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Introduction

Nonrechargeable, carbon fluoride "CFx" conversion cathodes are a Li-primary

battery chemistry that offer very high energy density and long cell lifetimes. The

highest capacity is realized for x= 1 7 poly(carbon monofluoride), (CF)n.

Representative Reaction Voltage Capacity

nLi + (CF),, nLIF + (C)n 3.4 V 701 mA•h/g

LiC6 FePO4 -> C6 + LiFePO4 3.5 V 117 mA•h/g

As a "CFx" cell dischages the F:C ratio, x, of (CFx)n drops to zero. The structural

changes that accompany discharge are not well-understood.
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(CFx)n exhibits a wide range of properties depending on F:C ratio, carbon source
material, and synthesis. Variability of bonding motifs leads to polymorphism.[1-3]

(CF)n is not polymorphic as the graphite sheets are fully fluorinated.[4]

Real world poly(carbon monofluoride) samples, (CF)n
Purchased from Advanced Research Chemicals, Inc.
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• pXRD reveals graphitic component to black powders.
• No graphite signature for the "pure" samples.
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Why do samples of supposedly identical chemcial composition
look so different? Do they differ on a molecular level?

Approach
Develop a structural model to explain properties of (CF)n.
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Experimental

All NMR data was acquired at 9.4 T and 33 1/3 kHz
MAS using recycle delays between 1 s and 2.5 s.
VT gas was regulated at 300 K (sample - 340 K).
Fluorine-19 decoupling was applied during
acquisition of 13C signals. Proton decoupling had
no effect on 19F signals and was not used here.

The spinning gas was usually N2. Over many hours
this incurs a loss in sensitivity due to increasing
T1(19F) as intercalated 02 exchages away. By
spinning with air T1 can be maintained below 2 s.
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Defect analysis

19F TOP-aMAT MAS NMR[5]:

presents sideband-free spectra

From the ideal (CF)n structure we expect a
single 19F resonance near

151SO(>CF-) = -180 ppm

In reality, 19F MAS NMR show:
• Variably broad resonances
• >CF-, -CF2-, -CF3 functional groups
• Shoulder/skewedness to >CF- peak
• Ambiguity in >CF-/-CF2- overlap region

Real samples are represented
by highly defective structures

Direct excitation 13C CPMG MAS NMR
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• Graphitic carbon dominates C/(CF)-PC (40.3%)
• C(gr) also appears in other samples
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• C(gr) signal mostly lost
• Carbon at interface of fluorinated/graphitic

domains suggested near 75 ppm

Residual, pXRD-invisible graphitic
domains correlate well with color.

What is the nature of the other
defects?

• Fit broad features common to all samples
• Skew-gaussian model
• Shift parameters constrained across samples
• Eight >CF-, -CF2-, -CF3 sites to capture line

shape complexity (excluding narrow lines)
• Extensive overlap in -125 ppm to -150 ppm

region; interpretation ambiguous

J-resolved 19F spectroscopy
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200 Hz - 300 Hz geminal
F splittings are observed.
-CF2- extends to -140 ppm.

Not all -CF2- are in weak
coupling limit leading to

0 Hz peaks in J dimension.

Narrow peaks at -122 ppm
and -126 ppm are unlikely
the result of -CF2- species.

Part of -CF2- region lost
due to low T2 values.

Spatial relationships

5-crown perfluoroperhydrocoronene (5-PFPHC)

n = CF:CF2 ratio
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Crowned coronene platelet model
• Model system for fluorographene[6]
• Consistent with nm-sized platelets known

to exist in many carbon sources.[7]
• n between 5 and 11 suggests (CF)n platelet

diameters (d) between 3 nm and 6 nm
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The crowned coronene platelet model does not explain many features in
the 19F MAS NMR spectra.
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2D {19F}19F spin diffusion EXSY experiments
T : longitudinal storage interval (allows for spin exchange)
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From the buildup of the CF --> CF2transfer„
estimate a spin diffusion coefficient D. [8]

Assume initial build-up (short Tz) is exclusively due
to single transfer between edge groups:

Buildup rate: k

.

.

Model:

= A(1 -

k = 7 4 Hz
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D = (74 Hz)(2.43 A)2 = 4.3 nm2/s

Selective 1D {19F}19F spin diffusion EXSY

Reveals diffusion pathway:
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• Bulk domains from broadening of main
diagonal

• Isolated species surrounding -135 ppm
• All 19F correlates to bulk CF (-182 ppm)

From the estimate of D, determine representative
(rms) displacements of 19F magnetization, L.

Diffusion in a plane: L = \14Drz

D = 4.3 nm2/s 
L

0.4 nm
0.8 nm

Tz

10 ms
40 MS
90 ms
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1.2 nm
2.5 nm

(-platelet radius)

Extremely basic analysis ignores many factors.
Nonetheless, suggests all observable fluorinated

domains exist within (CF)n platelets.

{19F}13C CP HETCOR CPMG

• 100 ps contact time for bonded >CF- correlations
• Bulk/intermediate >CF- distinction in 13C shifts

19
F
 c
he
mi
ca
l 
sh
if
t 
/ 
p
p
m
 

-220

-200

-180

-160

-140

-120

-100

-80

-60

ulk 
CF

Inte me
CF

diat

-CF2

ssb

1 1
125 120 115 110 105 100 95 90 85 80 75

13C chemical shift / ppm

• Correlations are known between 19F shift,
- C-F bond length,
- C-F bond covalent character,
- Half-cell discharge potential.[9]

• Signficant CF bond weakening is calculated for
2-PFPHC structures having double bond defects

• Correlation of bond energy with 19F shielding (right)

The defective platelet model will be a
servicable starting point for

understanding electrochemical
behavior.

Functional structural model

Defective platelet model
Spatial relationships suggest exploring the effect of interior defects on 19F chemical shift.
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Double bond defects explain origin of "isolated" -135 ppm signal region.

oca stacking
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Expected to effect shifts to < 5 ppm level.

A detailed description of stacking is not essential for a
functional structural model.

Defect correlation to electronic properties
CFx and 19F NMR
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