
LLNL-TR-820178

Summarizing the
interoperabilities between xSDK
members

C. Balos, S. Balay, A. Fisher, P. Lusczcek, S.
Osborn, U. Yang

March 4, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

1

Summarizing the interoperabilities between xSDK

members

Report in fulfillment of Milestone STMS05-31: Document summarizing the

interoperabilities between xSDK members

Cody Balos, Satish Balay, Aaron Fisher, Piotr Lusczcek, Sarah Osborn, Ulrike Meier

Yang, in collaboration with other xSDK project members

Table of Contents

Introduction 1

Current and Planned xSDK Interoperabilities 2

xSDK Example Test Suite: Status and Planned Updates 6

Lessons Learned: Outlook for Increasing xSDK Interoperabilities 7

Additional survey responses 8

Appendix A: Planned updates of interoperability between xSDK Packages Survey
Questions 8

Introduction

Rapid, efficient production of high-quality, sustainable extreme-scale scientific

applications is best accomplished using a rich ecosystem of state-of-the art reusable

libraries, tools, lightweight frameworks, and defined software methodologies, developed

by a community of scientists who are striving to identify, adapt, and adopt best practices

in software engineering. The vision of the xSDK is to provide infrastructure for and

interoperability of a collection of related and complementary software elements —

developed by diverse, independent teams throughout the high-performance computing

(HPC) community — that provide the building blocks, tools, models, processes, and

related artifacts for rapid and efficient development of high-quality applications. A

2

primary component, and challenge, of the xSDK is to improve interoperability among

software libraries and domain components.

This document summarizes the current and planned interoperabilities of the twenty-

three xSDK member packages as of March 2021. Additionally, the status of the xSDK

example codes that demonstrate and test the interoperabilities within the xSDK is

provided.

Current and Planned xSDK Interoperabilities

To gather information about planned updates to interoperability support, each member

package answered a brief questionnaire. The survey questions are provided in

Appendix A. The objective was to evaluate the current status of interoperability support,

including if the functionality exists but is not yet enabled within the xSDK Spack

package, and query for any plans or in-progress work for expanding interoperability

support with another xSDK member package. Table 1 shows currently supported

interoperabilities, as well as planned support, and whether the feature is enabled with

the xSDK Spack package.

Table 1: This table shows the status of package interoperabilities as of March 2021.

Row entries indicate the status of the interoperability where the row-labeled package

USES the column-labeled package. Column entries indicate the status of the

interoperability where the column-labeled package IS USED BY the row-labeled

package.

A yellow box indicates that the package has support for using some part of the other. A

blue box indicates that additionally, the interoperability is enabled in the xSDK Spack

package. A green box indicates that the interoperability is in development or planned.

3

(Abbreviations used: AMR = AMReX, BFP = ButterflyPACK, dea = deal.II, DTK = DataTransferKit, GKO =
Ginkgo, hff = heFFTe, HYP = hypre, lEn = libEnsemble, MAG = MAGMA, MFE = MFEM, Omg =
Omega_h, PET = PETSc, PHI = PHIST, PLA = PLASMA, PRE = preCICE, PUM = PUMI, SLA = SLATE,
SLE = SLEPc, STR = STRUMPACK, SUN = SUNDIALS, SLU = SuperLU_DIST, TAS = TASMANIAN, Tri
= Trilinos)
 AMR BFP dea DTK GKO hFF HYP lEn MAG MFE Omg PET PHI PLA PRE PUM SLA SLE STR SUN SLU TAS Tri

AMR

BFP

dea

DTK

GKO

hFF

HYP

lEn

MAG

MFE

Omg

PET

PHI

PLA

PRE

PUM

SLA

SLE

STR

SUN

SLU

TAS

Tri

Key
Yellow Interoperability exists

Blue Interoperability exists and is enabled in xSDK Spack

Green Interoperability is planned

Black(ish) Diagonal

4

Many xSDK member packages have enabled the existing interoperabilities through the

xSDK Spack package; however, bottlenecks can prevent an existing interoperability to

not be enabled within the xSDK Spack package, e.g., version issues, etc. 5 existing

interoperabilities are planned to be enabled within the xSDK Spack package (PETSc +

