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Outline
• Nonlocality

• It's not as weird as everybody thinks
• Peridynamics background

• All-in on nonlocality
• Can nonlocality be derived or observed?

• Long-range forces
• Smoothed degrees of freedom (homogenization)
• Multiple pathways for flux
• Wave dispersion

Do we ask too much of the local theory of
continuum mechanics?
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What peridynamics seeks to accomplish

• Treat material points on or off of evolving discontinuities with the same equations.
• Include long-range forces in the basic equations.
• Fit all this into a thermodynamic framework that's consistent with the mechanics.

Peridynamic simulation

*Hofmann et al, Nature (2008)

Metallic glass crack tip*
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Nonlocality: Not as weird as everybody thinks

Discretized numerical methods are
nonlocal

Ax
<

i
• 

i
•
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• Node i interacts directly with node j through
the finite element equations.

• Interaction is across a finite distance Ax.
• This is a form of nonlocality.

• Notwithstanding that the result
converges to the local result as Ax —> O.

4



Nonlocality: Not as weird as everybody thinks

Local PDEs get themselves into trouble
• Classical (Cauchy) PDE:

au
pil = V • cr (—) + b.

ax

• Many material models a() evolve into deformations that are incompatible

with the fundamental assumptions.

— Phase boundaries, shock waves, cracks, ...

• Can't directly treat some important physical effects.

—Wave dispersion, surface energy, microstructure evolution, long-range

forces, ...

• People often take drastic measures if they want to work with this PDE.

— Element deletion, ...
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Fracture

I\ Phase
transition

Stra in —
au
ax

Material models and the features
they "try" to predict
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Nonlocality: Not as weird as everybody thinks

These drastic measures often involve
nonlocality

• Example: Artificial viscosity spreads out a shock wave and dissipates en-
ergy.

Ou
Pii = V • cr (

0x
) ± ey(V • 11)2 + b.

• It avoids the need to apply jump conditions across an ideal shock.

• It allows converntional discretization to be used "within" a shock.

• By spreading out a shock it introduces a length scale.

• This is a type of nonlocality.

• J. Von Neumann & R. D. Richtmyer, J. Appl. Phys. 21 (1950). 232
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Propagation direction

Stress o-

— 
Ideal shock (zero thickness)

Shock with artificial viscosity

Position x

Artificial length

scale

FEM codes spread out a shock wave
over -6 elements
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Peridynamics background

Peridynamics goes all-in on nonlocality

Classification of some theories with respect to local/nonlocality:
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PDEs with no length scale:

• Classical continuum

mechanics

PDEs with a length scale:

• Micropolar

• Mindlin

• Kroner

• Eringen

• Phase field

• Nonlocal damage

• Plate & shell theories

• Gradient theories

Full nonlocality:

• Kunin

• Peridynamics

• Every fundamental relation in peridynamics is nonlocal in space:
• Transport
• Conservation
• Material models
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Peridynamics background

Peridynamic* momentum balance
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• Any point x interacts directly with other points within a distance 6 called the "horizon."

• The material within a distance 6 of x is called the "family" of x, 7-tx.

Peridynamic equilibrium equation

f (q. x) d17,4 b(x) =L.
f = bond force density (from the material

model, which includes damage)

Ifx= family of x

• If f satisfies f(x, = —f (q, x) for all x, q then linear momentum is conserved.

• SS, JMPS (2000)

* Peri (near) + dyne (force)
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Peridynamics background

Formalism for nonlocal interactions:
States

* A state is a mapping whose domain is all the bonds { in a family.

AW = something `vf c H.

Bond
x

• Deformation state...

Y  [x] Kg — x} = y(q) — y(x) = deformed image of the bond

Sandia
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Peridynamics background

States: Nonlocal analogues of second order
tensors

• Classical theory uses tensors (linear mappings from vectors to vectors).
• Peridynamics uses states (nonlinear mappings from vectors to vectors).

Tensor F
—>

State Y
_),.

Ellipsoid
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Peridynamics background

Peridynamic vs. local equations
• Structurally similar but with states instead of local operators.
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Relation Peridynamic theory Standard theory

Kinematics Y(q — x) = y(q) — y(x) F(x) = —
0y

(x)
ax

Linear momentum
balance

pY(x) = f (t(q, x) — t(x, q)) dVq + b(x)
li

pS7(x) = V • cr(x) + b(x)

Constitutive model t(q, x) = T(q — x), T = T(Y) a = 6-(F)

Angular momentum
balance

LY(q — x) x T(q — x) dVq = 0 a- = aT

Elasticity T = Wy (Fréchet derivative) a = WF (tensor gradient)

First law e =T•Y+q-kr e =cr•F+q-kr

T • -7- := f T() • -7.() d•V
9-t
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Peridynamics background

Damage
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• Damage is usually treated through bond breakage.

