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ABSTRACT
Nondestructive evaluation (NDE) of additively manufac-

tured (AM) parts is important for understanding the impacts of
various process parameters and qualifying the built part. X-ray
computed tomography (XCT) has played a critical role in rapid
NDE and characterization of AM parts. However, XCT of metal
AM parts can be challenging because of artifacts produced by
standard reconstruction algorithms as a result of a confound-
ing effect called “beam hardening.” Beam hardening artifacts
complicate the analysis of XCT images and adversely impact the
process of detecting defects, such as pores and cracks, which is
key to ensuring the quality of the parts being printed. In this
work, we propose a novel framework based on using available
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computer-aided design (CAD) models for parts to be manufac-
tured, accurate XCT simulations, and a deep-neural network to
produce high-quality XCT reconstructions from data that are af-
fected by noise and beam hardening. Using extensive experi-
ments with simulated data sets, we demonstrate that our method
can significantly improve the reconstruction quality, thereby en-
abling better detection of defects compared with the state of the
art. We also present promising preliminary results of applying
the deep networks trained using CAD models to experimental
data obtained from XCT of an AM jet-engine turbine blade.

1 INTRODUCTION
X-ray computed tomography (XCT) involves taking x-ray

images of a sample at different angles (see Fig. 3), normaliz-
ing the images, and computationally processing them using an
algorithm to obtain a 3D reconstruction. The most commonly
used algorithms make the assumption that the normalized data is
linearly related to the unknown 3D object—an assumption that
is valid when the x-ray source is monochromatic or when the
sample is made up of relatively lighter elements if the source
is polychromatic. In practice, however, the lower-energy pho-
tons in a polychromatic beam are absorbed more easily than the
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higher-energy photons, which harden the x-ray spectrum as it
passes through the object. This effect, called “beam harden-
ing” [1], breaks the fundamental assumption of linearity implicit
in common XCT reconstruction algorithms, thereby causing ar-
tifacts such as cupping (lower values for the reconstruction in the
central regions) and streaking in reconstructed XCT images (see
Fig. 1a). This phenomenon is more prominent for high-density
materials such as metals, which are primarily used in metal ad-
ditive manufacturing (AM) applications such as printing turbine
blades for the aviation industry [2–5]. Beam hardening–induced
artifacts make inference tasks such as detecting pores much more
complicated; therefore, there is a need for fast algorithms and
methods to handle such data.

FIGURE 1. Cross section from the reconstruction of a jet engine tur-
bine blade reconstructed using a standard reconstruction algorithm with-
out accounting for beam hardening. The streaks and cupping artifacts
(shown with red arrows) in the image can confound further analysis
of the image to detect defects. Due to the cupping artifact, the re-
constructed attenuation coefficient values of the part are non-uniform
despite the fact that we scanned a homogeneous material. The recon-
structed image is brighter at the edges (increased gray-level values), and
are darker within the central region of the part (lower gray-level values).
(a) From a real x-ray CT measurement (acquired by ZEISS METRO-
TOM x-ray CT scan); (b) simulated blade; (c) Line-profile along central
horizontal (A - A’).

The topic of beam hardening and how to deal with it has
been studied for several decades, dating back to the development
of XCT itself [6]. One approach to dealing with beam hardening
is to physically filter out the low energies of the x-ray spectrum
[7, 8] using a filter and then reconstruct the data using standard
algorithms. However, this hardware-based approach requires the
manufacturing of well-calibrated filters that depend on the x-ray
source spectrum and the materials being scanned. Furthermore,
such filters lower the overall flux of the source, thereby increas-
ing scan times or lowering the signal-to-noise ratio of the data.
Another popular set of approaches involves the design of novel
algorithms to computationally suppress artifacts that emerge as
a result of beam hardening. These approaches can be broadly
classified as those applicable to single-material and those appli-
cable to multi-material samples. For single-material cases, one
class of approaches involves designing a calibration sample of
the same material as the object of interest and teaching a digital
filter (such as a polynomial) to transform the data, effectively lin-

earizing the data and then processing the linearized data using a
standard reconstruction algorithm [1, 6]. Such a digital filter can
also be empirically determined by finding the polynomial that,
when applied to the projections, results in a visually pleasing to-
mographic reconstruction [9]. For samples composed of multiple
materials, several algorithms have been developed that involve
identifying the regions of different materials and correcting for
each of these separately [10–13]. For the purposes of this paper,
we focus on single-material samples, which are quite common in
metal AM.

