‘ ! ! . LLNL-TR-816100

EEEEEEEE
EEEEEEEEE
NNNNNNNN

AAAAAAAAAA Replicated Computational Results (RCR)
Report for'Adaptive Precision
Block-Jacobi for High
PerformancePreconditioning in the
Ginkgo Linear Algebra Software"

S. V. Osborn

October 28, 2020

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

g W N

© o N o

Replicated Computational Results (RCR) Report for
“Adaptive Precision Block-Jacobi for High Performance
Preconditioning in the Ginkgo Linear Algebra Software”

SARAH OSBORN, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
USA

The article by Flegar et al. titled “Adaptive Precision Block-Jacobi for High Performance Preconditioning in
the Ginkgo Linear Algebra Software” presents a novel, practical implementation of an adaptive precision
block-Jacobi preconditioner. Performance results using state-of-the-art GPU architectures for the block-Jacobi
preconditioner generation and application demonstrate the practical usability of the method, compared to a
traditional full precision block-Jacobi preconditioner. A production-ready implementation is provided in the
Ginkgo numerical linear algebra library.

In this report, the Ginkgo library is reinstalled and performance results are generated to perform a com-
parison to the original results when using Ginkgo’s Conjugate Gradient solver with either the full or the
adaptive precision block-Jacobi preconditioner for a suite of test problems on an NVIDIA GPU accelerator.
After completing this process, the published results are deemed reproducible.

ACM Reference Format:

Sarah Osborn. 2020. Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for
High Performance Preconditioning in the Ginkgo Linear Algebra Software”. 1, 1 (December 2020), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In [2], a practical implementation of a novel adaptive precision block-Jacobi preconditioner is
introduced. In particular, the authors present a heavily-tuned GPU implementation of the adaptive
precision block-Jacobi preconditioner within the Ginkgo numerical linear algebra library. The
performance of the methodology and implementation is demonstrated using the proposed precon-
ditioning scheme within Ginkgo’s high-performance Conjugate Gradient (CG) implementation on
an NVIDIA Volta GPU.

In this report, we replicate a subset of the computational results presented in [2]. The focus is
generating results from Fig. 9 to evaluate the performance of using Ginkgo’s CG solver integrated
with either the full or the adaptive precision block-Jacobi preconditioner applied to a variety of test
cases.

The main steps are as follows to replicate the experimental results:

(1) Install ssget tool and prefetch test matrices from the SuiteSparse collection.

(2) Download and build Ginkgo.

(3) Prepare the experiment scripts.

(4) Run the experiments.

Author’s address: Sarah Osborn, osborn9@lInl.gov, Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, P.O. Box 808, L-561, Livermore, CA, USA, 94551.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/12-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50
51

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Sarah Osborn

(5) Publish the experiments to a git repository and use the Ginkgo Performance explorer (an
interactive webtool) to generate the plots.

While the results from the article are benchmarked using the Summit supercomputer at Oak Ridge
National Laboratory, the replication results are generated using Lassen at Lawrence Livermore
National Laboratory. Both systems are composed of the same IBM Power9 CPUs and NVIDIA Tesla
Volta V100 GPU accelerators; however, there are differences in the ratio of CPU to GPU — Summit
has six GPUs for every pair of Power9 chips compared to Sierra’s four GPUs per pair of CPUs. For
both sets of experiments ([2] and the replication effort), a single NVIDIA V100 GPU accelerator is
used so the results will be comparable.

2 REPLICATION OF COMPUTATIONAL RESULTS OF THE ARTICLE

A detailed description of the configuration used to generate the performance results has been
provided to the reviewer by the authors. These instructions are openly available in a markdown
document [1], which can be accessed at https://github.com/ginkgo-project/ginkgo/blob/2019toms-
adaptive-bj-solver/Reproduce_Experiments.md. All software components and performance evalua-
tion tools are openly available via GitHub repositories. It is assumed the author provided instructions
are followed exactly, unless noted otherwise. Only a summary of the specific instructions and
commands will be outlined below, for the sake of brevity as full details can be found in [1].