• After a bond breaks according to some criterion, it rio longer carries
any force.

• Typical breakage criterion: prescribed critical bond strain so:

s = bond strain.

s >= so at some time to

means the bond remains broken for all t > to.

____ ......

*- - 
- 

 Broken bond Y(k)
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Peridynamics background

Autonomous crack growth

• Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• SS & Askari, Computers and Structures (2005)

Broken bond

Crack path
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Peridynamics background

Many validation studies have been done
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• First issue of the new Journal of Peridynamics and Nonlocal Modeling had a review article by Diehl
on published validation to date:

Journal of Perldynarnics and Nonlocal Modeling

https://dolorg/10.1007/542102-018-0004-o

REVIEWS

A Review of Benchmark Experiments for the Validation
of Peridynamics Models

Patrick Diehl' • Serge Prudhomme2 Martin Lévesque1

Received: 2 November 2018 / Accepted: 25 December 2018
0 Sponger Nature Switzerland AG 2019

Table 3 Applications of bond-based and state-based peridynamics for the comparison with experimental data

Material Mechanical test B S Exp Sim

Composite Flexural test with an intial crack ✓ [75] [2]

Composite Damage growth prediction (six-bolt specimen) ✓ [120] 1961

Composite Damage prediction (center-cracked laminates) 1 [6, 12, 69, 134] [70]

Composite Dynamic tension test (prenoteched rectangular plate) ✓ [12, 65] [58]

Steel Crack growth (Kalthoff-Winkler) 1 ✓ [66-68] [3, 52, 114, 144]

Aluminum/Steel Fracture (compact tension test) 1 [9, 77, 89, 91] [135, 141, 142]

Aluminum Taylor impact test 1 [4, 21] [3, 43, 45]

Aluminum (6061-T6) Ballistic impact test 1 [132] [127]

Concrete Lap-splice experiment 1 [48] [48]

Concrete 3-point bending beam 1 ✓ [19, 63] [7, 51]

Concretc Failure in a Barazilian disk under compression 1 [51] [54]

Concrete Anchor Bolt Pullout ✓ [128] [83]

Glass Dynamic crack propagation (prenotched thin rectangular plate) 1 [15, 36, 100] [2, 53, 144]

Glass Impact damage with a thin polycarbonate backing 1 [8, 20, 40] [59]

Glass Single crack paths (quenched glass plate) 1 [13, 103, 136] [71]

Glass Multiple crack paths (quenched glass plate) 1 [102, 137] [71]

Glass Crack tip propagation speed ✓ [15] [52, 53, 144]

PMMA Fast cracks in PMMA ✓ [39] [2]

PMMA Tensile test 1 [124] [32]

Soda-lime glass Impact on a two-plate system 1 [16, 130] [130]

Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sirn to simulation
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Peridynamics background

Peridynamics converges as the horizon 0

• Linear peridynamics converges to Navier equations of linear elasticity.
• Linear or nonlinear material models converge to a stress-strain relation.
• Problems with nonconvex elastic peridynamic models can converge to

nonlinear elasticity with Griffith cracks.

• E. Emmrich & O. Weckner, Communications in

Mathematical Sciences (2007).

• F. Bobaru et al., Int. Journal for Numerical Methods in

Engineering (2009).

• T. Mengesha, & Q. Du, Journal of Elasticity (2014).

• S.S. & R. B. Lehoucq, Journal of Elasticity (2008).

• P. Seleson & D.J. Littlewood, Computers & Mathematics

with Applications (2016).

• *R. P. Lipton, R. B. Lehoucq, & P.K. Jha, Journal of

Peridynamics and Nonlocal Modeling (2019).
Angled crack growth simulated with a

nonconvex peridynamic material model*
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Peridynamics background

Example: Fracture in a brittle plate with a
lot of defects VIDEO
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Peridynamics background

Example: Fragmentation due to impact
• Brittle cylinder vs. rigid plate at lkm/s.

Colors show damage
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Peridynamics background

Example: Microstructure evolution

• Plate with ends fixed. Global strain co is in the unstable part of the material
model.