Recently, there has been work on developing deep learning–
based techniques to address beam hardening artifacts. The au-
thors in [14] use a U-Net to remove artifacts from the data itself
by training on simulated pairs of mono-energetic and polychro-
matic data. The authors in [15, 16] address streak artifacts due
to strongly attenuating materials embedded inside a larger ob-
ject (a multi-material case) in the context of medical CT using a
deep neural network (DNN) approach. [17] uses a data and image
domain convolutional neural network (CNN) to remove metal
artifacts in dental XCT (another example of the multi-material
approach). The authors in [18] develop yet another approach
for metal artifact reduction in medical CT. In summary, deep-
learning approaches have recently emerged that show promising
results for multi-material XCT mainly in the context of medical
XCT.

In this work, we propose a novel framework based on us-
ing available CAD models for parts to be manufactured, accurate
XCT simulations, and a DNN to produce high-quality XCT re-
constructions from data that is affected by noise and beam hard-
ening. In particular, we propose to use CAD models of the parts,
introduce typical defects, and simulate XCT measurements that
include a model for beam hardening and detector noise. These
simulated measurements were processed with common XCT re-
construction algorithms, which resulted in artifacts. We then
trained a deep learning model on the pairs of reconstructed vol-
umes, with artifacts and ground truths derived from the CAD
model, to learn a fast, nonlinear mapping function. The deep
learning method will teach the model how to suppress the beam
hardening artifacts and noise from the reconstructed volumes.
Once the mapping is learned, the proposed deep learning method
can rapidly process new data and produce reconstructions by
effectively suppressing noise and beam hardening artifacts. In
addition, the proposed DNN reconstructs a 3D volume using a
2.5D scheme by which each slice is reconstructed from multi-
ple slices of the input to exploit correlations between adjacent
slices. This approach is in contrast to most deep learning ap-
proaches that either work with 2D images or are too expensive
for use in processing entire 3D volumes. The proposed approach
allows high-quality 3D reconstruction much faster than state-of-
the-art methods. Using simulated and experimental data sets, we
highlight the benefits of our proposed technique compared with
existing approaches. Further we evaluate the proposed network,
trained on synthetic data only, on experimental XCT data sets and
demonstrate preliminary promising results in comparison with
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standard reconstructions obtained from a commercial XCT sys-
tem at the Manufacturing Demonstration Facility (MDF) at Oak
Ridge National Laboratory (ORNL).

The rest of this paper is organized as follows. In section 2,
we present details of our proposed deep learning–based algo-
rithm. In section 3, we present the results of the use of our algo-
rithm on realistic simulated data and experimental data. Conclu-
sions are presented in section 4.

2 Proposed Approach for Simulation and Recon-
struction
Our overall approach to addressing the challenge of beam

hardening artifacts in XCT is given in Figure 2. We propose to
use a CAD model of parts to be scanned, simulate realistic XCT
data, and use this data, along with a DNN, to reconstruct the part
accurately. Once such a deep-learning model has been trained,
it can be applied to experimental data sets corresponding to the
CAD models and obtain high-fidelity reconstructions.

