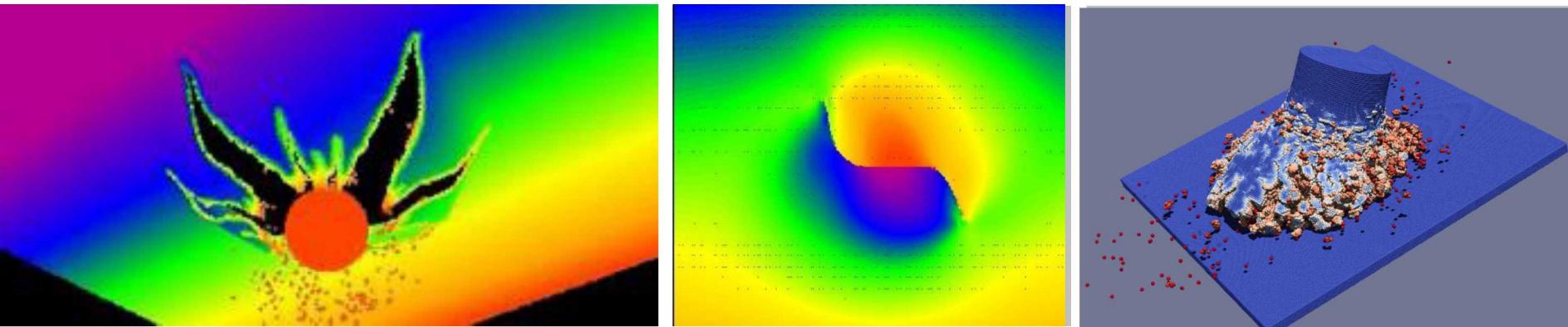


Exceptional service in the national interest



Nonlocality in peridynamics

Stewart Silling

Computational Multiscale Department
Sandia National Laboratories
Albuquerque, New Mexico

Workshop on Experimental and Computational Fracture Mechanics
Baton Rouge, LA, February 26, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

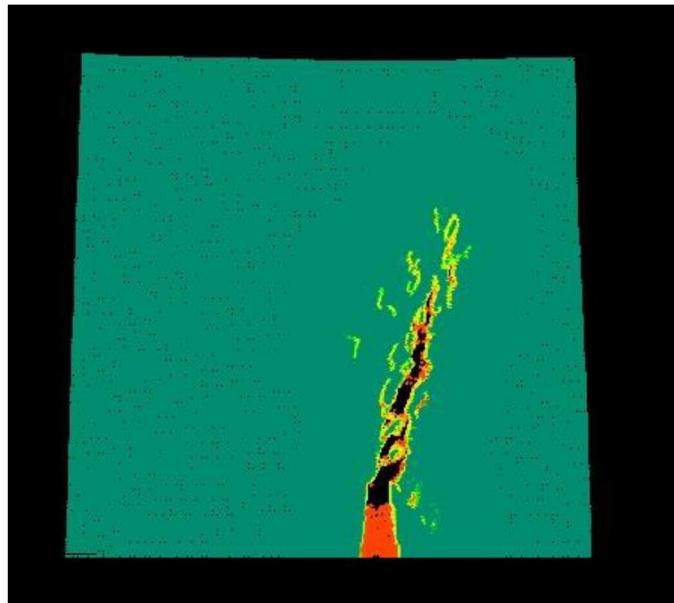
Outline

- Nonlocality
 - It's not as weird as everybody thinks
- Peridynamics background
 - All-in on nonlocality
- Can nonlocality be derived or observed?
 - Long-range forces
 - Smoothed degrees of freedom (homogenization)
 - Multiple pathways for flux
 - Wave dispersion

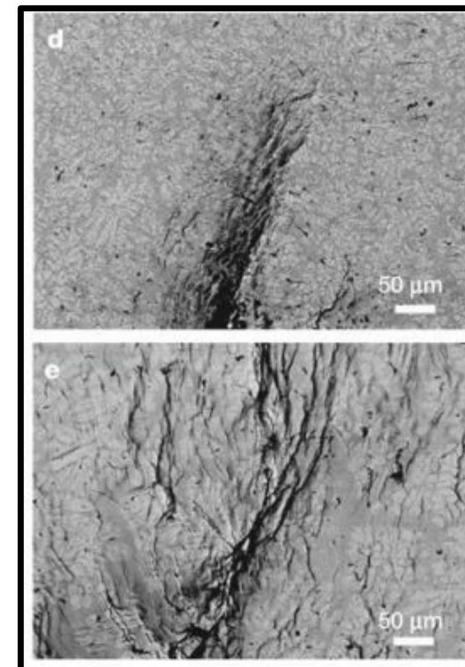
Do we ask too much of the local theory of
continuum mechanics?

What peridynamics seeks to accomplish

- Treat material points on or off of evolving discontinuities with the same equations.
- Include long-range forces in the basic equations.
- Fit all this into a thermodynamic framework that's consistent with the mechanics.



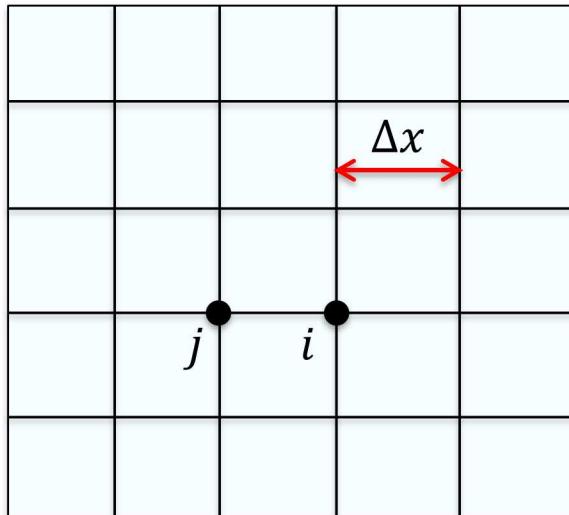
Peridynamic simulation



Metallic glass crack tip*

*Hofmann et al, Nature (2008)

Discretized numerical methods are nonlocal



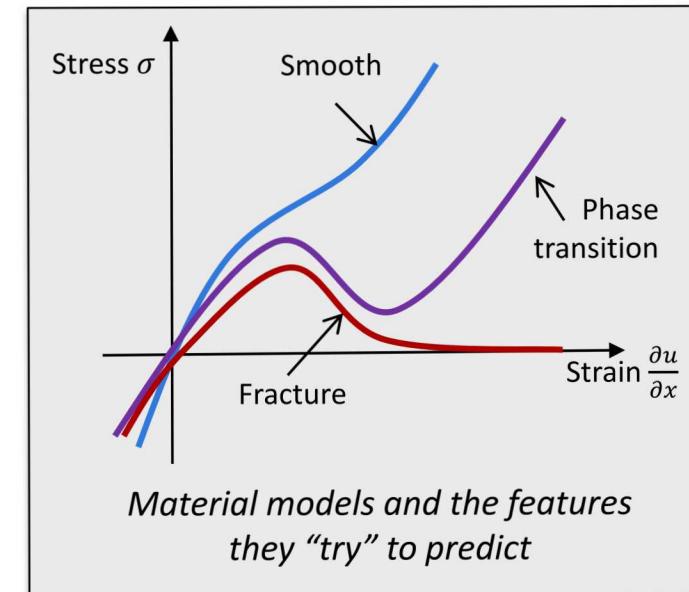
- Node i interacts directly with node j through the finite element equations.
- Interaction is across a finite distance Δx .
- This is a form of nonlocality.
 - Notwithstanding that the result converges to the local result as $\Delta x \rightarrow 0$.

Local PDEs get themselves into trouble

- Classical (Cauchy) PDE:

$$\rho \ddot{\mathbf{u}} = \nabla \cdot \boldsymbol{\sigma} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) + \mathbf{b}.$$

- Many material models $\sigma(\cdot)$ evolve into deformations that are incompatible with the fundamental assumptions.
 - Phase boundaries, shock waves, cracks, ...
- Can't directly treat some important physical effects.
 - Wave dispersion, surface energy, microstructure evolution, long-range forces, ...
- People often take drastic measures if they want to work with this PDE.
 - Element deletion, ...