• Complex microstructure appears at first, then simplifies.
• Driving force is the energy stuck in a phase boundary.

Bond force

I density f

•

•

 .
co Bond strain s

Initial strain E0

•

•

VIDEO
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Colors show bond strain
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Peridynamics background

Example: Microstructure evolution

Colors show bond strain
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Is nonlocality real?

Straightforward case for nonlocality:
When there really are long-range forces

• Fracture of nanofiber network held together by Van der Waals forces.

F. Bobaru, Modelling and Simulation in Materials Science and Engineering 15, no. 5 (2007): 397.
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Is nonlocality real?

Smoothing the smallest scale degrees of
freedom results in nonlocality

• Try to approximate known, small-scale response (e.g. molecular motion) by a
continuous variable, yet retain realistic behavior.

• How to make the connection?
• One approach: Smooth out the small-scale degrees of freedom.
• Example:

• Heterogeneous infinite bar.

• Small-scale model (local):

p(x)ii(x t) _ 19-f(s t) b(x t)

where p=density, u=displacement, a=stress, and b= body force density.

• Material model:
cr t) _ E (x)qi (x t)

where E=Young's modulus.

Sandia
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Is nonlocality real?

Define a smoothed displacement field
• Let w(z) be a smoothing function on z E f w = 1 , tv(— z)
w (z) .

• Define the smoothed displacement field ft by

1 D° D°1(x t)  I w (p — x) p(p)u(p, t) dp , p(x) := Do w (p— x) p (p) dp
p(x) _Do

• Recall
p(x)ii(x t) = (TV, t) b (x

• Multiply through by and integrate, find that

co
13( t) _ Ew(x-p)o-'(p, dp+ b(x b (x t) := (x — ANA t) dp

- CC

Sandia
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Is nonlocality real?

Evolution equation for smoothed DOFs

• Recall

p(x)fqx t) = I c: w (x — p)o-1 (p, t) dp + b (x t)

• Integrate by parts (surprise*

p(x)ft(x, t) = — ro w' (x — p) or (p t) dp + b(x, t) .

• Starting to look nonlocal.

• Let q be defined so that p is halfvvay between q and x, i.e.,

• Then

x +
P= 2

r El(; x) (q+2 x't) b(x

u(x)

Mg Sandia
National
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ls nonlocality real?

Evolution equation is nonlocal

• Recall

Dai5(x) ft (x , t) = -- f w' (q x 0- ) (q + x , t) dq + b(x,t).
2 2 2—Da

• Now define the pairwise bond force density by f (q, x) f (x , q)

1f (q, x) , _,,,,, ( 
q — x) (

2 2 °- 
q-kx

2 
,t

and define the horizon by

• We now have

Sandia
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6 = 2c.

x +6

P(x)ft(x , t) = 1_6 f (q, x) clq + b(x t).

• Observe that f has the required syrnrnetry

f (r,q) = — f (q,x).

 .
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Is nonlocality real?

Need a material model in terms of the
smoothed DOFs

• Unfortunately we don't knovv

• One possibility is to back out tit' from the Fourier transform using the
convolution theorem:

hence

1-{R} =1-{w}T{u} > u 
Ttfil

T{w}

u(x) r(x)cidx.F_i {•;_flit'u .,}}1

• This is too much work!

• Instead come up with a nonlocal material model.

Sandia
National
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Is nonlocality real?

Bond-based heterogeneous material mode

• Observe that in equilibrium with b 0 and fixed stress cro,

o-0
uo(x) = (z) dz

* From this compute the smoothed displacements:

(x) = .tv(010 (x + d(.

• Define a nonlocal material model by (omit t):

f (q, x) = C (q, x)(ft(q) — Et( )), CroWl((q 
x)/2) C(Q X) := 

flo(q) — 
tiO(x)

* This exactly reproduces the local result for equilibrium with b O.

• (But not in general.)

Sandia
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Is nonlocality real?

