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ABSTRACT

Numerical simulations of metallic structures undergoing rapid loading into the plastic range
require material models that accurately represent the response. In general, the material response
can be seen as having four interrelated parts: the baseline response under slow loading, the effect
of strain rate, the conversion of plastic work into heat and the effect of temperature. In essence,
the material behaves in a thermal-mechanical manner if the loading is fast enough so when heat is
generated by plastic deformation it raises the temperature and therefore influences the mechanical
response. In these cases, appropriate models that can capture the aspects listed above are
necessary. The material of interest here is 304L stainless steel, and the objective of this work is to
calibrate thermal-mechanical models: one for the constitutive behavior and another for failure.

The work was accomplished by first designing and conducting a material test program to provide
data for the calibration of the models. The test program included uniaxial tension tests conducted
at room temperature, 150 and 300°C and at strain rates between 10~# and 103 1/s. It also included
notched tension and shear-dominated compression hat tests specifically designed to calibrate the
failure model. All test specimens were extracted from a single piece of plate to maintain
consistency. The constitutive model adopted was a modular J, plasticity model with isotropic
hardening that included rate and temperature dependence. A criterion for failure initiation based
on a critical value of equivalent plastic strain fitted the failure data appropriately and was

adopted.

Possible ranges of the values of the parameters of the models were determined partially on
historical data from calibrations of the same alloy from other lots and are given here. The
calibration of the parameters of the models were based on finite element simulations of the
various material tests using relatively fine meshes and hexahedral elements. When using the
model in structural finite element calculations, however, element formulations and sizes different
from those in the calibration are likely to be used. A brief investigation demonstrated that the
failure initiation predictions can be particularly sensitive to the element selection and provided an
initial guide to compensate for the effect of element size in a specific example.
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1. INTRODUCTION

Applications in which significant loads are quickly applied to metallic structures to cause rapid
plastic deformations and possibly ductile failure require the use of calibrated thermal-mechanical
constitutive and failure models. The objective of the work presented here is to calibrate relatively
simple, appropriate models for 304L stainless steel that address its elastic-plastic response and the
initiation of failure. The models are part of the modular plasticity and failure model
implementations in Sierra/SM [1] with capabilities to address adiabatic heating and the effects of
temperature and strain rate in the response of the material.

Calibrating phenomenological material models, such as the ones used here, requires test data. The
range of applicability of the calibrations in terms of temperature, strain rate and, in the case of the
failure model, the states of stress sampled, depends on the breadth of the test data available. For
the current calibration, a systematic test program was designed to provide data for loading
environments with strain rates of up to 10> 1/s. Most of the values of the model parameters were
then adjusted based on the results of finite element simulations of the tests. Once completed, the
predictions by the calibrated models in structural finite element models may depend on the
element type and size used (these will likely be different from the ones used in calibration),
especially when related to the analysis of ductile failure.

The mechanical behavior of stainless steel 304L exhibits some particular characteristics that the
calibrated model must address and the calibration process contend with. Among those are: large
ductility, significant strain rate sensitivity even at room temperature and sensitivity of the
stress-strain curve shape to moderate changes in temperature. Other interesting details of the
response, such as dynamic strain aging that shows up as serrated uniaxial stress-strain curves at
some combinations of strain rate and temperature cannot be captured by the model and are
therefore neglected. Another important aspect of this material relates to its perhaps above average
variations in lot-to-lot mechanical properties. Therefore, establishing possible ranges for the
variability of the model’s parameters should be considered in applications where it may be
consequential.

1.1. Material Description

Austenitic stainless steel, of which the alloy 304L is a type, is the family of stainless steel with the
largest production [2]. The crystal structure is face-centered cubic and is designed to remain the
same from cryogenic temperatures to the melting point. Since they possess the same
microstructure at all temperatures, they are not hardenable by heat treatment. Stainless steels in
general are iron-based alloys that are resistant to oxide corrosion because of a significant amount
of chromium present. Another major element in austenitic stainless steels is nickel, which is used
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to achieve the austenitic microstructure. The 304 alloy contains 18-20% chromium and 8-12%
nickel. The “L” in 304L indicates that it is a low-carbon alloy, with under 0.03% carbon. Typical
ranges in the composition of 304L alloy are given in Table 1-1.

Table 1-1. Typical composition of 304L stainless steel (weight %) [3]
Cr Ni C Mn P S Si Fe
18-20 | 8-12 | Max. 0.03 | Max. 2 | Max. 0.045 | Max. 0.03 | Max. 1 | Balance

The focus of the work presented here is in the mechanical response of 304L stainless steel from a
stress-free state to failure, at temperatures in the vicinity of room temperature and loading rates
that are consistent with environments that generate strain rates in the range of 10 1/s or lower. At
these rates of loading, the temperature in the material may increase due to the dissipative nature
of plastic work, so the effects of high temperatures, up to a few hundred degrees Celsius, also
need to be accounted for.

The material stock used for the model calibration consisted of 1-inch plate that was shared to
make specimens related to other structural testing needs. The material was purchased through
Superior Machine Co. in February of 2018. The material that was delivered consisted of 5 plates:
Two plates were 48 in. x 240 in. from a single heat, two others were 60 in. X 240 in. from a
different, single heat while the third was 48 in. x 144 in. from yet a third heat, as shown in the
certs in Fig. 1-1. These facts were not discovered until later in the program when the uniaxial
tension test engineering stress-strain curves from two test series conducted in 2019 [4] and 2020
showed noticeable differences as can be seen in Fig. 1-2. The suspicion is that these curves came
from different plate heats, but concrete proof is not available. The material calibrations in this
report all come from a single plate that corresponds to the 2020 test in Fig. 1-2.

The mechanical behavior of 304L stainless steel could be briefly described as follows. The
material has a relatively low proportional limit compared to the yield stress, so the linearly elastic
regime is comparatively small with respect to many other steel alloys. The material hardens
significantly during plastic deformation and therefore the ultimate stress, or tensile strength, is
significantly larger than the yield stress, as can be appreciated in Fig. 1-2. This material is
sensitive to the rate of loading and exhibits significant creep and relaxation, even at room
temperature, when compared to other steel alloys. In addition, the response of the material is
significantly affected by temperature. The material is significantly ductile, achieving elongations
at failure from its virgin state that are larger than 60% as can again be seen in Fig. 1-2. Therefore,
in order to capture the mechanical behavior of this material at large deformations its
thermal-mechanical response needs to be addressed and modeled, especially when the
environment includes loading under which the response of the material cannot be taken as
isothermal.

1.2. Intended Use

The intended use of the calibrated material model for 304L stainless steel presented here is in
structural simulations where the loading takes the material into the plastic range and where the

12
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Figure 1-1. Cert sheets for 304L stainless steel plates used in this work.
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Figure 1-2. Comparison of uniaxial tension test engineering stress-strain
curves from 304L stainless steel plates tested in 2019 and 2020.
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possibility of failure needs to be investigated. As a result, the constitutive model considered here
accounts for the effects of temperature up to 300°C and strain rates up to 103 1/s. This model is
then complemented with a ductile failure model that accounts for the dependence of failure on the
loading history, plus rate and temperature effects.

The calibration procedures used here involve simulations of material tests where the specimens
are modeled using finite elements with relatively small selective deviatoric hexahedral elements.
Given that structural applications may utilize elements that are of different size and type such as
shell elements, the calibrations, especially of the failure model, need to be interpreted accordingly
to better capture the desired structural behavior. Although the use of the model in a variety of
applications under different loadings may be extensive, this report provides guidance based on
relatively few, simple test geometries. While this guidance may suffice in some cases, it is
important for analysts to exercise caution when using the model and consult with the calibration
team when in doubt.
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2. EXPERIMENTAL DATA

2.1, Design of Test Program

Time and equipment constraints dictated that the test program be designed to utilize the resources
of the Structural Mechanics Laboratory (SML) and of the Experimental Impact Mechanics
Laboratory (EIML) in Building 860 as efficiently as possible while subjecting the material
samples to the environments of interest for the intended use of the models. An important
component of the test design was therefore to minimize the number of specimen designs and test
set-ups required. This led to a test program where all standard-sized tensile specimens would
have a common gripping scheme and the sub-size specimens used for high strain rates could be
tested either in a Kolsky bar in the EIML or in a standard testing machine in the SML. It was also
decided to use test fixtures that were already available in the laboratory and measurement
methods that had been well-developed whenever possible. The following sections describe each
of the specimens used in the test program.