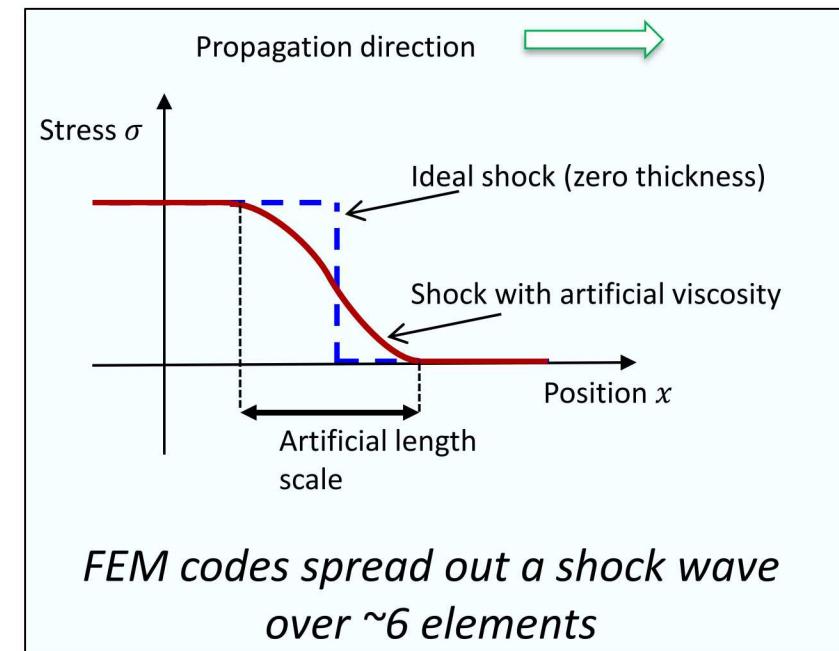


These drastic measures often involve nonlocality

- Example: Artificial viscosity spreads out a shock wave and dissipates energy.

$$\rho \ddot{\mathbf{u}} = \nabla \cdot \boldsymbol{\sigma} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \right) + \gamma (\nabla \cdot \dot{\mathbf{u}})^2 + \mathbf{b}.$$

- It avoids the need to apply jump conditions across an ideal shock.
- It allows conventional discretization to be used “within” a shock.
- By spreading out a shock it introduces a length scale.
- This is a type of nonlocality.



- J. Von Neumann & R. D. Richtmyer, *J. Appl. Phys.* 21 (1950). 232

Peridynamics goes all-in on nonlocality

Classification of some theories with respect to local/nonlocality:

PDEs with no length scale:

- Classical continuum mechanics

PDEs with a length scale:

- Micropolar
- Mindlin
- Kroner
- Eringen
- Phase field
- Nonlocal damage
- Plate & shell theories
- Gradient theories

Full nonlocality:

- Kunin
- Peridynamics

- Every fundamental relation in peridynamics is nonlocal in space:
 - Transport
 - Conservation
 - Material models

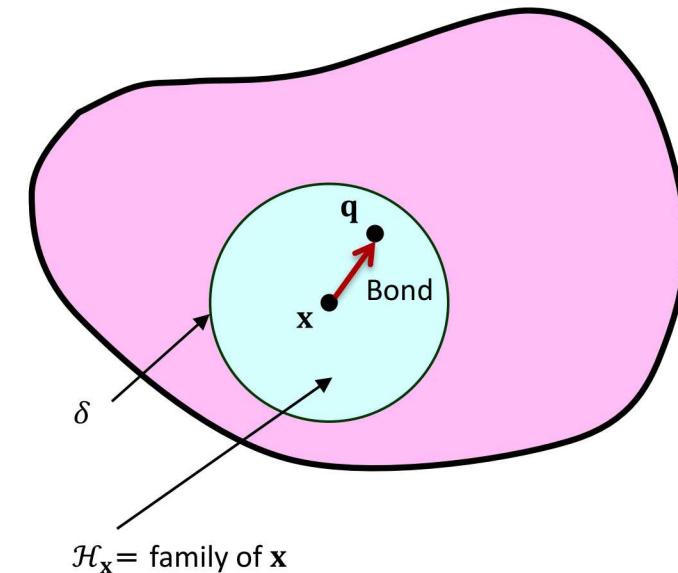
Peridynamic* momentum balance

- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .

Peridynamic equilibrium equation

$$\int_{\mathcal{H}_x} \mathbf{f}(\mathbf{q}, \mathbf{x}) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

\mathbf{f} = bond force density (from the material model, which includes damage)



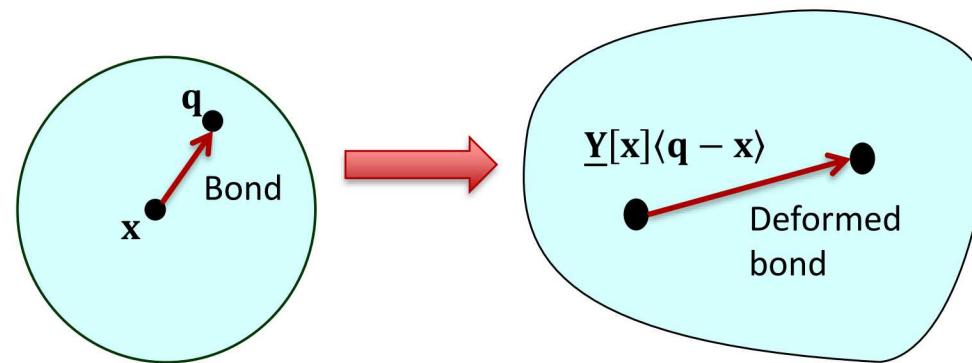
- If \mathbf{f} satisfies $\mathbf{f}(\mathbf{x}, \mathbf{q}) = -\mathbf{f}(\mathbf{q}, \mathbf{x})$ for all \mathbf{x}, \mathbf{q} then linear momentum is conserved.
- SS, JMPS (2000)

* Peri (near) + dyne (force)

Formalism for nonlocal interactions: States

- A *state* is a mapping whose domain is all the bonds ξ in a family.

$$\underline{\mathbf{A}}\langle \xi \rangle = \text{something} \quad \forall \xi \in \mathcal{H}.$$

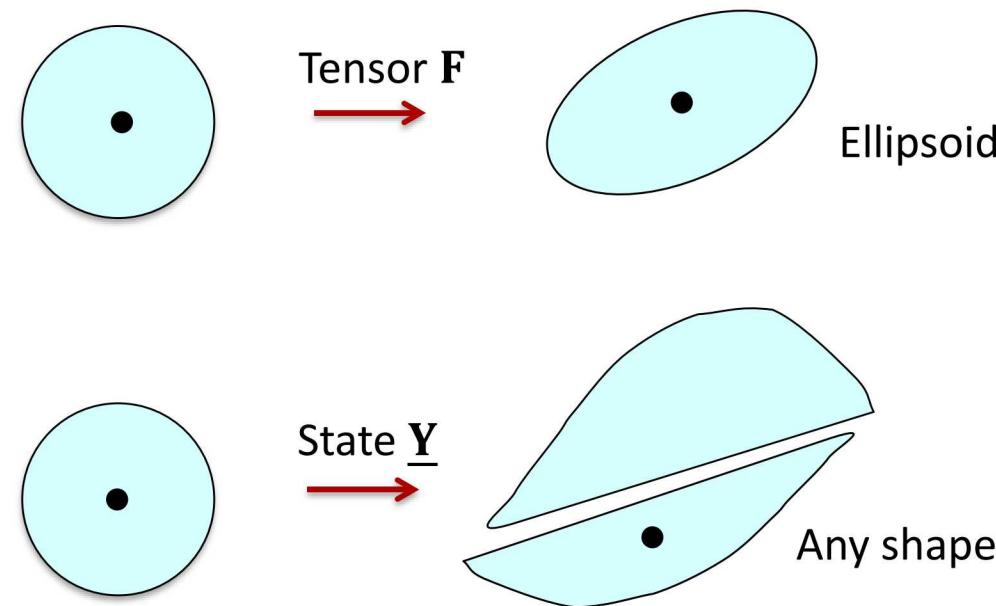


- Deformation state...

$$\underline{\mathbf{Y}}[x]\langle q - x \rangle = \mathbf{y}(q) - \mathbf{y}(x) = \text{deformed image of the bond}$$

States: Nonlocal analogues of second order tensors

- Classical theory uses tensors (linear mappings from vectors to vectors).
- Peridynamics uses states (nonlinear mappings from vectors to vectors).