STRUMPACK, PETSc + SUNDIALS, PLASMA + MAGMA, PUMI + Omega_h,

SUNDIALS + MAGMA), 3 have performance-based reasons for not enabling the

existing interoperability with another xSDK package (ButterflyPACK + MAGMA, Trilinos

+ hypre and Trilinos + PETSc), and 1 has a Spack installation issue that prevents the

interoperability being enabled (libEnsemble + Tasmanian) where `lib1 + lib2’ indicates

that lib1 calls lib2. The specific responses from the questionnaire on the status of

enabling an interoperability connection that exists but is not yet enabled within the xSDK

Spack package (I.e. moving from Yellow to Blue in Table 1) are given below, as well as

details on bottlenecks that make this difficult:

● ButterflyPACK + MAGMA: Interoperability works but performance needs to be

carefully evaluated. We will enable interoperability within xSDK Spack if we

observe good performance.

● libEnsemble + Tasmanian: Tasmanian is one we use in examples. But it must

use the Python interface, and this currently requires building with the '--user'

option. It may be worth looking at whether installation could be simplified and

possibly we could include as a Spack variant.

● PETSc + STRUMPACK: Plan to work on exposing petsc+strumpack in Spack

● PETSc + SUNDIALS: Currently PETSc interfaces with an old SUNDIALS-2.5.0

version. Will update to the latest version in FY21.

● PLASMA + MAGMA: Planning for enabling interoperability in xSDK Spack in

2021 to be included in the next xSDK release.

● PUMI + Omega_h: Within the next year we hope to enable this.

● SUNDIALS + MAGMA: Sundials interoperability with MAGMA is not enabled in

the xSDK Spack package yet (since it was added after xsdk-0.6.0) but we plan to

enable it.

5

● Trilinos + hypre and Trilinos + PETSc:

○ hypre interface was once activated, but the user did not like it because of

extra memory copies hurting the performance.

○ PETSc (Eptra and AztecOO) interface has not been tested for a long time,

and the code is part of the old 1st generation packages that are under

“maintenance mode.”

New interoperabilities among xSDK members (and proposed new members) are

planned during the remainder of FY21 and beyond (see green boxes in Table 1). The

status and timeline for the individual interoperabilities among libraries is given below:

● MFEM + Omega_h: Interoperability is enabled for some limited use cases.

Significant work is left to enable the full capability and is currently underway.

● SUNDIALS + MAGMA: This integration exists, and will be exposed in the next

release cycle.

● DTK + ArborX: The required dependency ArborX is proposed as a new member

package on its own.

● Deal.II + ArborX: There is a pull request to allow using ArborX (a proposed new

xSDK member) with deal.II.

● Deal.II + SUNDIALS: The SUNDIALS interoperability existed already but not with

the recent version. This is in the process of getting fixed.

● Trilinos + STRUMPACK: STRUMPACK is supported by Amesos2. This feature

has been already integrated in the master branch.

● SUNDIALS + Ginkgo: Early planning stage of interoperability with Ginkgo.

● SLEPc + MAGMA: We would like to add an interface to MAGMA, but don’t have

resources for this now.

● ButterflyPACK + SLATE: We plan to evaluate the possibility of interoperability

with Slate starting in FY21.

The xSDK project will continue to provide a medium of communication among these

teams to help support development of such interfaces and their continual testing.

6

xSDK Example Test Suite: Status and Planned Updates

The xSDK example codes are a demonstration of interoperability between xSDK

libraries and provide training for xSDK library users interested in using these

capabilities. The first version of the suite of example codes demonstrating the use of

various xSDK packages in combination was released in March 2020. The example

codes in xSDK Examples v0.1.0 feature examples exhibiting the following

interoperabilities (`lib1 + lib2’ indicates that lib1 calls lib2):

● hypre + SuperLU_DIST

● libEnsemble + PETSc/TAO

● MFEM + hypre + SuperLU_DIST

● MFEM + PETSc

● MFEM + SUNDIALS

● PETSc + hypre + SuperLU_DIST

● SUNDIALS + SuperLU_DIST

● SUNDIALS + PETSc

● Trilinos + SuperLU_DIST

● MFEM + Ginkgo (not enabled in release v0.1.0)

