.

100 MJ

10 MJ
"ea.

(73
1 MJ

CT

6 kJ
TD 0.1 MJ

3 kJ
0
-(70 10 kJ
LL

2D Simulation-Optimized Yield at Bz = 30 T

Range

1 KI

0.1 kJ

Downward Scaling (now)\-
Mini-MagLIF on Omega

EL = 30 kJ < 
0  

\\i alPha

Increase capability (-5 yrs)
Current Goal: >20 MA
Preheat Goal: >4 kJ
B-field Goal: >25 T

!D •

At-Scale Preheat (now)
Bz = 25 T on NIF

I I I I I I

20 25 30 35 40 45 50 55 60

Peak Current (MA)



We are actively working to understand key uncertainties that
8

may affect scaling to multi-MJ yield.

MagLIF Assembly

Liner Implosion Stability and Mix

Optimize stagnation conditions and confinement

Preheat Efficacy

Optimize preheat and minimize associated mix

-M-

Current distribution within thjiarget volumei

Optimize current to small radius (and drive pressure)

Power flow to the target

Optimize current to the target region



Instabilities are a key concern with scaling we need to improve
9

measurements and test understanding of the seeds and evolution.

Example: Electro-thermal instability
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Risk:
• Implosion and deceleration instabilities can introduce

mix and degrade tamping
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Research Approach and Opportunities:

• Solidify theories on origins of implosion instabilities:

• Electro-thermal instability

• Helical instability

• Develop advanced diagnostics to assess multi-
dimensional temperature and density profiles

• Employ target design features to reduce instability
seeds and/or growth factors



We are investigating preheat through simulations and
10 experiments across a range of scales from Omega to N IF.

Example: Preheat studies on Omega and NIF

ZBL 1-2 kJ preheat
simulations
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• If not avoided, laser plasma instabilities (LPI) can
limit efficient energy coupling into MagLIF fuel.

• Mix and magnetized transport effects can cause
energy loss between preheat and stagnation

Research Approach and Opportunities:

• Improve fundamental understanding of magnetized
transport properties

• Study laser preheat, induced mix, and limits on LPI
across a range of scales:

- OMEGA (0.05-0.2 kJ) and OMEGA-EP
- ZBL (1-4 kJ)
- One quad of NIF (10-30 kJ)
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Low density plasmas in the target volume are not well-represented
in most MHD codes and can impact current coupling.

Example: Extend the physics in MHD codes
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Current distribution within the target volume

Risk:

• Target performance can be affected by low density
plasma formation that redistributes the current away
from small radius and reduces the drive pressure.

• Many MHD models are not able to calculate the low
density plasma formation on Z or at larger scale.

Research Approach and Opportunities:

• Extend the physics in our MHD models

• Develop new diagnostics to assess current delivery
at small radius
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We aim to capture power flow scaling through full-system circuit
12 models coupled to validated 3D hybrid fluid-PIC models.

Example: Develop accurate circuit models
and hybrid fluid-PIC codes

Full-system circuit model
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Power flow to the target

Risk:
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• Efficiency and predictability of current delivery depends
on the target inductance and implosion history.

• Current needs to be efficiently and predictably delivered
as the energy density increases on larger-scale drivers

Research Approach and Opportunities:

• Advance understanding of surface physics, plasma
formation, and loss mechanisms

- New Diagnostics, Platforms, and Models

• Develop accurate 3D hybrid fluid-PIC models of the
convolute and final power feed for both Z and a 60 MA-
scale driver.
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13 There are multiple ways to get involved:

ICF Community Workshop

July 14-16, Lawrence Livermore National Laboratories

Details coming soon

llth Z Fundamental Science Workshop

August 2-5, Albuquerque (location TBD)

Student sponsorships available for travel/hotel/registration

Contact: Marcus Knudson, mdknuds@sandia.gov 

Call for proposals for Z fundamental science shots expected in June 2020

ZNetUS: an association of HED research scientists who utilize pulsed-power machines in
academia, national laboratories, and industry with the goals to:

Support and enable collaborative research on pulsed-power facilities across the country

Recommend improvements to the existing Z Fundamental-Science Program

Provide recommendation and follow-on requirements for the development of a new, mid-scale
pulsed-power facility (5-10 MA) if appropriate