2.2. Specimen Designs and Test Set-ups

Four specimen designs were created for model calibration purposes that explore different aspects
of the material response, and that give data that can be addressed in a logical sequence during the
calibration procedure. The specimen designs can be briefly described as follows:

Standard-size uniaxial tension specimens: The principal purpose of these specimens was
to obtain engineering stress-strain curves of the material at different temperatures ranging
from 30 to 300°C at the slowest rate of loading. Tests were also conducted at a faster
loading rate to explore rate dependence with different initial temperatures.

Sub-size uniaxial tension specimens: The purpose of these specimens was to obtain
material response data from high-strain-rate uniaxial tension test specimens. These
specimens were tested in the tensile Kolsky bar and the*“Dropkinson” bar intermediate
strain rate set-up in the EIML, and in the standard servo-hydraulic machines in the SML.

While the previous specimens provided data for both the plasticity and failure calibrations, the
next two were used primarily for calibration of the failure model under slow loading, so the tests
could be considered isothermal at room temperature. The response of these specimens can also be
used as a validation test for the constitutive model calibration and even to make some final
adjustments to the same.
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Notched tension specimens: These specimens were used to generate data to address failure
under tensile-dominated loading or, equivalently, under high hydrostatic mean stresses at
low rates of loading.

Hat compression, shear-dominated specimen: This specimen provided failure data for
shear-dominated states of stress at low rates of loading.

The next few sections describe the specimen designs for each case in detail in conjunction with
the test set-ups. All specimens were cut from a single piece of one-inch plate of approximate size
12 in. by 12 in.

2.2.1. Standard-Size Uniaxial Tension Specimens for Thermal-Mechanical
Tests

The traditional tension test provided the foundation for calibrating the basic elastic-plastic
response of the material. An important requirement for these tests was that they provide data not
just at room temperature, but also at 150 and 300°C to enable calibration of thermal-mechanical
models. Figure 2-1 shows the specimen design, while Fig. 2-2 shows photographs of the test
set-up. The principal objective of the design was for the specimen and grips to be relatively
compact to fit in a thermal chamber and to have a small thermal mass in order to allow faster test
turn-arounds.

In order to achieve a compact set-up, the threaded grips shown in Fig. 2-2(b) were used. Note that
the grips attach to the load-train of the 22 kip test machine using pinned connections to allow
quick installation of the specimen and minimize the effects of misalignments in the load train. A
cooling system, not shown in the figures, was used just outside the chamber to reduce the thermal
load in the testing machine components outside the thermal chamber.

The specimen in Fig. 2-1 consisted of a test section of circular cross-section with nominal
diameter of 0.25 in. and length of 0.75 in. The diameter of the test section was slightly tapered
from the ends towards the center as shown to drive failure to the mid-span. Since 304L stainless
steel strain hardens considerably, the diameter of the specimen outside of the test section needed
to be sufficiently large to prevent yielding. Both ends of the specimen had 5/8-18 threads to fit in
the grips. In this specimen the ratio of the cross-sectional area of the threaded section to that of
the test section is 6:1. The test section is sufficiently long to accommodate a high-temperature
extensometer, rated at 300°C, with an initial gage length of 0.5 in. Other instrumentation in the
set-up included a 25 kip load cell outside the thermal chamber, temperature sensors in the
chamber and attached to the lower grip and a linear variable differential transformer (LVDT) to
measure the machine actuator stroke that provided the feedback signal to control the applied
tensile displacement.

The tensile tests were conducted at three temperatures, 30, 150 and 300°C, and two displacement
rates, 0.25 x 1073 and 0.075 in/s. These correspond to nominal strain rates of 3.33 x 10~* and 0.1
1/s, respectively. All sensor outputs were digitally recorded with a frequency of 4 samples per
second for the slow tests and 1000 samples per second for the fast tests. Typical durations for the
tensile loading of the tests were 40 minutes for the slower tests and 6 seconds for the faster tests at
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room temperature. The tests at higher temperatures had smaller displacements to failure and
hence took somewhat less time.

5/8-18 UNF-2A y
1.5 P. THREAD RELIEF
2X /

TAPER TO CENTER
DIMENSION (.250+.005)
FROM THIS POINT ON
EACH SIDE. DIAMETER
SHALL BE NO MORE
THAN @.0025 LARGER
THAN FINAL CENTER
DIMENSION. BLEND
CENTER TO ELIMINATE
TRANSITION LINE.

Figure 2-1. Smooth tensile specimen for thermal-mechanical testing of 304L stainless steel.

222. Sub-Size Uniaxial Tension Specimens for High-Strain-Rate Tests

The rate dependence of 304L stainless steel is another important aspect that needs to be included
in the model calibration. Therefore, a series of tests was conducted to explore the rate dependence
of this material in a room temperature environment. It is important to remark, however, that the
high strain rate response of the material is significantly intertwined with the thermal-mechanical
response since rapid plastic deformation increases the temperature in the material. In order to
achieve high strain rates in the tests, it is necessary to have specimens with short test gage lengths.
A standard specimen that has been used for Kolsky bar testing in the past, shown in Fig. 2-3 [5],
was therefore adopted in this study. Figure 2-4(a) shows a schematic of the tensile Kolsky bar test
while Fig. 2-4(b) shows a photograph of the specimen mounted in the Kolsky bar. The tensile
Kolsky bar is an apparatus that uses the principles of wave propagation to pull the specimen at
high strain rates. The set-up used here could apply strain rates between 500 and 3500 1/s.

The specimen is essentially a miniature, or sub-size, tensile specimen of circular cross-section
with a nominal test section diameter of 0.125 in. and length of 0.25 in. The diameter of the test
section also had a slight taper from the ends to the center. The ends of the specimen had 1/2-20
threads in order to mount the specimen in the test set-ups. In the case of the Kolsky bar, the
specimen was threaded into the incident and transmission bars and tightened with half nuts as
shown in Fig. 2-4(b). The loading pulse in this set-up is generated by the impact of the striker bar
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Figure 2-2. Tensile test set-up with thermal chamber. (a) Overall view of the
thermal chamber and (b) test specimen detail.

against the end cap, as shown in Fig. 2-4(a). The pulse propagates down the incident bar and is
partially reflected at the location of the specimen. Another part of it is transmitted through the
specimen, and a similar interaction occurs at the junction of the specimen with the transmission
bar. These interactions had the effect of pulling the specimen to failure in the cases considered
here. An optical system measured the stretch in the specimen, while a strain gage measured the
strain pulse in the transmission bar. This strain is proportional to the tensile force in the specimen.
Reducing the measured data yielded the extension and the force in the specimen as functions of
time. The nominal strain rates achieved in the current studies were approximately 1520 and 3440
1/s.

Similar tests were also conducted at slower strain rates using two other set-ups. The first was the
‘Dropkinson’ bar [6], an apparatus that uses similar principles as the Kolsky bar, but can achieve
lower strain rates, from the upper 10s to the mid 100s 1/s. This is accomplished by replacing the
incident bar of the Kolsky test with a ‘drop-table’ machine. The extension in the specimen comes
from the same optical measurement system mentioned above, while the load comes from the
strain signal in the transmission bar of the apparatus. In this case, testing yielded data at a
nominal strain rate of 270 1/s. Finally, using small threaded grips, the specimen was also tested in
a uniaxial hydraulic testing machine at strain rates of 0.1 and 3.33 x 10~* 1/s. In these tests the
extension of the specimen was measured using DIC methods and the load using a standard load
cell.

2.2.3. Notched Tension Tests for High-Mean-Stress Failure Tests

The principal objective of the tension tests on notched specimens was to generate data to be used
in the calibration of the failure model. The design of the notched tension specimens for this
project is given in Fig. 2-5. This design allows the specimen to be tested using the same test
set-up as in the thermal-mechanical tests, although all tests occurred at room temperature. The
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Figure 2-3. Subsize specimen used for high strain rate testing.
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Figure 2-4. Kolsky bar tests. (a) Schematic of Kolsky bar test and (b) detail of specimen.
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commonality between the tests, however, yielded significant time savings. The specimen consists
of a test section of circular cross-section with a diameter of 0.394 in. that contains a section of
reduced area, or notch, at the center with a minimum diameter of 0.200 in. Specimens with two
notch radii, 0.128 and 0.032 in., were tested. Based on the geometry, the plastic deformation is
concentrated in the notch while the rest of the test section has little to none. Tensioning the
specimen causes the test section and the notch to elongate and contract radially. The material
outside the notch, however, contracts less and constrains the contraction of the notch. Therefore,
the material in the notch develops tensile stresses in the radial direction that increase the
hydrostatic mean stress in the interior. The smaller the notch radius (sharper notch) the higher the
constraint, and the higher the hydrostatic mean stress. The mean stress, however, is not constant
even in the plane with the smallest diameter. It is highest at the specimen axis and decreases
towards the surface. The instrumentation and test control strategy is the same as in the
corresponding uniaxial tension tests.

