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4 3D MATERIALS SCIENCE

3D shapes and distributions influence mechanical & physical
properties

2D characterization can be inadequate to resolve full
dimensionality (e.g. shape, spatial distributions, connectivity )

Computational hardware and software (custom/commercial) is
becoming increasingly affordable and readily available for 3D
studies (e.g. DREAM.3D, MIPaR, ModLayer, Paraview, IDL, etc.)

Special Issues focused entirely on 3DMS

• Scripta Materialia, 2006, vol. 55, no. 1

• MRS Bulletin, 2008, vol. 33, no. 6

• Materials Characterkation, 2008, vol. 60, no. 10

• JOM, 2011, vol. 63, no. 3

• Metallurgical and Materials Transactions, 2020, vol. 51, pp. 20-57

• JOM, 2020, vol. 72, no. 1

• IMMI, 2019, vol. 8
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5 3D IMAGING LENGTH SCALES
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7 I AUTOMATED MECHANICAL SERIAL-SECTIONING
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AUTOMATED SERIAL-SECTIONING FOR
8 INVESTIGATING MICROSTRUCTURE
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System Components 

• Automated robotic polisher with variable polishing wheel
• Automated high-resolution inverted microscope with montage imaging
• Dual internal ultrasonic cleaning stations
• Three internal compact chemical etching stages
• External operator station for real-time observation of data collection

Customized Components 

• 8+ Multi-platen polishing surface cassette interchange system
• Imaging in brightfield, darkfield & polarized light modes
• 3 additional turreted microscope objective positions available
• Added monitor(s) for customer viewing of data collection real-time
• Viewport for in-situ verification of polishing load
• Laser triangulation for high precision material removal measurement
• Pre-set in-line locations for additional sample surface diagnostics
• Original LabView program w/GUI for real-time analysis of data collection

Benefits 

• Sectioning rates up to 100 times the baseline manual process
• Automated handling eliminates variability caused by human handling
• Precise repeatability for imaging location, illumination, contrast, exposure & feature focus
• Demonstrated repeatable sectioning thicknesses from 0.2 — 10 lam per slice
• Documented slice rates of up to 20 slices per hour
• Applicable to high and low strength metals (e.g. Al, Cu, Ti, Steel, Ni), composites,

ceramics, foams, and bone

Sandia
National
Laboratories

Imaging & Resolution 

Multiple optical objectives in a rotating
turreted mount

5X -- 2.10 um/pixel
10X -- 1.05 um/pixel
20X -- 0.53 um/pixel
50X -- 0.21 um/pixel

The Benefit to Sandia's Mission 

Mechanical serial-sectioning provides for large field (microns-
to-millimeters), quantitative 3D characterization of singular
material or multi-material components wherein defects, failures
or abnormalities are suspected but unconfirmable via other
means (e.g. non-destructive testing.)

Given Sandia's responsibility as a design agency in creating
and verifying performance to spec by vendors, PAs and
throughout design to delivery, Sandia's ability to interrogate
material spatially, thoroughly and with rigor, where other
techniques cannot, is a unique capability we must
maintain.
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System Components 

• Automated robotic polisher with variable polishing wheel
• Automated high-resolution inverted microscope with montage imaging
• Dual internal ultrasonic cleaning stations
• Three internal compact chemical etching stages
• External operator station for real-time observation of data collection
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or abnormalities are suspected but unconfirmable via other
means (e.g. non-destructive testing.)

Given Sandia's responsibility as a design agency in creating
and verifying performance to spec by vendors, PAs and
throughout design to delivery, Sandia's ability to interrogate
material spatially, thoroughly and with rigor, where other
techniques cannot, is a unique capability we must
maintain.



10 ROBO-MET.3D®AT SANDIA NATIONAL LABS
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11 ROBO-MET.3D®AT SANDIA NATIONAL LABS
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Identification of manufacturing
defects in multi-material parts *

Explicit quantification of location,
size and morphology of porosity in
laser welds

room ra-7-A plim Fun
:ma
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Subsurface damage in
thermal spray coatings *

Dark field imaging

Determination of
crack size, severity
and depth in glass-to-
metal seals for
connectors

pin

seal

•
weave pattern consistency, voiding and

resistance to charring in fiber-reinforced-
com posites*



12 ROBO-MET.3D®AT SANDIA NATIONAL LABS
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Identification of crack length, width and chirality in pre- and
post- heat-treatment springs *

Defect
identification and
through-thickness

inspection of
ferrite cores for
transformers *

I 41,411I
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Investigation of solder
contact separations in
micro-inductors *

Characterization of porosity volume fraction, nearest
neighbors and connectivity in Pb-Zr-Ti *
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Defects in Glass Micro-Balloon Encapsulant
in a Multi-Material Transformer



14  FERRITE CORE TRANSFORMER

Need 

• Ascertain presence of voids in a multi-material component (glass-micro-ballons, epoxy, ferrite, Cu)

Challenqe 

• Due to significant variation in material densities, micro-computed tomography was not viable
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15 I FERRITE CORE TRANSFORMER

Observations 

• In glass-micro-balloon (GMB) encapsulant
• small-scale porosity on the order of 25 — 50 um in diameter were observed throughout
• intermitttent large-scale porosity on the order of 0.5 — 1+ mm in diameter were seen

Glass Micro-balloon Encapsulant

Metallic Housing

o
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Observations 

• In glass-micro-balloon (GMB) encapsulant
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17  FERRITE CORE TRANSFORMER

Outcome(s) 

• Based on this study in conjunction with others, a re-design of the component was selected that
included a perforated metallic housing to allow for degassing of the GMB during manufacture.
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Soldered Contact for a Cu Winding
in a Micro-Inductor



19 MICRO-INDUCTOR

Need 

• Identify root cause of failure for a commercial-off-the-shelf micro-inductor with missing solder contact

Challenqe 

• Due to part size and potential range of volume in question, traditional metallography, FIB or part
disassembly was undesirable
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20 MICRO-INDUCTOR

150 pm
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MICRO-INDUCTOR

Observations 
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(a) Inductor reached at slice 89
(b) Ceramic core first contacted at slice 98
(c) Ceramic core fully revealed at slice 154
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22 MICRO-INDUCTOR

Observations 

• Slice 225 marks a plane for which both leads should exist

Left wire lead

(detached wire

side). Appears

copper colored.