Peridynamic vs. local equations

- Structurally similar but with states instead of local operators.

Relation	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}} \text{ (Fréchet derivative)}$	$\boldsymbol{\sigma} = W_{\mathbf{F}} \text{ (tensor gradient)}$
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \cdot \dot{\underline{\mathbf{Y}}} \langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}}$$

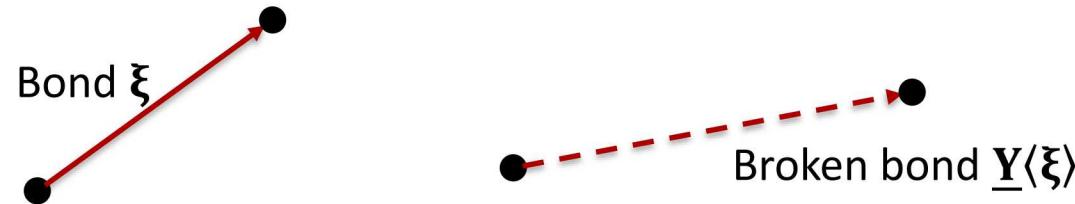
Damage

- Damage is usually treated through *bond breakage*.
- After a bond ξ breaks according to some criterion, it no longer carries any force.
- Typical breakage criterion: prescribed *critical bond strain* s_0 :

$$s = \frac{|\mathbf{Y}(\xi)| - |\xi|}{|\xi|} \quad \text{bond strain.}$$

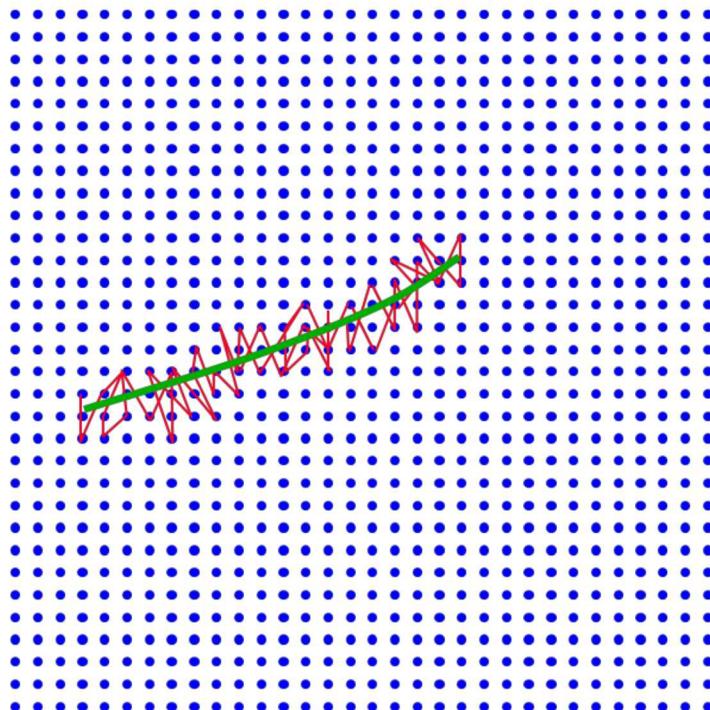
$$s \geq s_0 \text{ at some time } t_0$$

means the bond remains broken for all $t \geq t_0$.

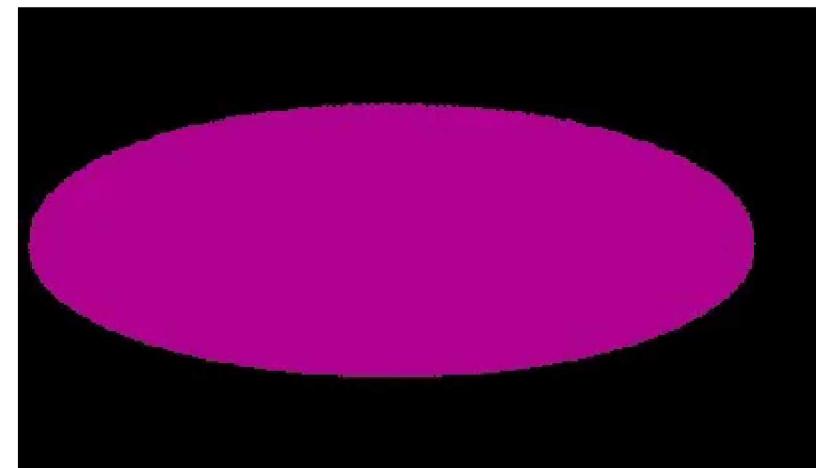


Autonomous crack growth

- Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)



— Broken bond
— Crack path



- SS & Askari, *Computers and Structures* (2005)

Many validation studies have been done

- First issue of the new *Journal of Peridynamics and Nonlocal Modeling* had a review article by Diehl on published validation to date:

Journal of Peridynamics and Nonlocal Modeling
<https://doi.org/10.1007/s42102-018-0004-x>

REVIEWS

A Review of Benchmark Experiments for the Validation of Peridynamics Models

Patrick Diehl¹ · Serge Prudhomme² · Martin Lévesque¹

Received: 2 November 2018 / Accepted: 25 December 2018
 © Springer Nature Switzerland AG 2019

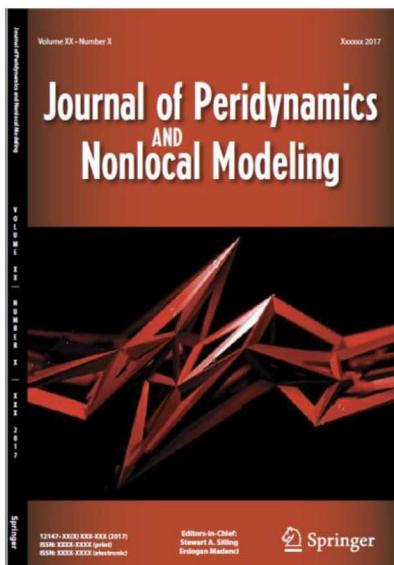


Table 3 Applications of bond-based and state-based peridynamics for the comparison with experimental data