[ QUANTTY | RADIS

R 032 + .002
2 R.128 + 005

1\ ] 625-18 x 394 NOTCHED SPECIMENS

N AISI-304L SS PLATE (MATERIAL "A")
- 7%7".‘/
SECTION A-A
5/8-18 UNF-2A

1.5 x P. THREAD RELIEF
26

Figure 2-5. Notched 304L stainless steel specimen.

2.24. Hat Compression, Shear-Dominated Specimen for Low-Mean-Stress
Failure Tests

Whereas the notched tension test specimens are intended to generate values of hydrostatic stress
that are higher than in the uniaxial tension test, a more complete calibration of the failure model
can be achieved by considering tests in which the hydrostatic stress is below that in the uniaxial
tension tests. A specimen design to test the material under shear-dominated loading was
originally designed by Brad Boyce and Brad Salzbrenner as the challenge geometry for the 2013
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Sandia Fracture Challenge. The behavior of this specimen was studied carefully in [7] and in [8]
and afterwards was adopted as a reasonable specimen for model calibration. The specimen design
used in this work is shown in Fig. 2-6 while Fig. 2-7 shows the test set-up. The specimen is
compressed between two flat platens mounted in a standard testing machine. The instrumentation
includes four miniature LVDTs (the second pair is behind the ones shown) that measure the
relative displacement of the platens plus a standard load cell to measure the load. The signal from
the machine stroke LVDT provides the feedback signal to the test machine controller.

Upon compression, the two narrow sections that join the top, trapezoidal part of the hat to the
base are loaded in shear. These will be called the test sections. A particular feature of this
specimen that allows it to be used for calibration purposes is that the the radii in the specimen
decrease during deformation, thus locally maintaining states of compressive mean stress. This
avoids, or at least significantly delays, the development of regions with positive mean stress in the
test sections as will be shown later in this report.

A major aspect in the use of the hat specimen is that failure tends to start at the radii of the test
sections and in the vicinity of the specimen mid-plane and therefore hidden from direct
observation. Furthermore, fracture propagation is initially stable under continued compression.
Failure initiation is therefore difficult to detect. The current solution to this issue is to first
conduct a test to complete failure, followed by a series of interrupted tests at different levels of
compression. The specimens from each interrupted test are then sectioned, polished and imaged
with an optical microscope in order to detect the level of compression at which cracks become
visible, therefore bracketing the compression levels at which failure initiated. Given time
constraints and other practical considerations, however, the number of interrupted tests tends to be
limited. Fewer tests lead to larger brackets.

Figure 2-6. Compression top-hat shear specimen.
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Figure 2-7. Hat specimen compression test.

2.3. Experimental Data

2.3.1. Thermal-Mechanical Tension Test Data

Figure 2-8 presents the engineering stress-strain curves obtained at three temperatures and two
nominal strain rates using the standard specimens described previously. Looking first at the slow
tests with &€ = 3.33 x 10~ 1/s (solid lines) it is clear that the effect of temperature is to reduce the
flow stress of the material as well as the strain to failure as it rises from 30 to 300°C. This is
consistent with previous thermal-mechanical testing on 304L by Bonnie Antoun [9]. The jumps
in strain towards the end of one of the stress-strain curves at 150°C are likely due to extensometer
slippage, but the faint, repeatable, serrations appearing just prior to the ultimate stress in all tests
at 300°C may be due to dynamic strain aging, which is known to occur in this material under
certain combinations of temperature and strain rate [10]. A final observation is that the scatter
between the stress-stain curves at each temperature seems more significant at 300°C.

The tests conducted at a strain rate of 0.1 1/s, in dashed lines, show an increase in the yield stress
that seems to become less significant with temperature. This observation was also made in a
different test series on 304L sheet in [11]. A second characteristic is that the engineering strain at
the ultimate stress and at failure tend to decrease with temperature. This is most obviously seen in
the test at 30°C. The latter observation, also seen in [11] is likely due to the temperature increase
in the specimen due to heat dissipated by plastic deformation that did not have sufficient time to
leave the test section.

2.3.2. Strain Rate Test Data

Figure 2-9(a) shows the engineering stress-strain curves obtained using the sub-scale specimens
at 5 values of nominal strain rate spanning 7 decades. The initial temperature in all tests was room
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Figure 2-8. Tension test data at several temperatures and strain rates from standard specimens.

temperature. Although the curves do show some scatter, it is relatively minor and they clearly
demonstrate a significant rate dependence in the response of the material, showing an increase of
about 70% in the yield stress between the extremes. Figure 2-9(b) shows the strain as a function
of time for the tests conducted in the Kolsky and Dropkinson bar set-ups. The responses from the
Kolsky bar are essentially linear after a transient over the first couple of percent strain, indicating
a relatively constant strain rate. The data from the Dropkinson bar show low-frequency
oscillations that translate into variations in the strain rate.

2.3.3. Notched Tension Test Data

The load-deflection responses obtained from the tension tests on the notched specimens are
shown in Fig. 2-10. These tests were conducted at room temperature. The speed of loading was
adjusted depending on the notch so that dividing it by the length of the notch would give a
number in the vicinity of the nominal strain rate in the slow uniaxial tension tests, 3.33 x 10°4
1/s. The values achieved here were 2.5 x 10~ and 3.2 x 10~* 1/s for the specimens with notch
radius of 0.128 and 0.032 in. respectively . The load in the figure has been divided by the
minimum cross-sectional area of the notch A,,. As for many other materials, a sharper notch
results in higher loads and smaller displacement to failure. The increase in the load is driven by
the high mean stress in the notches.

2.34. Hat Compression Test Data

The measured compressive load-deflection response of all hat specimens tested is shown in Fig.
2-11. Note that essentially all curves overlap but that while one displays a maximum in the load

23



SS 304L
6,=30°C

40 € (1/s)
-——- 3.33x10%
- x10?
20 1 270
1520
— 3440
0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
—> €
(a)
0.7 r
€
T 0.6
0.5
04 -
0.3
SS 304L
0-2 0,=30°C
01 € (1/s)
270
0 1520
3440
_01 1 1 1 1 1 1 1 |
0 0.5 1 1.5 2 2.5 3 3.5 4

—> t(ms)
(b)

Figure 2-9. Tension test data at several nominal strain rates from sub-size
specimens. (a) Engineering stress-strain response and (b) strain-time his-
tory.
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Figure 2-10. Test results for tension tests on notched specimens.

followed by a sharp drop indicating failure of the specimen at 6 = 0.21 in., the others are
interrupted at different values of displacements. The specimens in these interrupted tests were
then sectioned and imaged. The three photos in the figure show a corner of each of the three
specimens. The images were taken in a sectioning plane through the mid-thickness of the
specimen, where cracks were first detected. The sequence illustrates the development of damage.
At 6 = 0.050 in. no damage is visible. Small cracks, however, are visible at 6 = 0.125 in., which
grow significantly by 6 = 0.175 in. The conclusion is therefore that material failure likely started
at some point between the first two interrupted tests. Given the small crack sizes at 6 = 0.125 in.,
first failure could be taken to have occurred at values just slightly lower.

To illustrate that failure starts at the mid-plane of the specimen rather than at the original flat
surfaces, Fig. 2-12 shows photographs of all corners in the test sections of the specimen at

0 = 0.175 in. Note that while the photos taken of the mid-section show significant fractures,
those at the original surface of the specimen show barely any signs of failure occurring.
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Figure 2-11. Results from tests on hat specimens.
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Figure 2-12. Photographs of the four corners in the test sections of the test
interrupted at a displacement of 0.0175 in.
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3. MATERIAL MODEL CALIBRATION

This section describes the calibration processes for both the elastic-plastic material and failure
models. Both account for rate and temperature effects. The theoretical forms of these models are
presented in Section 3.1. The subsequent sections discuss calibration procedures with Section 3.4
delving into the approach for the plasticity model and Section 3.5 considers the failure model.