Realistic 
Defect 

Generator 

X-ray CT Data 
Simulator

Deep-Learning 
Reconstruction 

Algorithm 

Offline Training Data

Noisy, beam-hardened CT 
Projection dataCAD model

Noisy, beam-hardened CT 
Projection data

FIGURE 2. Concept of the the proposed solution to dealing with data
sets impacted by beam hardening. Our method uses a CAD model, in-
troduces realistic defects, and uses this model to simulate several realis-
tic XCT data sets. We then design an algorithm aided by deep learning
to accurately reconstruct the original 3D volume from such data. Once
such a network has been trained, it can be applied to the experimental
data for the part being scanned.

The simulation model is described in Sections 2.1 - 2.3,
followed by a description of the DNN approach in Section. 2.4.

2.1 Conventional Cone-Beam CT
Figure 3 shows a schematic of a conventional cone-beam CT

(CBCT) system typically used in industrial CT systems. A x-ray
source (typically polychromatic) is used to illuminate the object
of interest, and a corresponding transmission radiograph/image
is obtained by a flat panel detector. To perform CT, the object
is rotated about a single axis of rotation, and at each position, a
projection image is measured. These measurements are typically
normalized by a reference scan and then processed by an algo-
rithm to obtain a 3D reconstruction. The most commonly used
algorithm in commercial CT scanners is the Feldkamp-Davis-
Kress (FDK) [19] method, which can analytically invert the mea-

surements. The advantage of the FDK algorithm is that it is very
fast, since it is based on an analytic expression that can be rapidly
computed. However, the FDK method works best when a large
number of projection images are measured and they provide a
sufficiently high signal-to-noise ratio.

X-ray 
Source

Detector

X-rays

Detector Pixel

Rotation axisCone-Beam Geometry

FIGURE 3. Schematic of a cone beam XCT system with a turbine
blade as the object of interest. An x-ray source is used to illuminate
an object of interest, and a detector measures the transmitted signal.
The object is rotated, and several such measurements are made and pro-
cessed by a tomographic reconstruction algorithm to produce a 3D re-
construction.

Another class of methods that has been widely researched
for CT reconstruction are model-based image reconstruction
(MBIR) approaches [20]. These MBIR algorithms work by for-
mulating the tomographic reconstruction by minimizing a cost
function that balances a data-fitting term. This term incorpo-
rates a physics-based model for the imaging system and noise
characteristics of the detector, and a regularization term that in-
corporates a model for the underlying 3D object itself (such
as local smoothness). MBIR techniques have enabled dramatic
advances in several CT applications, including ultra–low-dose
medical XCT, in which they have enabled high-quality recon-
structions from sparse and extremely noisy data [21]. However,
the use of MBIR for industrial CBCT is still in its infancy [22]
because of the high computational demands dictated by the high-
resolution detectors used in these applications. Furthermore, ir-
respective of the algorithm used, the aforementioned methods
can result in reconstructions with significant artifacts if the un-
derlying assumptions of the models used are violated, as is the
case with beam hardening.

2.2 Simulation of XCT Data Using CAD Models
For a monochromatic source of x-rays at energy E0, a com-

mon expression for the normalized measured signal is based on
Beer-Lambert’s law and is given by

− log
(

I
I0

)
= µE0d, (1)

where I is the attenuated intensity, I0 is the reference inten-
sity with no object in between, µE0 is the attenuation coefficient
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FIGURE 4. Illustration of our algorithm for creating realistic objects
from the CAD model, simulating CT data, and reconstructing it using
conventional algorithms that do not account for beam hardening. Cross
section are shown from (a) the original CAD model, (b) a CAD model
with defects, (c) a reconstructed CAD model with beam hardening and
noise included in the simulations.

at energy E0, and d is the thickness of the material. In the case of
a polychromatic source, I and I0 are related to the source spec-
trum ( f (E)) and detector efficiency (γ(E)) through

I =
∫

e−µ(E)d f (E)γ(E)dE (2)

I0 =
∫

f (E)γ(E)dE. (3)