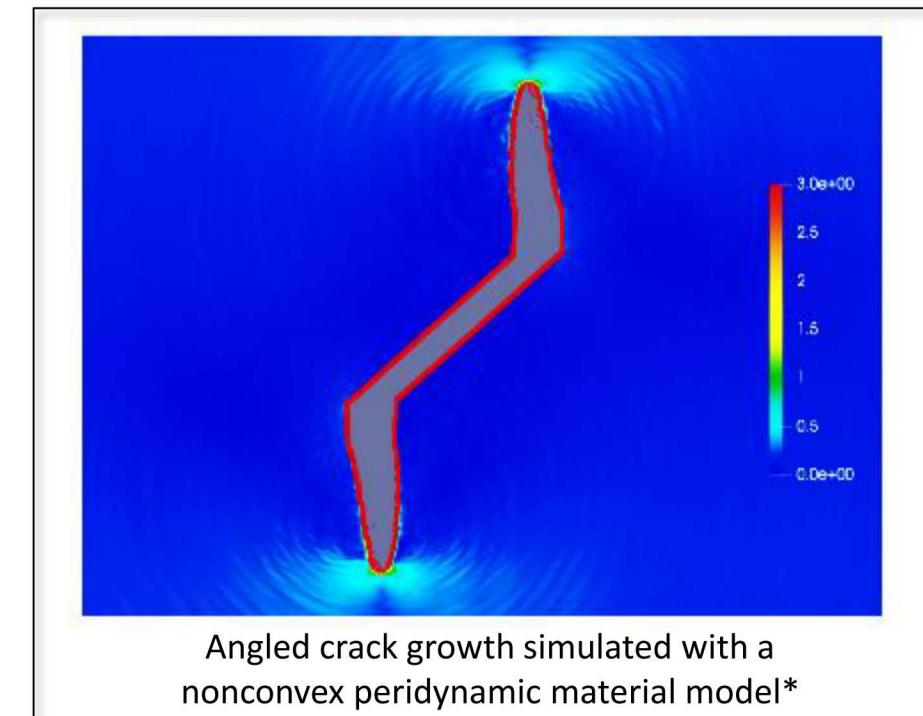
Material	Mechanical test	B	S	Exp	Sim
Composite	Flexural test with an initial crack	✓		[75]	[2]
Composite	Damage growth prediction (six-bolt specimen)	✓		[120]	[96]
Composite	Damage prediction (center-cracked laminates)	✓		[6, 12, 69, 134]	[70]
Composite	Dynamic tension test (prenotched rectangular plate)	✓		[12, 65]	[58]
Steel	Crack growth (Kalthoff-Winkler)	✓	✓	[66–68]	[3, 52, 114, 144]
Aluminum/Steel	Fracture (compact tension test)	✓		[9, 77, 89, 91]	[135, 141, 142]
Aluminum	Taylor impact test	✓		[4, 21]	[3, 43, 45]
Aluminum (6061-T6)	Ballistic impact test	✓		[132]	[127]
Concrete	Lap-splice experiment	✓		[48]	[48]
Concrete	3-point bending beam	✓	✓	[19, 63]	[7, 51]
Concrete	Failure in a Brazilian disk under compression	✓		[51]	[54]
Concrete	Anchor Bolt Pullout	✓		[128]	[83]
Glass	Dynamic crack propagation (prenotched thin rectangular plate)	✓		[15, 36, 100]	[2, 53, 144]
Glass	Impact damage with a thin polycarbonate backing	✓		[8, 20, 40]	[59]
Glass	Single crack paths (quenched glass plate)	✓		[13, 103, 136]	[71]
Glass	Multiple crack paths (quenched glass plate)	✓		[102, 137]	[71]
Glass	Crack tip propagation speed	✓		[15]	[52, 53, 144]
PMMA	Fast cracks in PMMA	✓		[39]	[2]
PMMA	Tensile test	✓		[124]	[32]
Soda-lime glass	Impact on a two-plate system	✓		[16, 130]	[130]

Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation

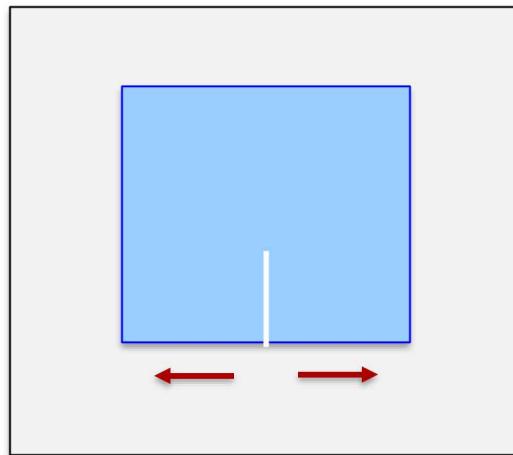
Peridynamics converges as the horizon $\rightarrow 0$

- Linear peridynamics converges to Navier equations of linear elasticity.
- Linear or nonlinear material models converge to a stress-strain relation.
- Problems with nonconvex elastic peridynamic models can converge to nonlinear elasticity with Griffith cracks.

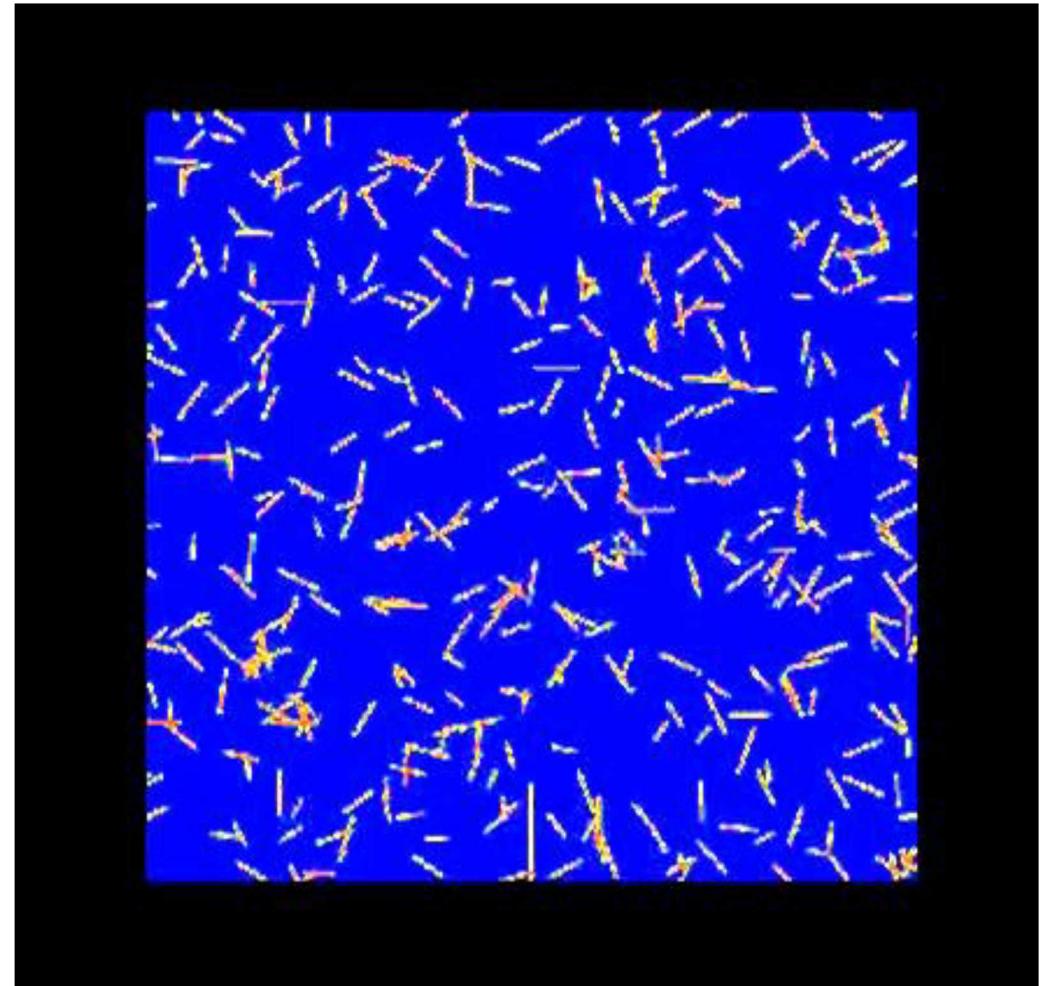
- E. Emmrich & O. Weckner, *Communications in Mathematical Sciences* (2007).
- F. Bobaru et al., *Int. Journal for Numerical Methods in Engineering* (2009).
- T. Mengesha, & Q. Du, *Journal of Elasticity* (2014).
- S.S. & R. B. Lehoucq, *Journal of Elasticity* (2008).
- P. Seleson & D.J. Littlewood, *Computers & Mathematics with Applications* (2016).
- *R. P. Lipton, R. B. Lehoucq, & P.K. Jha, *Journal of Peridynamics and Nonlocal Modeling* (2019).