3.1. Thermal-Mechanical Material Model

The elastic-plastic constitutive model calibrated in this work was motivated by previous
observations on how the shape of the uniaxial engineering stress-strain curves of 304L stainless
steel change with temperature [9], which could not be reproduced sufficiently well by the
Johnson-Cook model [12]. The observations motivated a reconsideration of the flow stress form.
Specifically, in the original Johnson-Cook form, temperature dependence is included in a purely
multiplicative fashion common to all terms. In this way, the same temperature multiplier acts
equally on yield, hardening, and rate-dependence. To present a more flexible approach, separate
temperature dependencies were considered for each of the terms in the revised flow stress
formalism in which a power-law hardening function was used with a Johnson-Cook rate
multiplier. This new form was compared to data and explored in Corona ef al. [11]. Based on
these efforts a new flow-stress parameter hardening model was added into LAME as a part of the
modular plasticity approaches. However, this new form represents a first foray into more flexible
temperature-dependent capabilities for these models and as such it has not been documented in
the LAME manual [14]. Nonetheless, it is tested under both uniaxial stress and pure shear
loadings with different assumed temperature dependencies and at different temperature and rate
conditions as described in other documents (e.g. [14, 15]). These tests are performed daily
through automated Sierra regression test capabilities. As the model has been implemented into
the modular plasticity framework, other capabilities such as adiabatic heating [16] and modular
failure [17] (which will be discussed later) can be activated. Importantly, this provides substantial
flexibility in adapting the specific functionalities and observations to fit the data.

3.1.1. Yield Function and Hardening Rule

A decision was made early in the planning process to assume an isotropic model for the yield
(effective stress) function. In LAME, there are two main choices for isotropic yield functions:
von Mises and Hosford. The first is quadratic, while the second is non-quadratic and both assume
tension-compression symmetry. While advantages have been noted in the choice of non-quadratic
and/or tension-compression asymmetric yield functions in other materials, similar observations
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are not typically observed in stainless steels. As such, the choice was made to choose von Mises
because of its simplicity and applicability. Furthermore, it requires one fewer test for calibration
than the other options. As no significant reverse loading is expected in the intended environments,
kinematic hardening is neglected and purely isotropic forms are considered.

3.1.2. Hardening Function

The hardening function implemented in this work is based on an approach similar to that of
Johnson and Cook [12] in the sense that the hardening modulus depends on three variables: the
equivalent plastic strain, €7, the temperature, 6, and the equivalent plastic strain rate, €P. The
Johnson-Cook model uses a multiplicative dependence on these three terms yielding a flow-stress
of the form,

& = [0, +A(8P)" {I—FCln (i—p)} [1-6""], 3.1)

0

where £, is a reference strain rate, 6* is a homologous temperaturel, oy, 1s the initial yield stress,
and A, n, C and m are fit parameters. The aforementioned flow-stress parameter model modifies
this expression by neglecting the explicit temperature multiplier and instead assuming the
remaining parameters are each temperature dependent with their own (unspecified) functional
forms such that,

5= [cy(e) +A(8) (ép)"“’)] [1 +C(6)In (fﬂ . (3.2)

&

As implemented, each of these four functions (o, (0), A(0), n(6), and C(0)) are represented as
a constant value multiplied by a temperature dependent scaling function. Each of these functions
is specified via a Sierra-scope definition and any function that may be defined in that fashion is
admissible. This expression allows more flexibility to fit the variation in shape of the uniaxial
stress-strain curves observed in testing, provided that suitable forms can be found for temperature
dependence.

3.1.3. Adiabatic Heating

A significant part of the work done during plastic deformation of metals is converted to heat.
When the deformation is sufficiently slow the heat is dissipated to the surroundings at a
sufficiently fast rate to keep increases in temperature small. At higher loading rates, however, the
temperature will increase, and at Kolsky bar rates the process can be considered adiabatic. In a
truly thermal-mechanical analysis, a heat transfer analysis needs to be coupled with the
mechanical model to determine the temperature of the material. Without a heat transfer analysis,

10" = (0 — i)/ (Bmelt — Oref) Where Oy is a reference temperature and Oy, is the melting temperature.
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the analysis becomes restricted to two extremes: isothermal or adiabatic. The conversion of
plastic work to temperature rise in the material can be written as [16]:

Bre .
0=0,+— [ WPdt (3.3)
pcp Iy

where p is the density of the material, c,, is the specific heat capacity, W7 is the rate of plastic
work per unit volume and B7€ is the Taylor-Quinney coefficient, a parameter that determines the
fraction of plastic work converted to heat. Both the initial density of the material and the specific
heat capacity are usually taken from handbook values, but the value of the Taylor-Quinney
coefficient has to be measured experimentally as in [18]. Such measurements, however, are
difficult and the value is generally assumed or calibrated indirectly as will be done here.

3.2. Ductile Failure Model

Ductile failure usually refers to fracture after significant plastic deformation. In general, ductile
failure has the objective of modeling the initiation of failure as well as its propagation, usually in
finite element models. Unlike fracture mechanics methods, ductile failure methods do not require
the presence of a flaw in the structure. Instead they utilize a damage parameter that accumulates
with plastic deformation. Initiation of failure is declared when the damage parameter reaches a
critical value. The propagation of fracture requires a method to modify the finite element mesh,
with element deletion being the simplest and probably most widely used one. Since fracture is a
highly localized process, clearly the results will be highly dependent on the element size and
associated energetic considerations. The model calibrated here is intended solely to address
fracture initiation.

Ductile failure models are mostly based on experimental observations and to a lesser degree on
results from theoretical calculations. The models used at the structural level are therefore
empirical in nature but have forms that accommodate both experimental and theoretical inputs.
Briefly, ductile failure can be strongly dependent on the history of the mean (or hydrostatic) stress
during loading. Generally, the higher the mean stress, the faster the damage accumulates. While
some models use the mean stress directly, others use the triaxiality, defined as the ratio of the
mean stress to the von Mises stress. The history of the Lode angle, which is the angle in the
m-plane between the projections of the principal stress vector and the major principal stress axis,
is another parameter that is thought to influence failure. Generally, the closer the projection of the
state of stress is to pure shear, the faster the damage accumulates. Alternatively one can think of
failure as being dependent on the history of the first invariant of the stress tensor, /; and of two
invariants of the deviatoric stress tensor, J, and J3.

In addition to the stress history, the damage accumulation in the material may also be a function
of the strain rate and of the temperature histories during loading. Hence, a modular approach to
failure is also desirable in order to choose the functional dependency of the damage accumulation
on the stress, equivalent plastic strain rate, and temperature histories. In this approach the damage
D is calculated as
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where d,; is the critical damage value, p is the mean stress, 0y is the Lode angle, and 1) is the
triaxiality. The modular approach allows the user to choose which combination of these five
functions to include in the expression as well as different choices for the functional form of each.
For a complete description, see [17].

3.3. Fixed Parameters

The J; plasticity model contains a set of parameters that are independent of plastic deformation
and are taken as pre-defined constants during the calibration process. These include the density,
p, the two elastic constants Young’s modulus and Poisson’s ratio, E and v, and the specific heat
capacity cp. The values of these parameters are given in Table 3-1.

Table 3-1. Material parameters independent of plastic deformation in Ib-in-s
system of units. 1 Ib = 1 blobx1 in/s?.

Parameter | p, blob/in’ E, psi vV | ¢p, in-lb/(blob °C)
Value | 7.49x10°%|28x10°|0.27 |  0.776 x 10°

3.4. Hardening Function Calibration

The first step in the calibration of the hardening function in (3.2) is to find values for the
power-law hardening parameters { 0y, A, n} from the stress-strain curves obtained at each
temperature. In other words, the fits are carried out for each temperature independently of the
others. To do this, the curves with & = 3.33 x 10~% 1/s and with the highest strain to failure in
Fig. 2-8 were selected as the target curves for the calibration. Because of the low strain rate and
the long duration of the tests, the temperature rise in the specimen due to plastic deformation is
likely very small due to heat loss in the specimen through conduction, convection and radiation
[18]. Therefore, an isothermal assumption was made during calibration.