Therefore, for a polychromatic light source, the linear re-
lation between the normalized measurement and thickness (d)
shown in Eq. (1) no longer holds. Although the expression in
Eq. (2) is the most general form for x-ray transmission through a
sample, using it for simulations requires knowledge of the source
spectrum, the material attenuation coefficient as a function of en-
ergy, and the detector efficiency as a function of energy. Van de
Casteele et al. [23] present a simplified bi-modal energy model
that can accurately model the beam propagation using two dom-
inant energies in the x-ray source beam. In such cases, and as-
suming the two dominant energies to be E1 and E2, one can write

− log
(

I
I0

)
= µ(E2)d + log

(
1+α

1+αe−(µ(E1)−µ(E2))d

)
(4)

α =
f (E1)γ(E1)

f (E2)γ(E2)
. (5)

At the limit for small thicknesses (d→ 0), Eq. (4) reduces to

− log
(

I
I0

)
=

(
α

1+α
µ(E1)+

1
1+α

µ(E2)

)
d ≡ µe f f d, (6)

which is same as Beer’s law with an effective attenuation coeffi-
cient µe f f . The expression µe f f is assumed to be the attenuation
coefficient of the material if the x-ray source were monochro-
matic and therefore no beam hardening would have occurred. We
used these parameters to model beam hardening and to generate
synthetic data for the results in this paper.

Base-line Analytic 
Reconstruction

Deep-Neural Network
ReconstructionNoisy, beam-hardened CT 

Projection data

FIGURE 5. Illustration of the deep neural network architecture used
in this paper. The first step is to invert the data using a standard algo-
rithm, followed by use of a deep-neural network to remove artifacts due
to noise, sparse sampling and beam hardening.

2.3 XCT simulations with Beam Hardening Using
CAD Models

To simulate XCT reconstruction from beam hardened mea-
surements, we used the CAD models of a part to be scanned us-
ing XCT once it has been manufactured. The process for creating
a synthetic data set is as follows:

1. We estimated E1, E2, and α for the system and sample to be
scanned. This procedure is briefly outlined at the end of this
list.

2. We voxelized the CAD model corresponding to the sample
to be scanned and interpolated it to the desirable resolution.
An example cross section of half a blade is shown in Fig-
ure 4a.

3. We generated volumes with defects of different shapes and
sizes. Cracks, holes/pores were the main defects simulated.
For crack propagation in 2D layers, we assumed polynomi-
als with fractional exponents that are randomly chosen be-
tween 0.7 and 1.2 at different locations throughout the 3D
volume. The pores/holes were selected to be between 1 and
9 pixels in diameter, randomly distributed along the volume.

4. We performed logical And operation between the CAD
model and the defect volume (Figure 4b). Half the volumes
were blurred with a Gaussian filter, so that the defects do
not look sharp, small defects become faded, and the model
becomes more realistic (Figure 4b).

5. We simulated a typical XCT scan of the part with parame-
ters relevant to our system and calculated the simulated pro-
jection data for the blades. In this simulation, we used the
ASTRA toolbox [24, 25] for forward projection, modified
to account for beam hardening using Eq. (4), and simulated
Poisson statistics for the measurement.

6. We reconstructed the volume using the FDK algorithm [19]
from ASTRA toolbox [24,25]. A cross section of the recon-
structed volume presented in (Fig. 4c) clearly shows beam
hardening artifacts such as cupping and streaks.

To obtain realistic-looking synthetic data, we used experi-
mental projection data from a 3D printed part (Inconel738 mate-
rial in our case), and fitted E1, E2, and α so that the reconstruc-
tions obtained from the simulated data matched the one obtained
from the real XCT measurement of the blade. See Figure 1 for
a comparison of cross sections of the reconstruction along the
airfoil region created from synthetic and from experimental data.
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FIGURE 6. Schematic of the deep residual neural network architec-
ture (AI-CT). The network learns to predict the residual artifacts and
noise from the low-quality input reconstruction, which can then be sub-
tracted from the input to approximate a reconstruction close to the high-
quality ground truth.