Example: Fracture in a brittle plate with a lot of defects

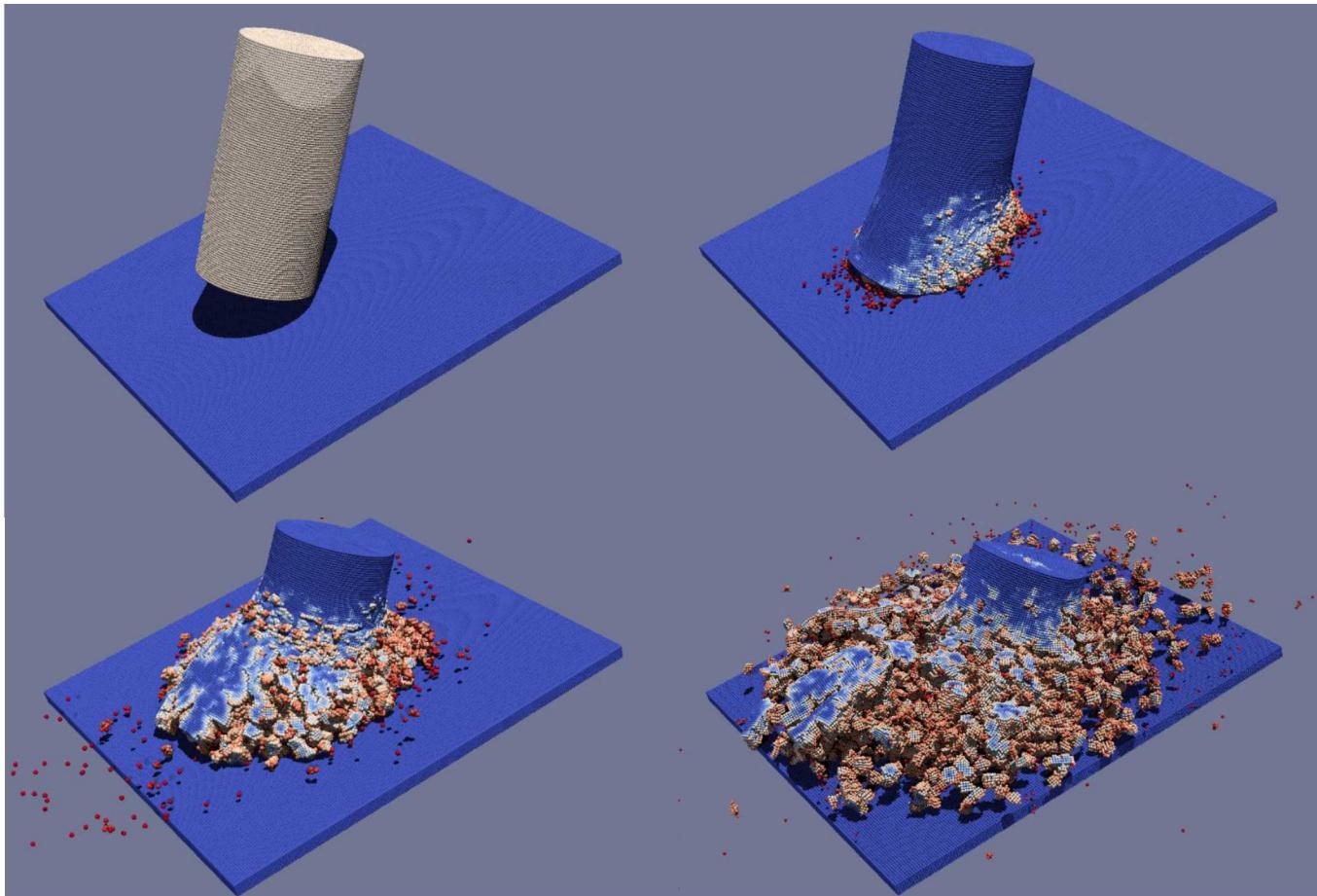


VIDEO



Example: Fragmentation due to impact

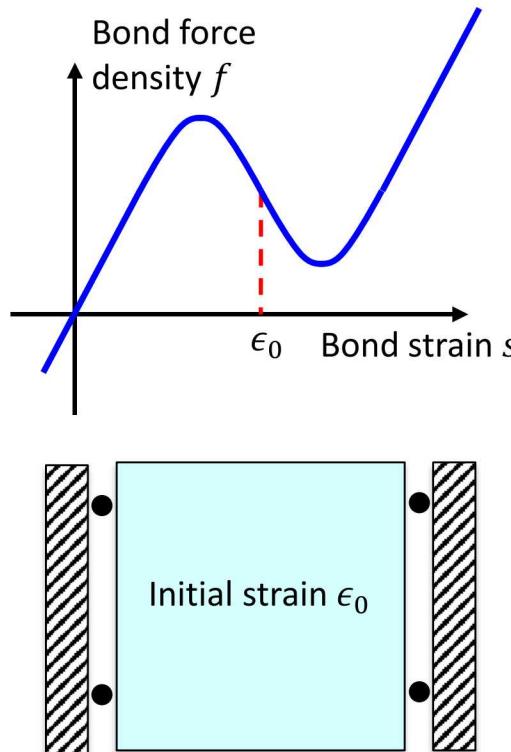
- Brittle cylinder vs. rigid plate at 1km/s.



Colors show damage

Example: Microstructure evolution

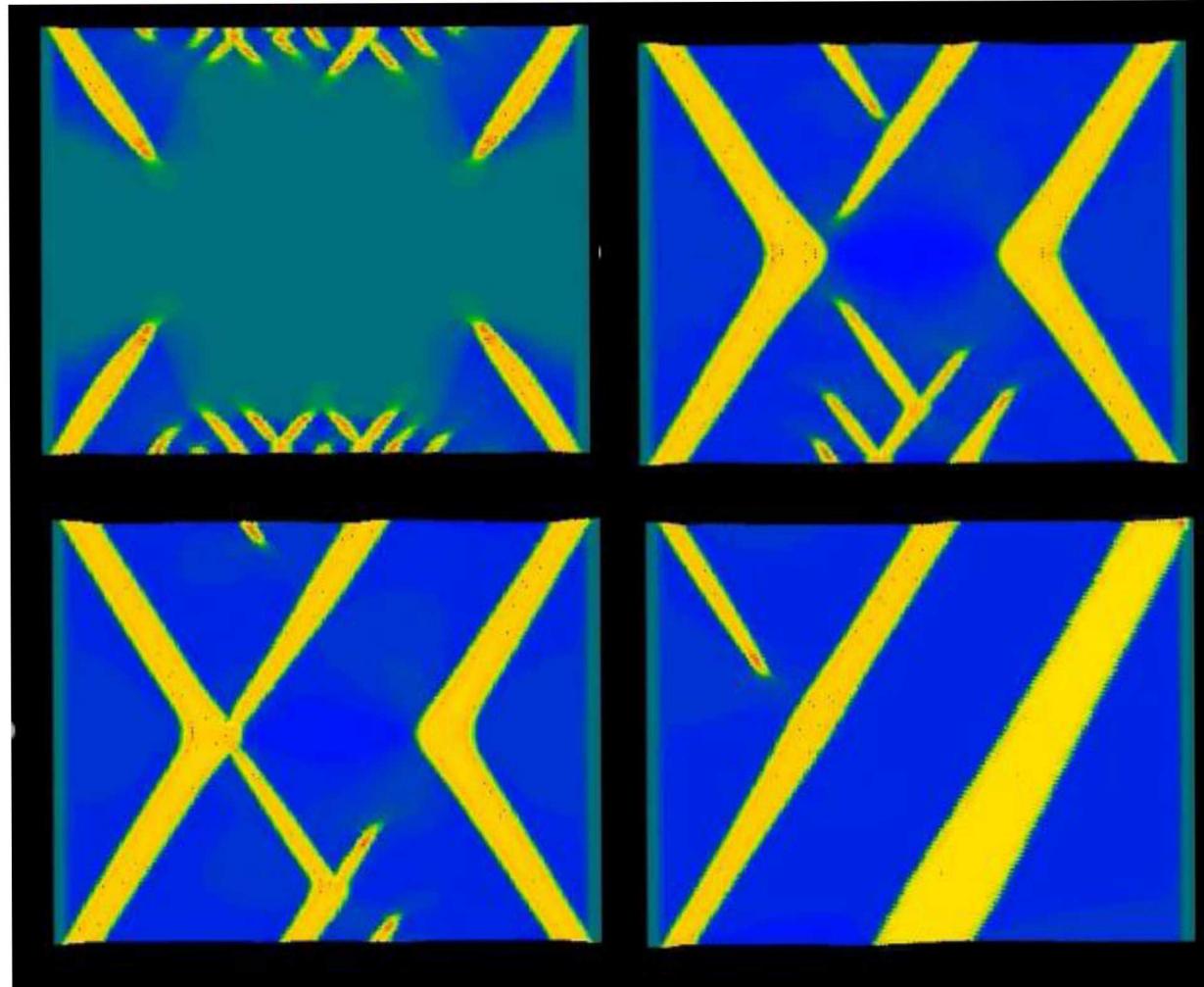
- Plate with ends fixed. Global strain ϵ_0 is in the unstable part of the material model.
- Complex microstructure appears at first, then simplifies.
- Driving force is the energy stuck in a phase boundary.

