

Ultra-Wide-Bandgap Aluminum Gallium Nitride Power-Conversion and Radio-Frequency Applications

SAND2020-2528C

Shahed Reza, Robert Kaplar, Andrew Armstrong, Albert Baca, Brianna Klein, Erica Douglas, Andrew Allerman, Mary Crawford, Jeramy Dickerson, Andrew Binder, Jack Flicker, Jason Neely, Oleksiy Slobodyan

Sandia National Laboratories, Albuquerque, NM, USA

Abstract

Wide-Band-Gap (WBG) Gallium Nitride channel lateral High Electron Mobility Transistor (HEMT) devices emerged as one of the top contenders for high-voltage RF and power conversion application areas. This is due to the high mobility of the 2DEG channel, and most importantly a large critical electric field (E_{crit}) allowing high voltage operation. Since E_{crit} is related to the band-gap by roughly square-law relationship, the Ultra-Wide-Band-Gap (UWBG) Aluminium Gallium Nitride (AlGaN) materials and devices hold the promise to surpass the performance of the WBG materials in the high voltage application arena [1].

High critical field enables either higher voltage and power, or higher power density without impacting reliability. The Unipolar Figure of Merit (FOM), a measure of the trade-off between breakdown and on-resistance is proportional to the product of the mobility and the 3rd power of E_{crit} and thus depends strongly on E_{crit} . Similarly, the Johnson FOM, a metric for RF operation, is proportional to the saturation velocity and E_{crit} . Hence, in both measures, performance is expected to improve with UWBG materials, provided that the mobility

and the saturation velocity do not degrade appreciably.

In this talk, an overview of UWBG Al-rich AlGaN device research at SNL will be presented. Mobility in Al-rich AlGaN channel devices is alloy-scattering limited and relatively temperature insensitive and is thus promising for high-temperature applications. Recent progresses on ohmic contact formation on Al-rich AlGaN will also be presented [2].

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.

[1] J. Y. Tsao et al., *Adv. Elec. Mat. Adv. Elec. Mat.* 4, 1600501 (2018)

[2] B. A. Klein et al., *ECS J. Solid-State Sci. Tech.* 6 (11), S3067 (2017)

Biography

Shahed Reza is a principal member of technical staff at Sandia National Laboratories, where he is currently leading research activities on physics-based device and subsystem modelling methodologies. Dr Reza received his PhD in Electrical Engineering from University of Florida and he has held several R&D positions in the industry. He has eight US patents and over 60 technical publications in peer reviewed journals and conferences.