While values for optimal parameters can be found rather easily for data up to the ultimate stress,
conducting a calibration that covers the post-ultimate-stress requires a trial-and-error approach
together with a finite element model of the test specimen. The geometry and mesh of the model
used in the thermal-mechanical tests is shown in Fig. 3-1(a). It is intended to replicate the
dimensions of the test-section of the specimen in Fig. 2-1, taking advantage of three planes of
symmetry. It is slightly tapered from the top to the bottom, where the plane of symmetry that
splits the length in two is located. A node set located 0.25 in. above this plane represents the
location of one of the edges of the extensometer. The nominal element size is 0.01 in. on the
side.
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The procedure consisted of trying different combinations of { oy, A, n} until reasonable fits were
obtained at each temperature. The final selected values are in the columns to the left in Table 3-2,
while fig. 3-1(b) shows the comparison between tests and the calibrated simulations. In general
the fits are reasonable. Because of the form of the power-law-hardening, in order to capture the
drop in engineering stress after ultimate, the calculated curves are above the measured ones for
strains below approximately 0.25.

In order to interpolate the values of the power-law-hardening parameters in the
power-law-parameter model, first they are defined as

0y(8) = 0y(30)mq,(6)
A(0) = A(30)ma(6) (3.5)
n(0) = n(30)m,(0).

(3.6)

where mg,, my and my, are piecewise linear functions of 6 with the segment endpoints given in the
right columns in Table 3-2. The melting point temperature 1400°C is included as the highest
temperature to bring the strength of the material to zero. This is done in case the temperatures
during an analysis go slightly above 300°C but, without data to support it, this is just an
approximation. At the opposite end, this model calibration must not be used for temperatures
lower than room temperature.

[ SS304L

£€=13.33x10" 1/s

Test
— — —Cal.

0.é O.‘4 0.‘6 0.‘8 1‘
(b)

Figure 3-1. Uniaxial tension tests. (a) Finite element model for the thermal-
mechanical tests and (b) comparison of power-law hardening calibrated pre-
dictions at 30, 150 and 300°C to test data.

Once the thermal calibration of the model has been established, the next step is to consider the
behavior of the material at fast strain rates. This includes the calibration of two parameters. The
first is the strain rate function C(0) in (3.2) while the second is the Taylor-Quinney coefficient in
(3.3).
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Table 3-2. Power law hardening parameter values at three temperatures.
T,,°C | 0y, ksi | A, ksi n Mg, my my,

30 50 188 | 0.72 1 1 1

150 20 123 | 0.37 | 20/50 | 123/188 | 0.37/0.72
300 10 115 | 0.30 § 10/50 | 115/188 | 0.30/0.72

1400 - - - 0 0 0

Looking first at the calibration for C the reference strain rate was taken as the slowest strain rate
in the tests, so &, = 3.33 x 104, After that, an initial guess for a constant C was taken by
measuring how the stress at a strain of 0.1 increased with strain rate in Fig. 2-9(a). This gave a
value of C = 0.022. At the same time, the data in Fig. 2-8 and previous observations from [11]
suggest a decreasing trend in C with temperature. Based on these

C(0) =C(30) xmc, 3.7)

where the multiplier m¢ was taken as in Table 3-3. This initial guess, however, needs to be
updated by taking into account both the response of the specimens over the complete strain ranges
in the stress-strain curves and the interaction between the rate effects and the temperature rise. To
achieve this, finite element simulations of the high strain rate tests is necessary. The geometric
model of the specimen is shown in Fig. 3-2(a). The elements in the test section are hexahedral
with 10 elements along the length and four through the radius (0.025 in. by 0.015 in.). A second
model with elements half of this size showed that reasonably well converged results were
produced by the coarser mesh.

Table 3-3. The multiplier function m.
6°C | 30 | 150 | 300 | 1400
mc 1 10501 0.

The calibration of the Taylor-Quinney coefficient was also achieved indirectly in these
simulations. The initial guess for the coefficient from [11] was 0.6. The comparisons between the
predictions of the calibrated model and the test data at 1500 1/s, however, were improved by
choosing Bro = 0.5 instead. Dropping the value of C(30) to 0.016 also improved the
comparisons of the simulations to the tests. The predictions for all cases are shown in Fig. 3-2(b).
All but the case with £ = 3.33 x 10~* were run as adiabatic calculations. The temperature in the
models rose from 30 to approximately 200°C, well within the range of the thermal-mechanical
calibration range. The results show that, in general, the calibrated model can follow the test
results relatively closely over the complete strain range. At this point, all the parameters of the
hardening rule, including the temperature functions have been determined.
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Figure 3-2. Uniaxial tension test simulations for strain rate dependence cali-
bration. (a) Mesh of sub-size specimen with yellow and green blocks as rigid
bodies and (b) comparison of calibrated predictions at five strain rates to
test data.
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3.5. Failure Model Calibration

Once the hardening function parameters have been determined, the next step is to choose and
calibrate a failure model. Previous experience modeling the failure of 304L stainless steel
indicated that using a constant value of equivalent plastic strain at failure may be a good choice
for this alloy [19]. Therefore, the attempt was made to see if such failure criterion may fit the test
data. In addition the effect of temperature and strain rate on ductile failure also need to be
addressed, as will be demonstrated later in this section.

Concentrating first on failure at very low rates of loading, where isothermal models are more
appropriate, the set of specimens used included two notch test geometries, one hat compression
geometry and the uniaxial tensile geometry. The first step in the calibration process consists of
making finite element models of the specimens used in the laboratory that are meshed finely
enough to provide reasonably converged results. The element sizes were based on previous
simulations. All calculations are conducted using selective deviatoric elements. The element
damage outputs reported correspond to the average of the damage calculated at the eight
integration points.

The first tests considered are the tension tests on notched specimens. Figure 3-3(a) and (b) shows
the finite element models. Note that the models take advantage of three planes of symmetry, so
only 1/8 of the specimen needs to be modeled. The rows of spheres represent node sets used to
extract displacements that could be compared to the extensometer measurements during the tests.
The element size in these models is such that 16 elements fit along the minimum radius of the
specimen.

Figure 3-3(c) shows the predictions of the load-deflection response in dashed lines together with
the experimental results in solid line. Clearly, the predicted loads are higher than the measured
ones. This is likely the result of using the relatively simple J; plasticity model. This point is a
fork in the calibration process. One path is to keep the calibration of the hardening function as-is
and accept the differences in Fig. 3-3. The second one is to modify the hardening function
calibration to generate better results for these tests even if we have to accept more difference
between test and analysis results in Fig. 3-2. For the latter option, Fig. 3-3(d) shows new
predictions obtained by dropping the parameter 6, from 50 ksi to 42.5 ksi.

Considering the compression hat specimen next, Figs.3-4(a) and (b) show the mesh used in the
model globally and in the vicinity of the test section. This model takes advantage of the two
planes of symmetry in the specimen. The nominal element size in the test section is 0.002 in. and
the mesh becomes progressively coarser away from the test section. Figures 3-4(c) and (d) show
comparisons of the calculated load-deflection responses obtained using the as-calibrated
hardening function and using the reduced o, of 42.5 ksi. Again, the original fit overestimates the
force significantly more than the case with oy = 42.5 ksi.

In the current work, the choice of 0, = 42.5 is adopted to continue the calibration. The effect of
this change in the predicted stress-strain curves first shown in Fig. 3-2 is shown in Fig. 3-5. Note
that all predicted stress-strain curves now lay below the measured ones. At the same time, the
strain at ultimate increases somewhat as well. Although the latter effect could be corrected by
further iteration, the changes are moderate enough to still accept the results.
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Figure 3-3. Notched tension specimens. (a) Mesh for specimens with r/R =
1.28, (b) mesh for specimens with /R = 0.32, (c) prediction vs. test compari-
son with the original fit (d) prediction vs. test comparison with the modified
fit.
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Figure 3-4. Hat compression tests. (a) Model mesh, (b) detail in the test sec-

tion, (c) prediction vs. test comparison with the original fit and (d) prediction
vs. test comparison with modified fit.
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From the initial calibration of the uniaxial tension test with & = 3.33 x 10™* and 6 = 30°C a
critical value of equivalent plastic strain of 1.13 seemed reasonable and was kept as the first value
to be tried when determining the rate and temperature dependence of failure. Under these
conditions, the failure model in (3.4) to be investigated can be written as

1

dcrit

D /é Wwa(EP) ws(0)dB” (3.8)
0

where d.; = 1.13 and w4 and w5 are given as tabular functions in Tables 3-4 and 3-5 to generate
the appropriate changes in the engineering strains to failure in the various uniaxial tension tests
conducted. The tabular function for ws needs to be generated first based on the uniaxial tension
tests conducted at the reference strain rate of &€ = 3.33 x 10~ so that the initiation of failure

occurs at the points marked with solid circles in Fig. 3-6 . The point at 30°C is of course fixed by
the value of d.,;; and ws reduces the strain to failure at higher temperatures.
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Figure 3-6. Comparison of calibration stress-strain predictions to test data
for three temperatures and two strain rates.