2.4 Deep Learning–Based Beam Hardening Correc-
tion

The goal of beam hardening correction algorithms is to sup-
press artifacts in the 3D CT reconstruction. In additive man-
ufacturing this allows one to accurately characterize the parts;
develop statistical models that can find the correlation between
printing parameter, scan path, and so on with the characterization
results; and then use that information to improve the quality and
consistency of the parts being built. In this section, we propose a
deep learning–based method to suppress noise and beam harden-
ing artifacts in the reconstructed volumes. Our overall approach
is illustrated in Figure 5. It involves obtaining an initial recon-
struction using the FDK [19] algorithm, followed by using a
DNN to correct for the beam hardening artifacts present in the 3D
volume. The DNN suppresses noise and artifacts in the 3D vol-
ume based on parameters learned from an offline training stage.
There are several options from which to choose a DNN. This pa-
per compares two different architectures— AI-CT [26, 27], and
MSD-Net [28, 29], which has been used to remove conventional
noise from CT reconstructions.

The following are key points regarding the network and the
training process:

1. The schematic of AI-CT is shown in Figure 6. It consists
of 17 convolutional layers with the transformation kernel of
the form (3× 3)×Nin×Nout . Here, (3× 3) represents the
convolution filter size applied with Nin input and Nout output
channels. Batch normalization (BN) and ReLU were applied
in the middle 15 layers.

2. The MSD-Net was comprised of an 80 layer mixed-scale
dense neural network, with 8 levels of dilation in the filters.
The filters were chosen to be of size 3×3. We used a batch
size of 1 for training the neural network.

3. The input pairs used in training the network were the 3D vol-
ume of the FDK image reconstruction of the same blade with
beam hardening artifacts and noise, and the ground-truth
volume with the effective attenuation coefficient and with
a small additive Gaussian noise. We found that adding this
small amount of noise to the “perfect” CAD models helped

in improving the performance of the network on experimen-
tal data sets (generalization). For AI-CT, the network was
trained on pairs of noisy input and the residual output, i.e.,
the difference between the expected output and the input.
For MSD-Net, the network was trained on pairs of noisy in-
put and the CAD-based ground truth.

4. In the case of AI-CT, we trained the network on patches of
data from the input volumes. The input patches were of size
n× n× 5, where n was chosen to be 256. The number of
neighboring slices was chosen to be five, based on the anal-
ysis in ref. [27], which demonstrated that such approach
allows the network to capture the 3D information in a 2.5D
fashion, which in turn increases the accuracy without adding
computational burden. We used a batch size of 16 for train-
ing the neural network. For MSD-Net, also, the number of
adjacent slices was set to 5. In contrast to the AI-CT net-
work, MSD-Net was trained on the entire image instead of
chunking it into patches. Here, we used a batch size of 1 for
training the neural network.

5. We used a mean-squared error criterion to train the neural
networks. For both networks, an ADAM optimizer mini-
mized the loss function with α = 0.001, β1 = .9 and β2 =
0.999. In AI-CT, the learning rate reduces by a factor of 2X
every 70 epochs, or if the validation loss increases for three
consecutive epochs, whichever happens first.

6. We trained the proposed networks on six volumes of CT re-
constructions. These volumes were from three blades with
different artifacts and different noise levels, different blur-
ring, but the same beam hardening parameters. For the AI-
CT method, the input volumes were divided into patches of
data to avoid memory problems and to enable the use of
more input data [27, 30]. We used a patch size of 256×256
with a stride of 128; thus, each slice (image from the 3D vol-
ume) of 768×768 was divided into 25×256×256 patches
(sub-images). In addition, patches with too many back-
ground voxels were removed (patches with average values
smaller than the mean of the total volume) to improve train-
ing. Effectively, half of the volumes were used to create the
training/validation data. We used 80% of those total patches
for training and 20% for validation.

7. The same data was used to train the MSD-Net. A similar
80%/20% fraction of data was used for training and valida-
tion, but the data did not have to be patched, as the network
operated on the entire image.