2.1 Software Download and Installation

2.1.1 Download test matrices. First, the ssget tool is cloned from the git repository (https://github.
com/ginkgo-project/ssget) to facilitate downloading the test matrices from the SuiteSparse matrix
collection. A bash script is provided to pre-download the test matrices using ssget. The downloaded
test matrices are stored in /p/gpfs1/<username>, the recommended location for parallel file space
on Lassen.

2.1.2 Download and build Ginkgo. The source code is downloaded from the git repository (https:
//github.com/ginkgo-project/ginkgo.git) using the 2019toms-adaptive-bj-solver branch. CMake
(version 3.14.5) is used to set up the build system, where it is specified to build optimized CUDA
versions of the kernels using CUDA version 9.2.148 as in [2]. Due to different available versions of
GCC on Lassen, GCC is changed to use version 7.3.1 (instead of version 6.4.0).

Building the Gingko project is straightforward, while making sure to use a compute node for the
make -3j10 step as a CUDA bug leads to a slow compilation process. Once the project is compiled,
all 79 unit tests passed after running make test.

2.2 Replicating the Experiments

First, two files are created to launch the experiments, following Step 3 from [1]. Note that due
to slight differences in Lassen and Summit, some BSUB parameters must be altered in the bench-
mark_ginkgo Isf file. The following lines are added for Lassen runs:

#BSUB -G account # Replace #BSUB -P ${project**}
#BSUB -q pbatch #Specifies the name of the queue to use

In the benchmark_one_node.sh file, export SYSTEM_NAME=V100_lassen is used to differentiate
the results, as this variable is used for the folder name to store the experiment output files. To
launch the experiments, the command from Step 4 in [1] to benchmark all matrices and run 20
benchmarks in parallel is used. By default, 1 digit of the precondition is preserved. The experiments
are run a second time where 2 digits of the preconditioner are preserved, following Step 6 of [1].
Recall that one NVIDIA V100 GPU accelerator is employed for the experiments.

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://github.com/ginkgo-project/ginkgo/blob/2019toms-adaptive-bj-solver/Reproduce_Experiments.md
https://github.com/ginkgo-project/ginkgo/blob/2019toms-adaptive-bj-solver/Reproduce_Experiments.md
https://github.com/ginkgo-project/ssget
https://github.com/ginkgo-project/ssget
https://github.com/ginkgo-project/ginkgo.git
https://github.com/ginkgo-project/ginkgo.git

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Replicated Computational Results (RCR) Report for “Adaptive Precision Block-Jacobi for High Performance
Preconditioning in the Ginkgo Linear Algebra Software” 3

Block-Jacobi iti cG with 1 digit pi

I terations (adaptive) [l Time (adaptive) [l CG converged? [CG + Jacobi converged? [I] CG + adaptive Jacobi converged?

e R R R R R R R R R R R R R R R RN R R R R R R RRRERRERIRERE

5e40

2e+0

. coee o
1es008 o8088ce0c0csccce] S elecesocccccces o3
L}

Jacobi / adaptive Jacobi ratio

te-1
N DG DAD 0.0 MDD DD D LD P DA DD DN PR DD A oD 1O 2N D 1D W 1010 1D PR PR PP DD PO O PR D@ P D SONAL PN

Problem

Block-Jacobi i cG with 2 digit pi

I terations (adaptive) [l Time (adaptive) [l CG converged? [CG + Jacobi converged? [I0] CG + adaptive Jacobi converged?

e LR R R R R R R R R R R R R R R R R R RN R R R R R R R RRRERRERIRERE

5640

2e+0

coee o _e000000e o
1es000000888c0c0cccecceltB, $8ccccteccsccccccocboccccccloes
L}

Jacobi / adaptive Jacobi ratio

1e-1
NYBROOA DXL EN RPN PP PP RN PRERF PP PLARR ORI PP RN P RPR PP PP R PR P AP PP PG QOO

Problem

Fig. 1. Replication of Fig. 9 from [2] using the Lassen system where the adaptive precision preserves 1
digit (top) or two digits (bottom) of the full precision block-Jacobi preconditioner. When compared to Fig.
9, the results indicate the iteration count is the same as the original, and similar speedups are achieved for
certain test cases when using the CG solver enhanced with the adaptive precision block-Jacobi preconditioner
compared to the CG solver with the full precision variant of block-Jacobi.