Table 3-4. Values for the function ws(6).
6°C | 30| 150 | 300
mg 1 | 1.27 | 1.34

Table 3-5. Values for the function w,(£”)

g’ [ 3.33x107* [ 0.1 | 217 | 1500 | 3500
Mmgp 1.0 14 1125] 1.25 | 1.25
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Once ws has been calibrated, the values of w4 are determined from the experimental stress-strain
curves at the faster strain rates so that the decrease in strain to failure occurs as given by the
circles in Fig. 3-5, which were all close to each other as shown in the figure.

The next step is to go back to the notched and hat specimens to verify the assumption that failure
at a constant value of equivalent plastic strain provides a good fit to the displacements at which
failure occurred in the tests. Figure 3-3(d) shows with circle symbols the points in the
load-deflection curves at which failure was detected in the notched specimens. Here, failure was
detected at slightly smaller displacements than in the experiments, 94% and 83% of the measured
values for r/R = 1.28 and 0.32, respectively. Figure 3-7 shows the damage accumulation painted
on the deformed specimen shapes at the step when the damage first exceeded a value of 1. In both
cases the rim of the smallest cross-section reached D = 1 before the rest of the specimen. This is
in contrast to the uniaxial tension tests where D = 1 occurs first at the center of the specimen.

For the hat compression test, Figure 3-4(d) shows the point in the load-deflection response at
which the damage reached one, at a displacement of 0.112 in. Recall that the conclusion from the
test data was that failure initiated at a displacement smaller, but near 0.125 in. Figure 3-8 shows
that D = 1 was first exceeded at the same location where damage was first visible in the
experiments. Finally, Fig. 3-9 presents plots of the evolution of the equivalent plastic strain as
functions of triaxiality for the uniaxial tension test, the two notched tension specimens and the hat
compression test at the element where D first reached a value of one. The circles show the points
where D = 1 while the crosses show the points where the displacement in the simulations reached
the values where the test specimens first exhibited failure. As expected, all the circles occur at

€P = 1.13 at points relatively close to the crosses. Note that while the point of failure is slightly
underestimated for the hat and notched specimens, it is overestimated by about the same margin
for the uniaxial specimen. All in all, using a constant value of €7 seems to give reasonable failure
criterion that matches all the available data well.

Finally, the failure data marked in Fig. 3-6 shows that the model does reasonably well when the
temperature initial conditions changed from 30 to 150 and 300°C. In all cases the reduction in the
strain at failure at the higher loading rate with respect to the lower one is very close to that seen in
the experiments. In absolute terms, the strains at failure are somewhat over-predicted in all cases
as explained previously.
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Figure 3-7. Damage levels at predicted failure. (a) r/R = 1.28 and (b) r/R = 0.32.

Figure 3-8. Detail showing the region in the hat specimen where the damage
first became critical in red at the mid-plane.
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4, UNCERTAINTY CHARACTERIZATION

The calibrations presented in the previous sections were carried out in a deterministic manner,
with single values assigned to each parameter. In reality, variability from experiment to
experiment can be seen in just about any of the test data sets presented, which can be due to actual
small differences among the material samples and tests and, to a smaller degree, uncertainties
associated with the collection of data. Another source of variation appears when materials from
different heats and manufacturers, or lots, are considered. An example of variability between
plates from two lots was presented in Fig. 1-2, which shows a greater difference between lots than
among repeats with specimens from a single plate as in Figs. 2-8 and 2-9(a). Based on these
observations, the calibrations presented here cannot be representative of all 304L stainless steel
lots. Limits in the possible range of the model parameters, however, can be proposed assuming
that the lot-to-lot variability is dominant.

In this section, uncertainty estimates will be developed for parameters in the hardening function
(3.2) and for the value of damage at failure (3.8). The first will be based on data gathered from
three similar calibrations that have been conducted for different lots of 304L stainless steel. The
second, however, is heuristic in nature since the evidence available at this time is limited.

4.1, Hardening Rule

The uncertainty in the hardening rule parameters can be incorporated in the analysis in several
ways. The method chosen here is to modify the multiplier functions in (3.5) and (3.7) using
“gain” factors as follows:

mg, = Ggmog,

ma = Gamy “4.1)
m, = Gnmn

mc = Gemg,

where the s are the modified multiplier functions and the Gs are the gains. The objective is now
to determine lower and upper bounds for the gain factors based on a collection of data from
different lots.

4.1.1. Lot-to-Lot Variability

Three calibrations are considered for uncertainty estimation: the present one, one conducted on
0.062 in. thick sheet using data from [18] and calibrated in [11], plus another on specimens
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extracted from a tube of diameter 3.5 in. and thickness 0.188 in. [20] and calibrated in [9]. Tables
4-1 through 4-3 show the values of each of the hardening function parameters and the
Johnson-Cook rate parameter, calibrated at each temperature. The values in the tables are also
plotted in Fig. 4-1. Note that while the data show variability, definite trends can still be discerned
for each parameter as the temperature changes.

Table 4-1. Hardening function parameters for the current work.
0°C | oy, ksi | A, ksi n C
30 50 188 | 0.72 | 0.016
150 20 123 | 0.37 | 0.008
300 10 115 | 0.30 | 0.0016

30 25 | 207 | 0.65| -
(2019)

Table 4-2. Hardening function multipliers for 304L stainless steel 0.062 in. thick sheet from [11].
0°C | 0y, ksi | A, ksi n C
30 40 189 | 0.635 | 0.021

150 20 121 | 0.345 | 0.012
300 7.8 113.5 1 0.237 | 0.

Table 4-3. Hardening function multipliers for 304L stainless steel tube from
[9]. Values interpolated between measurement points at 30, 100, 200 and

400°C.
0°C | 6y, ksi | A, ksi n C
30 50 168 | 0.69 | -
150 20 127 |1 0.39 | -
300 8 121 | 0.32 | -
4.1.2. Calculation of Gain Bounds

The upper and lower bounds of the gains were calculated based on the data presented in Tables
4-1 through 4-3. Other historical values of o) were also considered, one of which had a value of
66.5 ksi, which is higher than those in the tables adopted. The bounds relate directly to the data in
the tables and from (3.5) and (4.1) and are given by [21]

. | min; 6{(6))
Glower — J Uy \ML 4.2
o, miln [—C_&may ( 95) 4.2)

Glg)})er = max n’l_an G){ (61)
Y i Gymgy (9,)
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where i = 1,2, 3 runs through the three temperatures and j = 1,2,3,4 runs across the historical
data, the values in the tables plus the added data point mentioned above. Finally, Gy is the value of
0y in the calibration, 42.5 ksi. The bounds for G4, G, and G¢ are determined in a similar

manner.

4.1.3. Variability Results

The results given in Table 4-4 show the lower and upper bounds for each of the four gains, while
Fig. 4-2 compares the nominal curves to those that would represent the higher and lower curves
based on the gain values in the table. The higher curves correspond to the upper bounds of G,
and Gy, but the lower bound of G,, while the lower ones correspond to the opposite choices.
These curves were generated for isothermal conditions and a loading rate equal to the reference
rate, so G¢ did not come into play. Still, the plots give an idea of the range of the material
responses that can be achieved by varying the gains within their established range. They appear to
be reasonable.

Table 4-4. Lower and Upper bounds for multiplier function gains.

Gain | Lower Bound | Upper Bound
Go, 0.588 1.56

Ga 0.894 1.10

G, 0.790 1.07

Gce 0.458 1.47

4.2, Failure Model

The availability of ductile failure data and calibrations for just about any metal is quite reduced
compared to stress-strain data. As a result, a different approach was required. Here, the
parameters of the failure model are kept at their nominal values, thus lumping all variability into
the value of damage at which material failure is declared. The failure model was calibrated so that
the target corresponds to a damage value D = 1. The declaration of the value of damage at failure,
however, is up to the user. Based on the calibration results, and looking at the curves in Fig. 4-2, a
recommended range for the declaration of failure in uncertainty estimations is 0.5 < D < 1.2. The
points in each stress-strain curve shown in Fig. 4-2 that correspond to these bounds have been
marked for reference.