3 Results
3.1 Synthetic Data

3.1.1 Conventional Techniques Before discussing
the results for deep learning–based methods, and for complete-
ness of the work, we briefly discuss the results obtained using
standard techniques such as FDK and MBIR to perform the re-
construction. One caveat regarding those techniques is that a
calibration sample is needed to account for beam hardening and
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FIGURE 7. Linearization technique to remove beam hardening arti-
facts followed by the use of well known algorithms (FDK and MBIR).
Using CAD model simulations allowed us to find a polynomial fit for
linearization of projection data and in turn perform beam hardening cor-
rection in the projection domain.

to correct the projection data before performing reconstruction.
The linearization approach of [1,6] finds a polynomial that maps
the beam hardened projection to the projection without beam
hardening—effectively linearizing the relationship between nor-
malized measurement and sample thickness. Instead, we simu-
lated the XCT system with a CAD model as object, obtained the
projection data affected by beam hardening artifacts and noise
(ProjwBH ), and obtained the projection data unaffected by beam
hardening (ProjNoBH ) using the effective attenuation coefficient
from Eq. (6). Next, we found the polynomial fit that mapped the
projection values from ProjwBH to ProjNoBH (see Figure 7d).

We divided the interval between minimum and maximum
projection values in the ProjwBH into a hundred equal parts. We
found all the pixels that matched these values to the fourth dec-
imal point, and then found the projection values for those vox-
els in ProjNoBH . The mean of the projection values in ProjNoBH
at those voxels is plotted against the values in ProjwBH in Fig-
ure 7d. We carried out a Cp analysis [31,32] for the zero to 11th-
order fits of the data and found that an 8th-order fit must be used
for this data; that finding matches what is suggested in ref [33].
The polynomial fit was then applied to each pixel in the ProjwBH
data to create the corresponding corrected projection data. FDK
and MBIR were used to perform the reconstruction of data with
and without beam hardening correction. A slice from the recon-
structed volume is shown for each method in Figure 7 b,c,e,f,
and is compared with the ground truth in Figure 7 a. As ex-
pected, both FDK and MBIR produced accurate reconstructions
with this linearization scheme to remove beam hardening. The
MBIR technique was more effective in suppressing noise while
preserving details in the reconstruction. We emphasize that this
result is the best we can expect from FDK and MBIR in dealing
with beam hardening because the ground-truth volume is being
used with no beam hardening to perform linearization. The fol-
lowing section discusses the use of FDK with no correction (to
show the impact of beam hardening) and MBIR with a corrected
projection for comparison with deep learning techniques.

3.1.2 Deep Learning–Based Methods We tested
AI-CT and MSD-Net (see Section 2.4) on volumes of CT data
with different defect sizes and noise levels from those in the train-
ing. In particular, although we used the same algorithm described
in Section 2.3 to generate defects, we further applied erosion
morphological operations [34] to produce smaller defects than
those for which the network was trained. This approach was used
to evaluate its capability to reconstruct those defects. Note that
for testing in AI-CT, we used full image slices as input to avoid
artifacts due to patching.

The results for the reconstruction of two case studies be-
tween deep learning–based techniques and MBIR with beam
hardening corrected projection are compared in Figures 8 and
9. In the comparison, the second case study is a volume with
blurred defects, which make the reconstruction more challeng-
ing. Figure 8 shows a slice near the bottom of the reconstructed
blade for case study 1. The reconstruction was performed using
FDK (without correction), MBIR (with corrected projection, as
in Figure 8), MSD-Net, and AI-CT. Three regions of interest that
include such defects were chosen for comparison, as shown in
Figure 8a. The results suggest that although both deep learning–
based reconstruction techniques performed well, AI-CT picked
up pores that were not clear in the other reconstructions. It also
produced a sharper reconstruction when reconstructing the de-
fects.

