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Motivations
With recent advances in sensing technology, large volumes of hydrogeophysical and
geochemical data can be obtained to achieve continuous tracking of the movement of
a fluid or a plume in the subsurface. However, characterization with such a large
amount of information requires prohibitive computational and storage costs
associated with matrix construction, matrix-matrix multiplication, and linear system
solution. To tackle such challenges, we present a spatio-temporal modeling without
explicit construction of the covariance matrix, and take advantage of the parallel
black-box fast multipole method (FMM) and the parallel inverse Fast Multipole
Method (IFMM) for matrix-vector multiplication and linear system solution,
respectively. Overall, our approach requires O(N) computation and storage. For an
illustrative example, we use 6 million transient tracer concentration measurements in
a laboratory-scale 3-D sand-box obtained using magnetic resonance imaging to
monitor real-time tracer plume migration. The sand-box was filled with discrete
patterns of 5 different sizes of sands at 1 cubic centimeter, creating relatively
heterogeneous patterns of permeability distribution and associated complex transport
of the tracer. We demonstrate that the spatio-temporal modeling can be performed
with a big data set such as this concentration data for real-time plume tracking.

Methods
1. Spatiotemporal modeling 111
In this work, we focus on the simple (spatio-temporal) Kriging type method for
spatiotemporal interpolation of a tracer plume:
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where:
§(x, t) = the best spatiotemporal estimate
y(x, t) = observation

Qss = auto-covariance matrix of the estimate s with kernel K(x,t) = Cov(s(x),s(t))
Qsy = cross-covariance matrix between estimate s and observation y

H = sensing matrix whose columns are a subset of identity matrix at obs. locations
Thus, Qsy = QssHrr) Qys = HQsS
Qyy = auto-covariance matrix of the estimate s,Qyy = HQSSHT

Qssiy — posterior covariance matrix

Computational costs for the estimate and posterior covariance are O(N2) and O(N3),
respectively.

2. PBBFMM3D: Parallel Black-box Fast Multipole Method 121
PBBFMM3D accelerates non-oscillatory kernel matrix-vector multiplications

N
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j=1
by hierarchical separation of the problem domain to separate the interactions into
near-field and far-field interactions:
1. the near-field interactions are computed exactly
2. the far-field interactions are approximated using low-rank techniques
Therefore,
• PBBFMM3D reduces the costs from O(N2) to O(N) complexity in time/storage.
• PBBFMM3D only requires the ability to evaluate the kernel without the explicit

formula.
• PBBFMM3D further accelerate the computation using OpenMP on shared-memory

machines.
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Figure: Schematic illustration of PBBFMM operations (left) and computational scaling for mat-vec operations with different
kernels and interpolation functions (right)

• Spatiotemporal problem can be solved efficiently using the Conjugate Gradient
(CG) method that only requires mat-vec operations.

• However, for high-dimensional problems, condition number of Q becomes large
and the number of iterations will increase.

3. PBBIFMM: Parallel Black-box Inverse Fast Multipole Method 131
The inverse FMM (IFMM) uses the same hierarchical decomposition structure as in
the FMM and construct an approximate direct solver for dense linear systems. IFMM
keeps a compact representation of the far-field throughout the factorization and is able
to retain the same asymptotic computation and memory complexities as the FMM.
Based on greedy coloring algorithm. IFMM is further parallelized using OpenMP on
shared-memory machine. In this work, PBBIFMM constructs a preconditioner to
duce the iterations in the CG method. 

Data
The entire flowcell has dimensions of 21.5 x 9 x 8.5 cm, and is packed with 1 cm
cubes of five different sand type [4]:
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Figure: Illustration of 3-D flowcell
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Figure: Sand packing in 3 layers (out of 8 layers)

• Sand distribution was created using SISIM in SGLIB to construct a heterogeneous
K filed for the central portion (14 x 8 x 8 cm)

• Constant water flow rate with a uniform tracer concentration
• 6 million transient tracer concentrations were imaged using MRI at a resolution

of 0.253 cm2 at a regular interval time over the central region.
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Figure: Packing with a brass divider with 1cm3 openings (left), flowcell (upper right), MRI magnet (lower
left) and normalized signal intensity at a voxel (lower right).

Preliminary Results

• We test with an exponential kernel with spatial and temporal stationarity
assumption with anisotropy (perhaps valid for this application).

• 82,764 data (y) out of measured 7 million observations (y-true) are used for
spatio-temporal modeling; currently only layer-wise interpolation (x,y,t) is
presented here.

3

3

Observation (y)

3

1 0 5

3

10 15

•

3

N
E

Estimtnaio (:§)

10

1 0

10 15 0

x [um]

15

15

5

3

3

3

le (!m.,„.)

1 0

1 0

1 0

5

15

5

• Currently, the entire estimation of contaminant plume took less than 2 minutes
on an Intel 48 core workstation.

• The solution with a CG solver converges within e%d20 iterations only requiring
PBBFMM3D implementation.

• PBBIFFM will be beneficial if we use more spatiotemporal data points.

Concluding Remarks and Future Direction
• We use FMM and IFMM to accelerate the large-scale spatio-temporal problems
• Numerical tests show that our proposed method produces reasonable plume

reconstruction.
• Our framework will be extended for full 4D application.
• Ordinary and Universal Kriging methods will be applied for better modeling of

spatiotemporal modeling of subsurface plumes.
• Optimal hyper parameter estimation through empirical Bayesian approach (i.e.,
MAP estimate of marginalized distribution of hyperparameters) will be applied.
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