4.3. Other Model Parameters

The linearly elastic parameters of the model, Young’s modulus and Poisson’s ratio, can have some
variabilities, but they are generally very small compared to those of other model parameters, even
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Figure 4-2. Bounding uniaxial stress-strain curves and corresponding bounds in failure strains.
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when comparing across different lots. Since the intent of this model is for calculations that go
deep into the plastic range, the variability in the elastic properties can be taken as insignificant.

Variability in the density, p is another factor that was not considered in the current work. As with
the elastic properties, variations in the material density, even lot-to-lot will be very small since its
value is essentially governed by the alloy composition, which is kept within tight bounds (see
Table 1-1). Again, for the intended use of this model, the variability in the density can also be
neglected.

The density, together with the specific heat capacity, c), affect the rise of temperature from plastic
work, as indicated in Eq. (3.3). It is recommended that the variability in ¢, also be neglected
while lumping the uncertainty of the temperature rise in the Taylor-Quinney coefficient B7¢. For
ideally isothermal conditions, clearly 7o = 0. For adiabatic conditions, it is well known that the
value can vary with both strain and strain rate, but the model treats it as a constant. Based on
observations made on the effect of this parameter on the shape of the calibrated stress-strain
curves, an interval of +20 to +30% seems reasonable. For loading rates that have time scales in
the same order as the heat transfer, a coupled thermal and mechanical calculation should be
conducted.
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5. MODSIM USE OF THE MATERIAL MODEL

The calibrations of the thermal-mechanical, elastic-plastic and ductile failure models for 304L
stainless steel presented here are intended to be used in situations where essentially monotonic,
large deformations of the material take place relatively fast, with strain rates ranging up to the low
thousands per second. The model allows for adiabatic heating due to plastic deformation and
remains valid as long as the temperature stays in the range between room temperature and 300°C.
The model can also be used in isothermal calculations provided B7€ is set to zero. The
experimental data generated covers the environments stated previously and sets the limits of
applicability of the model. The experiments used to calibrate the failure model, in particular, span
a significant triaxiality range, from about -0.8 to 0.6, so justification exists to use the model for
both tensile dominated and shear-dominated states. The calibrated material model is given in
Appendix A.

The calibration of the material model was carried out using data from material specimens with
length scales in the order of one-tenth of an inch to one inch. This was followed by simulations of
the tests using finite element models of the specimens. All simulations used hexahedral elements
of the selective deviatoric type that ranged in size from 0.002 to 0.015 in., depending of the
specimen being modeled. The use of the material model in structural applications could involve
structures with length scales that range from those of the specimens to the order of tens of feet.
Since the latter may require use of elements that could be in the order of one inch, a brief look at
what could be the effects of element size is warranted.

The number of possible structural geometries is unlimited, but the focus here will be on a simple
plate subjected to tension as shown in Fig. 5-1. Two plates with overall dimensions 9 in. by 5 in.
and asymmetric notches but similar geometries are shown in Figs. 5-1(a) and (b). In both cases,
the thickness is 0.125 in. The difference between them is the root notch radius: blunt with a
radius r = 1.125 in. or sharp with a radius of r = 0.5625 in. The boundary conditions on the plate
are in Fig. 5-1(c). The left edge is fully constrained, while the right edge is constrained in two
directions and pulled by prescribing the displacement A to the right. The notches serve to
introduce stress concentrations that accentuate the effect of element size on the response and
especially on the failure of the plates.

5.1. Use with Hexahedral Elements

The use of hexahedral elements to discretize the structure is considered first. The elements used
remain small as needed to maintain aspect ratios close to one when three or five elements are used
through the thickness. The objective is to compare the results obtained with selective deviatoric
(SD, with damage reported as the average from the 8 integration points) and mean quadrature
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Figure 5-1. Flat plate problem geometry and boundary conditions. (a) r =
1.125 in., (b) r =0.5625 in. and (¢) boundary conditions.

(MQ, with damage reported at the single integration point) elements. The hardening rule
parameters used in these calculations are those from Table 3-2 at 30°C. Obviously this problem
does not excite bending of the plate, so no conclusions will be drawn in that regard.

Figure 5-2(a) shows the calculated load-deflection (F'-A) response of the plate geometry with

r = 1.125 in. The responses are essentially identical between the two element types and the two
element sizes. Figure 5-2(b) shows the maximum damage D in the model as a function of A.
Again the accumulation of damage is very similar among all four models. The horizontal dashed
line represents D = 1, when failure occurs based on the calibration. Taking the case with SD
elements of 0.025 in. in size as the benchmark for the rest of the calculations, the vertical dashed
line then gives the values of D at which failure should be called in the other cases. The variation
is in the order of 10%, which in ductile failure problems could be acceptable, but could be
accounted for if desired.

5.2. Use with Shell Elements

Shell elements are generally used to represent structural members whose in-plane dimensions are
much larger than their thickness. The advantages of these elements are that significantly fewer of
them are required to discretize the structure, therefore reducing the number of degrees of freedom
in the model thus making calculations possible for large, plate-like, structures. Larger elements
also lead to larger time steps in explicit dynamics simulations, thus reducing the run time of the
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Figure 5-2. Comparison of predictions with mean quadrature (MQ) elements
to selective deviatoric (SD) elements. (a) Force-deflection and (b) Damage-
deflection.

analysis. The price to be paid, however, has several components: first, the assumption of plane
stress in the element directly affects the evaluation of the mean stress in the calculation of
damage, second, they cannot accurately capture necking-like localizations that may precede
failure, and third, the larger elements underestimate the values of the stress components,
equivalent plastic strain and damage near stress concentrations Still, in many applications it is
necessary to estimate when material failure may occur in shell-based models.

Here, the same models in Fig. 5-1 can be used to investigate the performance of shell elements on
the calculated response and failure of these plates. As before, the benchmarks for comparisons are
the calculation results obtained using selective deviatoric elements with nominal size of 0.025 in.
and aspect ratio close to unity in all directions.

Figure 5-3(a) shows the benchmark force-elongation responses, as well as results obtained with
Belytschko-Tsai shell elements of sizes 0.25, and 0.5 in. The elements have four nodes and
reduced integration with five integration points through the thickness. The meshes are in Figs.
5-3(c) and (d). The effect of the element type and size is relatively small. As expected, the larger
element yielded slightly higher loads. The bigger difference can be seen in Fig. 5-3(b) in the plots
of maximum damage in the model vs. elongation. Clearly, the shell element models in this case
accumulate damage appreciably more slowly than the model with hexahedral elements.

The results for the smaller notch radius, shown in Fig. 5-4 show more pronounced differences
between the models with shell and hexahedral elements as well as between the two shell models
with different element sizes. Figure 5-4(a) shows bigger differences in the F-A responses between
the three calculations prior to a displacement of 3 in. Also note that the curve with the hexahedral
elements shows a rapidly decreasing load soon afterwards, whereas the shell models do not. The
load decrease is due to a thinning instability that developed in the model and that the shell
elements did not capture until later, evidenced by the beginning of load decreases at higher
displacements. Figure 5-4(b) shows significantly different rates of accumulation of damage
between the three cases. Looking at the displacement at which the continuum model reached a
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Figure 5-3. Comparison of predictions with Belytschko-Tsai (BT) shell ele-
ments to selective deviatoric (SD) elements for a plate with » = 1.125 in.
notches. (a) Force-deflection, (b) Damage-deflection, (¢) mesh with 0.25 in.
elements and (d) mesh with 0.5 in. elements.
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damage of one, the critical value of damage in the shell models should be set to a lower value.
The meshes are shown in Figs. 5-3(c) and (d). Note that as the mesh gets coarser, the details of
the distribution of elements around the notch will probably also affect the results.

F 60 T
F | sssoa | D 141 SS304L
kip) | » =0.5625 in | r=0.5625 in
50 1 ‘ T L

40 1 10t-——————————————J
—— SD 0.025in.
— BT Shell 0.25in.

081 BT Shell 050 in.

304
0.6
20 4
0.44

101 — SD0.025 in.