Bar with a soft spot: Micromodulus
Mi

cr
om

od
ul

us
 

aft

....,
.1 I. l' 1 I

I I
- I"' 1 ti~ I I

ill II
I \ 1 III 

Iii

I

I
— I

I li I
I 11

I 
1 II

I
II

I
I I

I
I

I I 11 1 
I

1 I I I 
I— I

I I
I ii I I

I I I I I
I 1 H

111 

I_

I I I
I I I

I
—

1
I I

1 II 
I
I

- I
I I

I 
I 

III

il 
I
I
I 1

1 

1
1

I I

1 
I
I
I

I
I I

1 

I

- I
I I

I 
I

II
1
1 ll 

II 
II

I 

III 

1
1 li

I
— I

I 
11 1

11 

I
I 

1 I 1
1I I ii

1 i
_I I

I I
I ii

I I
II I

I 

lit 

III
_ILI II 1 I

I I i I
I 

)

\ 
I I
I 1.4

Position

Sandia
National
Laboratories

27



Is nonlocality real?

Bar with a weak spot: Displacement

4-

Di
sp
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nt

 

Red: Peridynamic

Blue: Exact (local)

Position
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Is nonlocality real?

Bar with a very weak spot:
Micromodulus shows broken bonds
4-

Mi
cr
om
od
ul
us
 

M.

Position

• The heterogeneous peridynamic material model zeroes out the
micromodulus for bonds crossing the crack.

• Bond breakage!
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Is nonlocality real?

What the preceding analysis shows

• Using smoothed displacements results in a nonlocal evolution law.
• This evolution law is peridynamics provided a material model in terms of ft

is defined.
• The micromodulus is determined by:

• The small-scale (local) material model and heterogeneity.
• The smoothing function w.

• A nonlocal concept of damage (bond breakage) emerges naturally when the
original problem contains a crack.

Sandia
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Is nonlocality real?

A hint of unexpected behavior

• Recall

(x) = w - u(P) (1P.

• Fourier transform of any function v:

lt*(k) Tfv(x)} =

• Convolution theorem

Cikx GC) dX

so that formally we can derive the small-scale displacernents from any
given ft:

Sandia
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Is nonlocality real?

A hint of unexpected behavior, ctd.
• Can we arbitrarily prescribe ft?

• Suppose w and ft are both Gaussians:

e—(x/L02 —(x/L„)2ft(x) = w(x) = e, .

• Then

u*
712 (k) 

(k) =
to* (k)

• Bad news if Lu < Lw!

U e7r 2 (L2w L2u ) k2

Sandia
National
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Is nonlocality real?

Can nonlocality be observed
experimentally in elastostatics?

• Consider a 2D composite composed of
alternating layers of stiff and compliant
material.

• Smoothed DOF is the average x displacement
along a vertical line.

1
= — dx2
L 0

• We will examine "seemingly" 1D deformations.
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Is nonlocality real?

Static Dirichlet problem for a composite
• Solve for the 2D displacements in the local theory.

• Both phases deform the same way.

• No surprises (yet).

, 11•11111
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Is nonlocality real?

Now consider a mixed
Dirichlet/Neumann static problem

• Apply a constant traction p along the left surface.

• Still using 2D local theory.

• Should we still expect ft to vary linearly with x1?

Sandia
National
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Is nonlocality real?

Smoothed DOFs show interesting features

• A detail computational model shows complex behavior near the left edge.

• Smoothing this solution results in nonlinear ft(x1).

P

Detailed local numerical solution

S
m
o
o
t
h
e
d
 d
is
pl
ac
em
en
t 

ft
 

x1
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Is nonlocality real?

Nonlocality helps reproduce response
near loaded boundary
• Tune a 1D peridynamic microelastic material model.
• Try to reproduce the behavior seen in the detailed 2D local solution..
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Peridynamic material model
f f f

Width of stiff +
compliant stripes

<-->

Bond length

Di
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Predicted displacement

Position x
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Is nonlocality real?

Nonlocal material parameters can be
derived from static full-field data
• Digital image correlation (DIC).

• Virtual field method (VFM).

• Electronic speckle pattern interferometry (ESPI).

Strain concentration in a composite is

influence by nonlocal length scales

• L. Toubal, M. Karama, & B. Lorrain, Composite

structures, (2005).

• D. Turner, B.Van Bloemen Waanders, & M. Parks J.

Mechanics of Materials and Structures (2015).

• D. Turner, J. Engineering Mechanics (2015).

• *Delorme, R., Diehl, P., Tabiai, I. et al., J Peridyn

Nonlocal Model (2020)
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Start

/ Initial guess (K, Az) E R and actual displacement field

1 
PeriPyDIC: Compute the dual force densi y (Eq. (17))

PeriVFM: Compute the internal works 14),*nt (Eq. (30))

PeriVFM: Compute the residual 0 (Eq. (25))

Yes

o

(Material properties (K, ju) found)

NOMAD: Get new (K, A)

Flow chart for obtaining PD

parameters by VFM*.
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Is nonlocality real?