2.3 Evaluation of Replicated Results

For each test matrix, a json file is generated that contains the timing and convergence results for
the CG solver without preconditioning, with standard (full precision) block-Jacobi preconditioner,
and with the adaptive precision block-Jacobi preconditioner.

Using Ginkgo’s open-source plotting tool, Ginkgo Performance Explorer (GPE) (https://ginkgo-
project.github.io/gpe/), similar figures to Fig. 9 in [2] can be easily reproduced. The Ginkgo software
project has an open-source git repository that contains performance benchmarking data (https:
//github.com/ginkgo-project/ginkgo-data). In particular, the ginkgo-data repository contains the
json files for the benchmarking experiments in [2].

, Vol. 1, No. 1, Article . Publication date: December 2020.

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://github.com/ginkgo-project/ginkgo-data
https://github.com/ginkgo-project/ginkgo-data

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

164
165
166
167

169
170
171
172

174
175
176
177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Sarah Osborn

To evaluate the performance of our experiments on Lassen, first the results are published to a
fork of the ginkgo-data repository (https://github.com/ginkgo-project/ginkgo-data/tree/2019toms-
adaptive-bj) following Step 5 from [1]. Note that for this set of results, build-1ist should be
altered so that SYSTEM_NAME is used in line 14 in place of A100. Once these results are loaded into
GPE, the figures like those in Fig. 9 in [2] are generated and shown in Fig. 1.

Upon inspection of these results generated on Lassen, we note that the CG iteration counts
are the same as those in [2]. This comparison is conducted using the performance data from the
2019toms-adaptive-bj branch of the ginkgo-data repository, since only the relative number of
iterations between the two preconditioners are reported in the paper.

For the runtimes of the CG solver, the timing results are comparable. There are some fluctuations
for some of the test cases of the relative timing results, yet when improvements are observed the
speedup is between 10% and 30% which is consistent with the observations of the article. In our
estimation, the timing results are close enough to consider the results of [2] replicated.

3 CONCLUDING REMARKS

By following the comprehensive instructions provided by authors of [2], all of the software compo-
nents used in the results section were reinstalled. New performance results for comparing Ginkgo’s
CG solver with the full precision block-Jacobi preconditioner to the adaptive precision block-Jacobi
preconditioner were generated and compared to the original results. The necessary software to
replicate the results is freely and openly available. Additionally, the availability of the Ginkgo
Performance explorer, an interactive webtool for analyzing and plotting, made the process of
analyzing the results very convenient. After completing this process, the published results are
deemed replicable by the reviewer.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. This document was prepared
as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

REFERENCES

[1] [n.d.]. Instructions to Reproduce Experiments. Retrieved October 23, 2020 from https://github.com/ginkgo-project/
ginkgo/blob/2019toms-adaptive-bj-solver/Reproduce_Experiments.md

[2] Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-OrtAx. 2020. Adaptive Precision Block-Jacobi for
High Performance Preconditioning in the Ginkgo Linear Algebra Software. ACM Trans. Math. Softw 1, 1, Article 1 (Aug.
2020), 27 pages.

, Vol. 1, No. 1, Article . Publication date: December 2020.

 https://github.com/ginkgo-project/ginkgo-data/tree/2019toms-adaptive-bj
 https://github.com/ginkgo-project/ginkgo-data/tree/2019toms-adaptive-bj
https://github.com/ginkgo-project/ginkgo/blob/2019toms-adaptive-bj-solver/Reproduce_Experiments.md
https://github.com/ginkgo-project/ginkgo/blob/2019toms-adaptive-bj-solver/Reproduce_Experiments.md