Solder appears

silver/white in

images.

Right wire lead

(intact wire

side). Appears

copper colored.

EMT 10 00MV iS own gnat A SE1 Width -1 005 Om

Serial sectioning direction

Ceramic core. Dark spots are

porosity in the material. Note

that the interior of the ceramic

core may appear slightly out of

focus compared to the edges of

the part. This is a consequence

of "rounding" during the serial

sectioning process.

Note that changes in

brightness appear as lines.

This is an imaging artifact

from non-uniform lighting

across the part. It is not a

feature in the part itself.



23  MICRO-INDUCTOR

Observations (Intacted Wire wpm

• Wire lead on right terminal. First present at
slice 198 (part depth = 176 pm) and gone
at slice 240 (part depth = 269 pm).

• Full extent of wire lead contact with
ceramic shown on slice 210 (part depth =
219 pm)

Slice 198 (part depth = 176 pm)

Serial sectioning

direction

t93 inn

— Slice 198

176 pm

Slice 240

Edge of part

(0 pim)

Slice 240 (part depth = 269 1.1,m)



24  MICRO-INDUCTOR

Observations (Detacted Wire rLeft])

• Wire lead on left terminal. First present at
slice 220 (part depth = 235 pm) and gone
at slice 260 (part depth = 318 pm).

• Full extent of wire lead contact with
ceramic shown on slice 240 (part depth =
269 pm)

Slice 220 (part depth = 235 inn)

__f
_ Slice 260

83 pin

— Slice 220

235 inn

Edge of part

(0 pim)

Serial sectioning

direction

Slice 260 (part depth = 318 inn)
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25 MICRO-INDUCTOR

Outcomes 

• Both wire leads extend across majority of contact surface

• Left wire lead length is 130 pm

• Right wire lead length is 160 pm

• The left wire lead is thinner (6 pm) than the right wire lead (8.5 pm).

Slice 240 (part depth = 269 µm) Slice 210 (part depth = 219 µm)

o
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Crack Network
in a Glass-To-Metal Seal Connector



27 1 18 PIN GLASS-TO-METAL SEAL

Need 

• Investigate sub-surface discontinuities and determine if connectivity with surface cracks exist

Challenqe 

• NDE methods such as ultrasonics tell us a "where"but they do not provide a conclusive "what"
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28 1 18 PIN GLASS-TO-METAL SEAL

Need 

• Investigate sub-surface discontinuities and determine if connectivity with surface cracks exist

Challenqe 

• NDE methods such as ultrasonics tell us a "where"but they do not provide a conclusive "what"

A-SrPn Pt 1

116
WP15 7-710A 17.110 cw.L.1

A-Scan Pt. 2
17 5

--CALI C7 _Li

ultrasonics



29 1 18 PIN GLASS-TO-METAL SEAL

Need 

• Investigate sub-surface discontinuities and determine if connectivity with surface cracks exist

Challenqe 

• NDE methods such as ultrasonics tell us a "where"but they do not provide a conclusive "what"
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30  18 PIN GLASS-TO-METAL SEAL
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Need 

• Investigate sub-surface discontinuities and determine if connectivity with surface cracks exist

Challenqe 

• NDE methods such as ultrasonics tell us a "where"but they do not provide a conclusive "what"
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31  18 PIN GLASS-TO-METAL SEAL
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Observations 

• Surface cracks connect to sub-surface discontinuities & converge to a singular location

• Crack network descends 1.5 mm below surface
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32 1
Summary

• Reviewed the progression of mechanical serial-sectioning as a means for microstructural
characterization

• Demonstrated 3D characterization as:
• A viable method for inspection of commercial-off-the-self components (e.g. commercial-off-the

shelf transformer)

• A helpful contribution to root-cause analysis efforts to identify modes of part failure (e.g. micro-
inductor)

• A means of quantifying extent of condition in anomalous and complex multi-component
assemblies (e.g. 18-pin glass-to-metal seal connector)

Publications & IP

1. T. Ivanoff, J. Madison, "Pairing 3D Characterization with Serial Sectionine AM&P,
vol. 178, (2020) pp. 16-21

2. J. Madison, E. Huffman, "High Resolution Non-Contact Removal Rate Module for
Serial Sectionine U.S. Patent 10,260,865B1, Apr 16, 2019

3. J. Madison, O. Underwood, G. Poulter, E. Huffman, 'Acquisition of Real-Time
Operation Analytics for an Automated Serial Sectioning System" IMMI, vol. 6,
(2017) pp. 135-146

4. M. Brake, A. Hall, J. Madison, "Designing Energy Dissipation Properties via
Thermal Spray Coatings" SURE COAT. & TECH., vol. 310, (2017) pp. 70-78
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QUESTIONS