[VIDEO](#)

Colors show bond strain

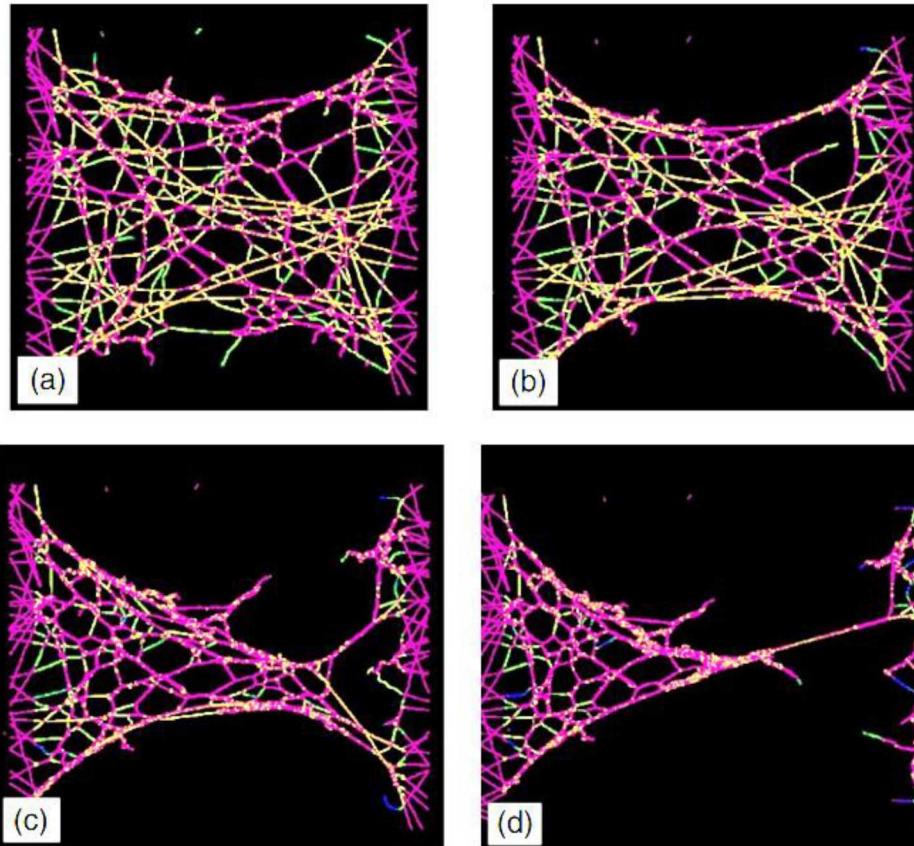
Example: Microstructure evolution

Colors show bond strain



Straightforward case for nonlocality: When there really are long-range forces

- Fracture of nanofiber network held together by Van der Waals forces.



F. Bobaru, *Modelling and Simulation in Materials Science and Engineering* 15, no. 5 (2007): 397.

Smoothing the smallest scale degrees of freedom results in nonlocality

- Try to approximate known, small-scale response (e.g. molecular motion) by a continuous variable, yet retain realistic behavior.
- How to make the connection?
- One approach: Smooth out the small-scale degrees of freedom.
- Example:
 - Heterogeneous infinite bar.

- Small-scale model (local):

$$\rho(x)\ddot{u}(x, t) = \sigma'(x, t) + b(x, t)$$

where ρ =density, u =displacement, σ =stress, and b =body force density.

- Material model:

$$\sigma(x, t) = E(x)u'(x, t)$$

where E =Young's modulus.

Define a smoothed displacement field

- Let $w(z)$ be a smoothing function on $z \in [-\epsilon, \epsilon]$, $\int w = 1$, $w(-z) = w(z)$.
- Define the smoothed displacement field \bar{u} by

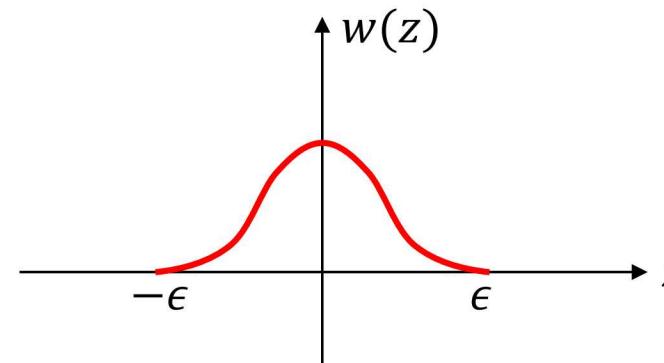
$$\bar{u}(x, t) = \frac{1}{\bar{\rho}(x)} \int_{-\infty}^{\infty} w(p-x) \rho(p) u(p, t) \, dp, \quad \bar{\rho}(x) := \int_{-\infty}^{\infty} w(p-x) \rho(p) \, dp$$

- Recall

$$\rho(x) \ddot{u}(x, t) = \sigma'(x, t) + b(x, t).$$

- Multiply through by w and integrate, find that

$$\bar{\rho}(x) \ddot{\bar{u}}(x, t) = \int_{-\infty}^{\infty} w(x-p) \sigma'(p, t) \, dp + \bar{b}(x, t), \quad \bar{b}(x, t) := \int_{-\infty}^{\infty} w(x-p) b(p, t) \, dp$$



Evolution equation for smoothed DOFs

- Recall

$$\bar{\rho}(x)\ddot{u}(x, t) = \int_{-\infty}^{\infty} w(x-p)\sigma'(p, t) \, dp + \bar{b}(x, t).$$

- Integrate by parts (surprise!):

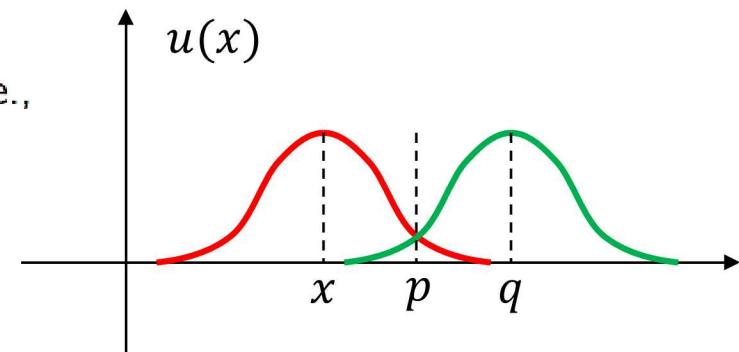
$$\bar{\rho}(x)\ddot{u}(x, t) = - \int_{-\infty}^{\infty} w'(x-p)\sigma(p, t) \, dp + \bar{b}(x, t).$$