For the new release of the xSDK-examples test suite (v0.2.0), the xSDK examples have

been updated to use the current xSDK release – xSDK v0.6.0. Additionally, the

following examples have been added to the test suite to demonstrate increased

interoperability features within the xSDK, including examples using GPU functionality:

● MFEM + Ginkgo (now enabled within Spack package)

● MFEM + SUNDIALS using CUDA

● SUNDIALS + MAGMA using CUDA

○ This example is not enabled in v0.2.0 as this interoperability is not in

xSDK 0.6.0, but can be built with a provided cmake script.

Additional examples to be included in future versions of the xSDK examples test suite

have been identified to demonstrate use-cases for utilizing various xSDK libraries in

7

tandem. A planned addition to the test suite is another example of demonstrating MFEM

+ Ginkgo interoperability, using advanced preconditioners for matrix-free linear solvers.

This work is scoped for Q2/Q3 2021.

Other potential examples that would be beneficial to add for future releases of the xSDK

examples include demonstrating the following interoperabilities:

● PUMI + Omega_h (Once PUMI + Omega_h is enabled within xSDK)

● AMReX + hypre/PETSc

● PETSc + SuperLU_DIST

● MFEM + STRUMPACK.

In addition to providing potential users examples of how different xSDK libraries can

work together to solve problems of interest, the xSDK examples are used for testing as

well. Adding more examples not only provides users with additional demonstrations, but

also enhances the testing of interoperabilities within the xSDK.

Lessons Learned: Outlook for Increasing xSDK Interoperabilities

When evaluating new examples to add to the xSDK example suite, a common issue

arose where new interoperability features have been added to individual xSDK libraries,

but those features are not yet in a released version of xSDK. Therefore, either the

examples must be built separately (not with the Spack package for the xSDK-examples)

or more frequent releases of the xSDK are necessary. This is problematic as

synchronizing releases with interoperating libraries that have API changes is difficult

and time-consuming. Additionally, the individual libraries have independent release

schedules that make coordinating for a new xSDK release challenging.

Steps are being taken to work toward a faster, and more people-efficient workflow for

development and testing within the xSDK. Currently a Gitlab CI testing capability for the

xSDK is being employed to test the entire xSDK on several different platforms.

Additions are being made to the testing capability by adding new tests, and layers of

testing, e.g., only testing a subset of xSDK packages to more easily diagnose potential

8

issues. The primary goal of the CI testing is to ensure the current release version of the

xSDK is stable. However, an important secondary opportunity is to test with the

development versions of various libraries. This will enable potential issues, like API

changes, to be identified sooner.

Additional survey responses

The following responses were given to the survey question, “Are there other

interoperability needs or new features that would be useful for ECP applications?”:

● PLASMA: Useful integration would be OpenMP offload including C++ with native

vendor libraries.

● Trilinos: We request the users to introduce the 2nd generation packages for a

long term solution. I have heard that there are still several applications and

libraries using the old 1st generation packages. We are not planning to add new

features and performance improvement (such as GPU support).

● PETSc: Likely exploring GPU features from the current packages.

● libEnsemble: Variable propagation in Spack could be useful.

Appendix A: Planned updates of interoperability between xSDK Packages Survey

Questions

1) If interoperability exists but is NOT enabled in the xSDK Spack package, do you
have plans to enable it within the xsdk Spack package? If so, what is your time frame
for that? If not, are there any issues that prevent it from being enabled within Spack
(dependencies, variants, conflicts, etc.)?

2) Do you plan additional interoperability with other xSDK packages? If so, what is the
status (E.g., in development, will start work in FY21, planned future work, etc.)?

3) Are there other interoperability needs or new features that would be useful for ECP
applications?

4) Are any interoperabilities of your package using another demonstrated in the xsdk-
examples suite? If not, could any examples be added to the test suite to demonstrate
existing or new interoperabilities (even if they are not built with Spack)?