— BT Shell 0.25 in. 0.2

— BT Shell 0.50 in.

0 0.0
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0 4.5 0.0 OTS 1t0 1t5 ZTO 2t5 3t0 3t5 4.0

—> A (in) —>A(in)

() (b)

() (d)

Figure 5-4. Comparison of predictions with Belytschko-Tsai (BT) shell ele-
ments to selective deviatoric (SD) elements for a plate with » = 0.5625 in.
notches. (a) Force-deflection, (b) Damage-deflection, (¢) mesh with 0.25 in.
elements and (d) mesh with 0.50 in elements.

To address the issue of damage at failure, Figure 5-5(a) plots the variable K, representing the
value of the damage D at the displacement at which failure occurred in the model with hexahedral
elements, against the element length /. These plots include results for even sharper notches with

r = 0.2813 in. with the meshes shown in Fig. 5-6. The value of K decreases as [ increases, and the
values are lower as the notch radius becomes sharper. It seems likely that one way to
non-dimensionalize the graph is to plot K against the ratio //r as has been done in Fig. 5-5(b).
Much more work should be conducted to learn if this approach is effective and how it should be
applied depending on the loading (tension, bending, torsion), the arrangement of the elements
around a given stress concentrator, the material of the part, etc. Note that the lines from each
radius do not align perfectly, probably due to the different element arrangements around the
notch. The main conclusion is that the value of D used to declare the initiation of failure can
strongly depend on the shell element size, and Fig. 5-5 provides some guidance to set the value of
D at which the initiation of failure should be declared.

In closing, note that the main factor affecting the results in the plate example above is the
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interaction between the element and the stress concentrator. The calculation of hydrostatic stress
is not relevant in this case because the failure criterion, based on a constant value of equivalent
plastic strain, is independent of the hydrostatic pressure. Also the failure criterion calculated with
the hexahedral continuum elements was satisfied prior to the onset of localization, so this issue
did not affect the results either.
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Figure 5-5. Values of damage at failure, K, as functions of notch radius and
element size. (a) As function of element size and (b) as function of normal-
ized element size.

(a) (b)

Figure 5-6. Meshes for geometry with » = 0.2813 in. (a) Mesh with 0.25 in.
elements and (b) mesh with 0.50 in elements.

The transition between using hexahedral vs. shell elements is likely to occur around the value
where the element size is about the thickness of the plate. In this respect, Table 5-1 compares the
values of K for both types of elements with size of 0.125 in. For each case considered, the
differences are small, with the shell elements having slightly smaller values and the values for
both elements decreasing with decreasing notch radius.



Table 5-1. Comparison of values of K for selective deviatoric hexahedral ele-
ments and BT shell elements of size 0.125 in.

r, in SD-Hex | BT-Shell
1.125 1.037 1.007

0.5625 | 09157 | 0.8886
0.2813 | 0.8655 | 0.8215
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APPENDIX A. Sierra Input for the Calibrated Model

o S S 3 3 3 S S S S S S S S 3 3 S S S S sH S S 3 3 3F S S S o S S S 3k 3 3 Sk Sk S S S S S S 3 3 3 S S S s

Material calibration for 304L Stainless steel
Units: Mechanical - 1lb/in/s, Thermal - Celsius
Material model: j2_plasticity
Material sub-model: power-law-parameter
Adiabatic or Isothermal response set by the parameter beta_tg. 0.5 for
adiabatic and 0.0 for isothermal
Temperature dependency of the plasticity and failure models are
given using xy functions.
Strain rate dependence is Johnson-Cook with a temperature-dependent parameter

Modular failure model: Wilkins with alpha=beta=0, which corresponds to an
equivalent plastic strain to failure

User guide:

1. VARIABLES DEFINED IN THIS FILE:The variables matl and modl are provided
for a more convenient interface with a Sierra/SM input file.
matl = ’ss3041_plp’ and modl = ’j2_plasticity’

2. THERMAL SENSITIVITY STUDIES: The tabular functions for the plasticity
model parameters can be varied
by prescribing a y scale in each function. The recommended ranges for
sensitivity studies are:

Parameter Minimum y scale Maximum y scale Variable name

yield stress 0.5882 1.565 yield_stress_scale
hardening constant 0.8936 1.101 hardening_constant_scale
hardening exponent 0.7902 1.066 hardening_exponent_scale
rate constant 0.4580 1.466 rate_constant_scale

Placeholders for the y scales are included in each function
Define the variables in the Sierra/SM input according to the variable names in the table.
These variables must be defined. For the nominal calibration set all to 1.0

3. THERMAL CONDITION: A string variable named thermal_state must be defined to set the
thermal condition. Set thermal_state = ’'isothermal’ for an isothermal analysis, or to
"adiabatic’ for an adiabatic analysis. Any other string will result in an error.

4. INITIAL TEMPERATURE: An initial condition block must be included to define the initial
temperature. The model has been calibrated between 30 and 300 C.

5. RATE DEPENDENCY: The material model is rate-dependent. Make sure that the structural
model is loaded at the correct rate. The failure model is also rate-—-dependent.

6. FAILURE MODEL: The failure model produces an output variable damage.
It is calibrated so when damage=1 the material fails for
the nominal calibration. The recommended range for sensitivty
studies of the damage is from 0.5 to 1.2. There are no changes to be made in this file,
instead, inspect the output to determine the range of failure, or in an element death
block declare the value of damage at which an element will be killed. The model
calibration is intended for failure initiation. It does not include any failure
propagation information.

#
#{matl = ’"ss3041_plp’}
#{modl = ’j2_plasticity’}

begin property specification for material ss3041_plp
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density = 7.49%9e-4
begin parameters for model j2_plasticity
youngs modulus = 28.e6
poissons ratio = 0.27
yield stress = 42.5e3
hardening model = flow_stress_parameter
isotropic hardening model = power_law_parameter
hardening constant = 188.e3
hardening exponent = 0.72

rate multiplier = johnson_cook_parameter
rate constant = 0.016
reference rate = 3.33e-4

yield stress function = da304YieldStressFunction
hardening constant function = da304HardConFunction
hardening exponent function = da304HardExpFunction

rate constant function = da304RateConFunction
thermal softening model = adiabatic
specific heat = 0.776e6
#{betal= (thermal_state == ’'isothermal’” ? 0.0 : 5)}
#{beta2 = (thermal_state == ’adiabatic’ ? 0.5 : 5)}
#{beta3 = min (betal,beta2)}
#{beta = (beta3 == 5 ? -1.e50 : beta3)}
beta_tg = {beta}
t0 = 30.

failure model = modular_failure
critical failure parameter = 1.13
pressure multiplier = wilkins
wilkins alpha = 0.
wilkins pressure = 300.e3
lode angle multiplier = wilkins
wilkins beta = 0.000
rate fail multiplier = user_defined
rate fail multiplier function = da304FailureRateFunction
temperature fail multiplier = user_defined
temperature fail multiplier function = da304FailureTemperatureFunction

end parameters for model 7j2_plasticity
end property specification for material ss3041_plp

begin function da304YieldStressFunction
type 1is piecewise linear
y scale = {yield_stress_scale}
begin values
30. 1.0
150. {20./50}
300. {10./50.}
1400. {0./50.}
end values
end function da304YieldStressFunction

begin function da304HardConFunction
type is piecewise linear
y scale = {hardening_constant_scale}
begin values
30. 1.0
150. {123.16/188.}
300. {115./188.}
1400. {0./188.}
end values
end function da304HardConFunction
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begin function da304HardExpFunction
type is piecewise linear
y scale = {hardening_exponent_scale}
begin values
30. 1.0
150. {0.3717/0.72}
300. {0.3/0.72}
1400. {0./0.72}
end values
end function da304HardExpFunction

begin function da304RateConFunction
type is piecewise linear
y scale = {rate_constant_scale}
begin values
30. 1.0
120. 1.0
150. 0.50
300. 0.10
1400. 0.0 # Not measured, but extrapolated
end values
end function da304RateConFunction

begin function da304FailureRateFunction
type 1is piecewise linear
begin values

3.33e-4 1.
0.1 1.40
217. 1.25
1500. 1.25
3500. 1.25

end values
end function da304FailureRateFunction

begin function da304FailureTemperatureFunction
type is piecewise linear
begin values

30. 1.0
150. 1.27
300. 1.34

end values
end function da304FailureTemperatureFunction
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