- Starting to look nonlocal.
- Let q be defined so that p is halfway between x and q , i.e.,

$$p = \frac{x+q}{2}.$$

- Then

$$\bar{\rho}(x)\ddot{u}(x, t) = -\frac{1}{2} \int_{-\infty}^{\infty} w' \left(\frac{q-x}{2} \right) \sigma \left(\frac{q+x}{2}, t \right) \, dp + \bar{b}(x, t).$$



Evolution equation is nonlocal

- Recall

$$\bar{\rho}(x)\ddot{u}(x, t) = -\frac{1}{2} \int_{-\infty}^{\infty} w' \left(\frac{q-x}{2} \right) \sigma \left(\frac{q+x}{2}, t \right) dq + \bar{b}(x, t).$$

- Now define the *pairwise bond force density* by

$$f(q, x) = -\frac{1}{2} w' \left(\frac{q-x}{2} \right) \sigma \left(\frac{q+x}{2}, t \right)$$

and define the *horizon* by

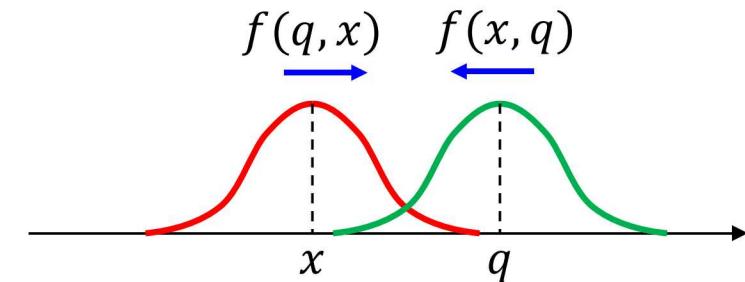
$$\delta = 2\epsilon.$$

- We now have

$$\bar{\rho}(x)\ddot{u}(x, t) = \int_{x-\delta}^{x+\delta} f(q, x) dq + \bar{b}(x, t).$$

- Observe that f has the required symmetry

$$f(x, q) = -f(q, x).$$



Need a material model in terms of the smoothed DOFs

- Unfortunately we don't know σ .
- One possibility is to back out u' from the Fourier transform using the convolution theorem:

$$\mathcal{F}\{\bar{u}\} = \mathcal{F}\{w\}\mathcal{F}\{u\} \quad \Rightarrow \quad u = \mathcal{F}^{-1} \left\{ \frac{\mathcal{F}\{\bar{u}\}}{\mathcal{F}\{w\}} \right\}$$

hence

$$\sigma(x) = E(x) \frac{d}{dx} \mathcal{F}^{-1} \left\{ \frac{\mathcal{F}\{\bar{u}\}}{\mathcal{F}\{w\}} \right\}.$$

- This is too much work!
- Instead come up with a nonlocal material model.

Bond-based heterogeneous material model

- Observe that in equilibrium with $b \equiv 0$ and fixed stress σ_0 ,

$$u_0(x) = \int_0^x \frac{\sigma_0}{E(z)} dz.$$

- From this compute the smoothed displacements:

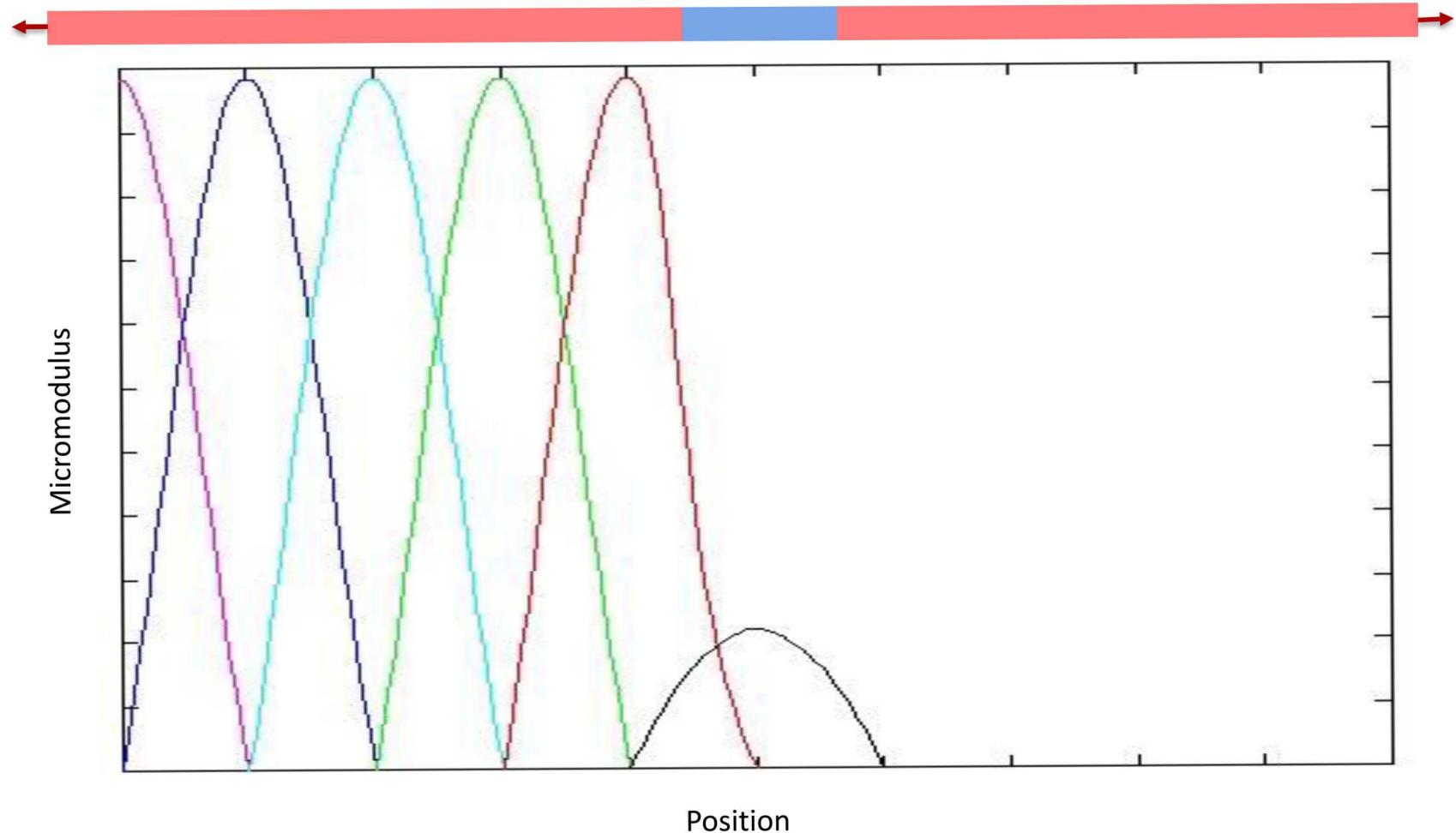
$$\bar{u}(x) = \int_{-\epsilon}^{\epsilon} w(\zeta) u_0(x + \zeta) d\zeta.$$

- Define a nonlocal material model by (omit t):