Figure 9 compares the methods for a more challenging case
study in which the defects were blurred before modeling XCT
and applying beam hardening. We selected two slices in the air-
foil region (Figure 9a–e and 9f–j) and one slice near the bot-
tom of the blades (bottom row, Figure 9k–o). Slices were se-
lected specifically to make it challenging for all the algorithms
to reconstruct the defects. For each case, the expanded views of
the regions of interest are shown as insets for better comparison.
Overall, AI-CT demonstrates consistent performance in recon-
structing the XCT volume of data and removing the artifacts and
noise while restoring the defects more accurately.

We further made a quantitative comparison among the meth-
ods along all the slices in the volume. We used the peak signal-
to-noise- ratio (PSNR) as the main metric for the quantitative
comparison. The PSNR is calculated using

PSNR≡ 20log
(xGT,max

MSE

)
, (7)

where mean squared error (MSE) is defined as MSE ≡
1
N ∑

N
i=1(xGT (i)− x(i))2, and xGT,max is the maximum pixel value

in the ground-truth image. Here, N is the total number of voxels,
xGT is the voxel that belongs to the ground-truth volume, and x
is the corresponding voxel in the reconstructed volume. To avoid
voxels in the air or background of the image slices, we used only
voxels that were within the CAD model region of the part. The
PSNR values for AI-CT outperformed the other methods by at
least 4dB, highlighting the strength of our proposed solution.
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TABLE 1. Mean PSNR And SSIM for Reconstruction Volumes
Method FDK, No Corr. MBIR w/ BH Corr MSD-Net AI-CT

Avg. PSNR (dB) (Case 1) 16.42 36.52 37.24 53.11

Avg. PSNR (dB) (Case 2) 16.37 41.47 35.68 45.05

3.2 Synthetically Trained Networks for Real XCT Data
So far, we have simulated the XCT system and beam hard-

ening effect using CAD models and shown that the trained neu-
ral networks, especially the proposed AI-CT method, produced
sharp and accurate reconstructions of simulated test data sets.
This section answers the following question: How accurate are
neural networks trained using synthetic data when applied to
real XCT data volumes of the part corresponding to the train-
ing CAD models? This is an important question, because ac-
quiring and creating real labeled training data is labor intensive,
expensive, and time consuming. Hence, having networks that
are trained only on synthetic data and can be applied to real data
would be invaluable. To answer the question and in turn identify

the strengths and shortcomings of the trained networks, we tested
the trained networks (MSD-Net and AI-CT) on a reconstruction
of a turbine blade scanned at the MDF at ORNL using a ZEISS
METROTOM XCT system. Results for some slices are shown
in Figures 10 and 11. Figure 10 shows two cross sections of the
reconstructed volume in the airfoil region of the blade. We com-
pared the results for the deep networks with the standard output
of the XCT system at the MDF. It is clear from Figure 11 that
even though AI-CT was trained only on synthetic data, it does an
excellent job of reconstructing the blade and identifying the de-
fects and inclusions. On the other hand, MSD-Net was not able
to recover the defects in reconstruction and introduced artifacts
near the edges where beam hardening streaks existed. Note that
these limitations could potentially be overcome by better tuning
the hyper-parameters of MSD-Net during training. It should be
emphasized that the networks are trained only on synthetic data,
giving further significance to the importance of the results ob-
tained.
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AI-CTMBIR, w/ BH Corr.Ground Truth (GT) FDK, NO Corr. MSD-Net

FIGURE 9. Comparison at slices in the airfoil region, (a–e) near center; (f–j) between center and bottom; and (k–o) near the bottom of the blade.
The expanded views of the regions of interest are shown in the inset. The bottom row shows an example where all methods have difficulty in restoring
the defects.

On the other hand, in Figure 11, it can be seen that some
pores and defects appear in the reconstructed slices at the bot-
tom of the blade using AI-CT. Since a ground truth for real data
is not available, we cannot either repudiate those defects/holes
as artificial features, or accept them as real defects not visible
to standard techniques. Specifically, this is because AI-CT has
already proved in Figure 8, j and o, that it is capable of identify-
ing pores and defects that are not visible in other reconstructions.
Therefore, further analysis, and maybe measurements with dif-
ferent modalities, are needed.