Dynamics: impact problem

• Impactor strikes the composite edge-on.

Impactor

v

-->

N-

ail
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Is nonlocality real?

Dynamics: impact problem video
• Detailed 2D local simulation.

• Complex wave structure is created in the composite.

Colors show maximum principal strain

Sandia
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Is nonlocality real?

Dynamics: impact problem

• Detailed 2D local simulation.

• Complex wave structure is created in the composite.

• — —
zip
2, —
2
• 4"..1!" — ——mom.
=

'12
a WINN. alM1111111.1111..

Colors show maximum principal strain
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Is nonlocality real?

Nonlocality helps predict the dispersive
nature of waves in the composite
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• After smoothing the displacement along vertical lines, the complex wave structure is
manifested as dispersion.

• A 1D peridynamic model (after tuning of the micromodulus) reproduces some of
these features.
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Is nonlocality real?

Wave dispersion
• All real solids exhibit dispersion for sufficiently short wavelengths.
• The wavelength depends on the microstructure and composition.

• Dispersion starts to appear for wavelengths < microstructure size.
• This implies that nonlocality is required to predict dispersion.

W
a
v
e
 v
el

oc
it

y 
c
 

Material 1

i

Local theory

27-cc/D
/

Material 2

 .
w = Angular frequency = 27 * frequency
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Is nonlocality real?

Wave dispersion in linear peridynamics

• Equation of rnotion with b 0:

t) = C(0(u(x — u(f ,t))

• Look for plane wave solutions of the forrn

= e2(kx—wou(x, t)

where k=wavenumber and w=angular frequency.

• Condition on w and k:

45

-pW2 = C(Oezi' — 13, P := 03

• or in terms of the Fourier transform = T{C},

pw2(k) = P — 0*(k)

Sandia
National
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Is nonlocality real?

Wave dispersion in linear peridynamics

F
r
e
q
u
e
n
c
y
 w
 

A

Typical peridynamic dispersion curve

Local ,
/ i Not observable?
/ 1-->
/ 1
/ 1

/,

Slope = phase velocity

Wavenumber k
 .

• S. N. Butt, J. J. Timothy, & G. Meschke, Computational Mechanics (2017).

• V. S. Mutnuri, USNCCM15 presentation (2019).
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Is nonlocality real?

Finding peridynamic material properties
from measured dispersion data

le We found
pw2(k) = P — (k).

• Given measured „p„(k) , formally solve

= -71{1) P4Tper(k.)}

(requires data to be cut off for large 1,:).

A
Dispersion curve

Fit through data 

1"--e—
Cutoff

Data

k
►

C(0

Micromodulus
A

6

• O. Weckner & S.S., Int. J. for Multiscale Computational Engineering (2011).
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Is nonlocality real?

Higher cutoff frequency leads to
narrower micromodulus curve
• The limiting case of micromodulus —> delta function corresponds to the local theory.

An
gu

la
r 
fr
eq
ue
nc
y 
w
 

1.5

1.4

1.2

1.0

0.8

0.5

C.4

0.2

0.0

Peridynamic

Original

Mat 1

0 0 0.4 0.8 1.2

Wavenumber k

1.6 2 0

M
i
c
r
o
m
o
d
u
l
u
s
 C
(
0
 

Sandia
National
Laboratories

4 8

Bond length

12 16 20



Is nonlocality real?

Example: PD model calibrated to a
composite dispersion curve
• Boron-epoxy composite.
• Longitudinal waves normal to fibers.
• Compare measured ultrasonic group velocity* with calibrated peridynamic result.

DIRECTION OF APPLIED PRESSURE

DURING CURE

* T. R. Tauchert & A. N. Guzelsu, J. Applied Mechanics (1972).

Sandia
National
Laboratories

Dispersion curve: Model & Data

4

Data*

Peridynamic

50 100

Frequency co (MHz)
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Discussion: Nonlocality in peridynamics

• Nonlocality emerges from how we choose to model a problem.
• Origins

• Long-range forces
• Smoothed degrees of freedom
• Multiple pathways for flux (of momentum, heat, mass, ...)

• Consistency
• Peridynamics uses a consistently nonlocal approach to the

evolution of all fields including damage.

Sandia
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