Based on these results, we leave the question asked above as
open-ended, and defer answering it to future work. Nevertheless,
we think the results documented in this paper are unique and a
promising step in leveraging CAD models for more consistent
and precise characterization of metal AM parts using XCT.

3.3 Discussions
Based on the results shown for both synthetic as well as

real data sets, the key factors contributing to the significance
of the proposed method are summarized as follows. First, re-
moving/reducing beam hardening artifacts when dealing with

XCT reconstruction of metal parts will increase the accuracy
of characterization of the 3D printed parts. Accurate charac-
terization beyond current state-of-the-art is beneficial in advanc-
ing statistical analysis of pores/defects/cracks in the manufac-
tured parts, correlating them with 3D printing parameters, and
in turn increase the efficacy and consistency of 3D printing pro-
cess. Second, a fast and accurate deep learning–based technique
is beneficial in streamlining the process of characterization of
several hundreds of parts being manufactured and characterized
every day at manufacturing centers such as the Manufacturing
Demonstration Facility (MDF). Third, developing a deep learn-
ing method that is trained ”only” on synthetic data, and can be
employed for testing and analysis of real data is a major chal-
lenge in artificial intelligence (AI) research domain. Our method
will help significantly reduce the necessity of performing the
cumbersome, labor-intensive and expensive task of curating real
data sets for training a supervised deep learning network. Fourth,
the modularity of the proposed technique provides a plug-and-
play framework that can take any state-of-the-art CNN as a mod-
ule, and perform a high quality XCT reconstruction of the 3D
volume. Fifth, the proposed method helps in reducing the scan
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time and cost for NDE of parts; using a shorter scan time re-
sults in a lower quality analytical reconstruction, and as shown
throughout the results section, AI-CT is trained to approximate
the high quality reconstruction taking the low quality reconstruc-
tion as input. Last, while the proposed technique is developed for
characterization of metal parts, it can be extended to other areas
such as medical imaging, nuclear engineering, security, etc.

a b c d

e f g h

AI-CTMSD-NetFDK, No Corr.
Input to Neural Networks

XCT System 
Standard Output 

FIGURE 10. Significant performance of AI-CT in reconstruction of
real data in the airfoil region. Both AI-CT and MSD-Net were trained
only on synthetic data.

a b c d

e f g h

AI-CTMSD-NetFDK, No Corr.
Input to Neural Networks

XCT System 
Standard Output 

FIGURE 11. A reconstructed slice from the 3D volume that may
show the limitations of neural networks trained on synthetic data only
when they deal with real data sets. Considering the accuracy of the
AI-CT results in Figure 8, j and o, further analysis and measurements
are needed to evaluate the observed defects/pores in this figure, and in
general, for real data.

4 Conclusion
Even after four decades of development, beam hardening

still is an unresolved challenge for XCT of complex geometries
of dense materials that are being used for metal AM. This pa-
per showed how CAD models along with powerful DNNs can
be leveraged to suppress beam hardening artifacts, such as cup-
ping and streaks, in reconstructed XCT images. We used sim-
ulated XCT data with (and without) beam hardening and noise

to train two separate deep CNNs, one that was developed by our
team (AI-CT) and the state-of-the-art CNN MSD-Net. We eval-
uated the networks on different case studies with defects smaller
than those generated in the training data sets. The test results
demonstrated that AI-CT produces high-quality reconstructions
that resolve these defects. In addition, we showed promising pre-
liminary results for the reconstruction of experimental data sets,
although AI-CT was trained only on synthetic data. This study
paves the way for future development of DNNs that leverage
CAD models for high-quality reconstruction and, in turn, en-
hanced nondestructive evaluation and characterization of com-
plex 3D printed geometries.
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