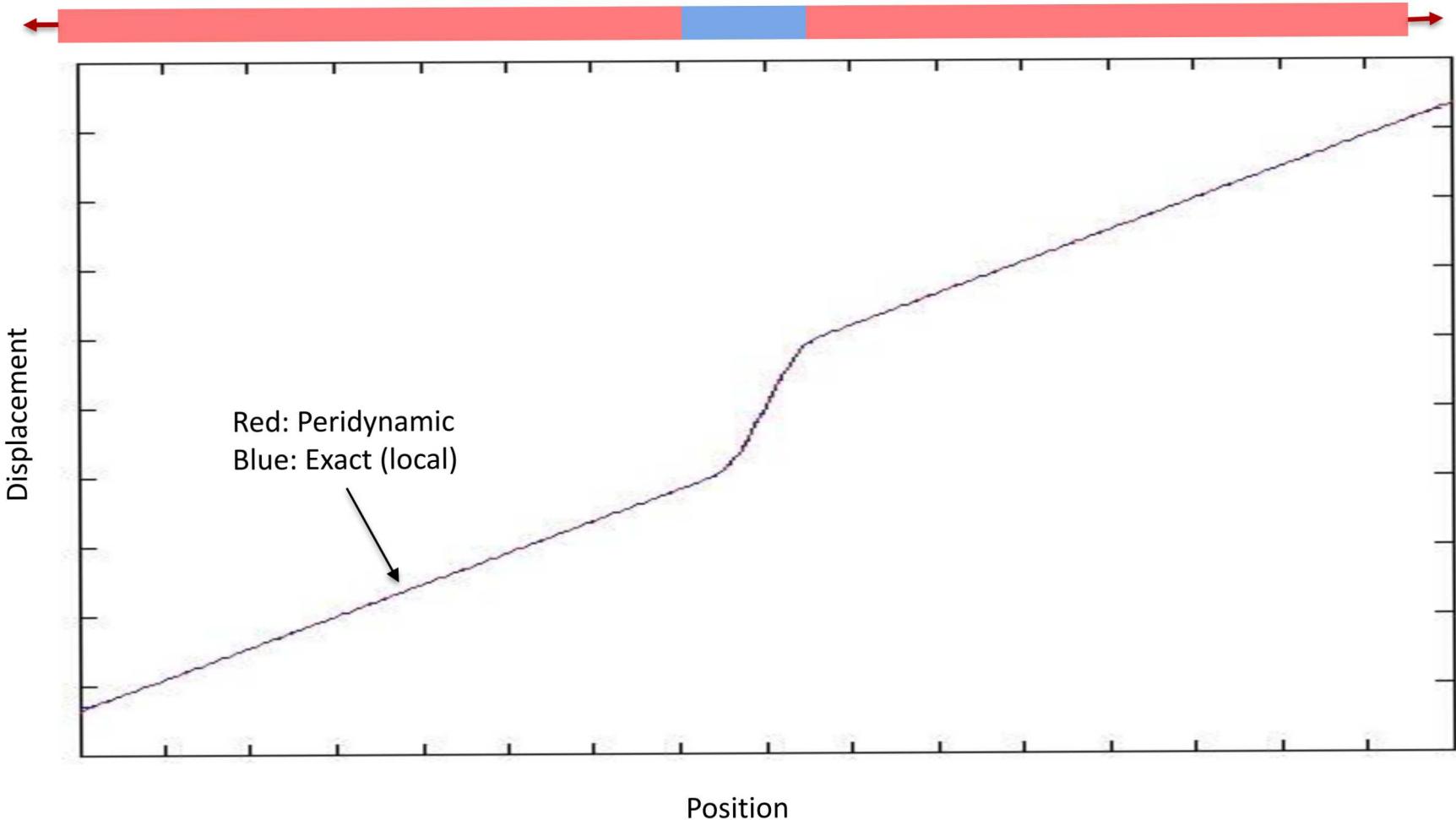
$$f(q, x) = C(q, x)(\bar{u}(q) - \bar{u}(x)), \quad C(q, x) := \frac{\sigma_0 w'((q - x)/2)}{\bar{u}_0(q) - \bar{u}_0(x)}.$$

- This exactly reproduces the local result for equilibrium with $b \equiv 0$.
- (But not in general.)

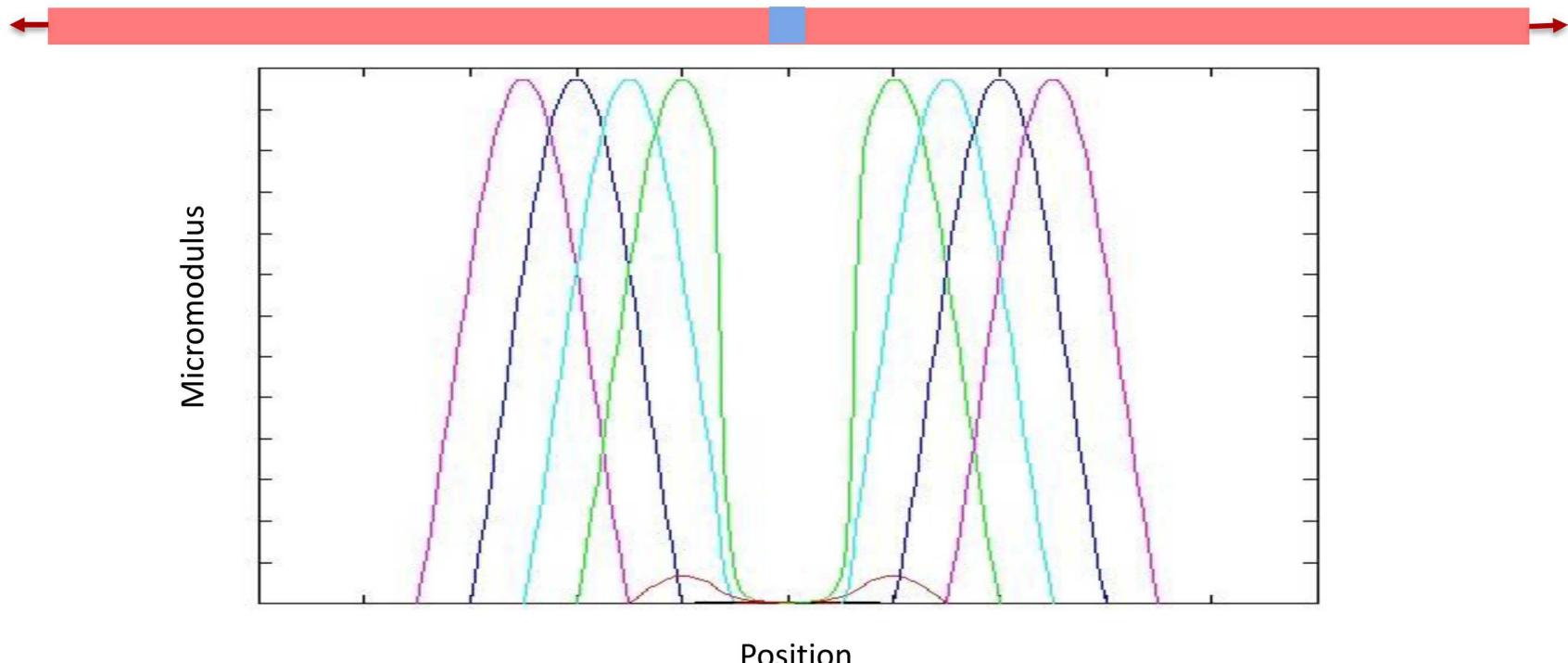
Bar with a soft spot: Micromodulus



Bar with a weak spot: Displacement



Bar with a very weak spot: Micromodulus shows broken bonds



- The heterogeneous peridynamic material model zeroes out the micromodulus for bonds crossing the crack.
- Bond breakage!

What the preceding analysis shows

- Using smoothed displacements results in a nonlocal evolution law.
- This evolution law is peridynamics provided a material model in terms of \bar{u} is defined.
- The micromodulus is determined by:
 - The small-scale (local) material model and heterogeneity.
 - The smoothing function w .
- A nonlocal concept of damage (bond breakage) emerges naturally when the original problem contains a crack.

A hint of unexpected behavior

- Recall

$$\bar{u}(x) = \int w(x-p)u(p) \, dp.$$

- Fourier transform of any function v :

$$v^*(k) = \mathcal{F}\{v(x)\} = \int_{-\infty}^{\infty} e^{-ikx}v(x) \, dx.$$

- Convolution theorem

$$\bar{u}^* = w^*u^*$$

so that formally we can derive the small-scale displacements from any given \bar{u} :

$$u(x) = \mathcal{F}^{-1} \left\{ \frac{\bar{u}^*}{w^*} \right\}.$$

A hint of unexpected behavior, ctd.

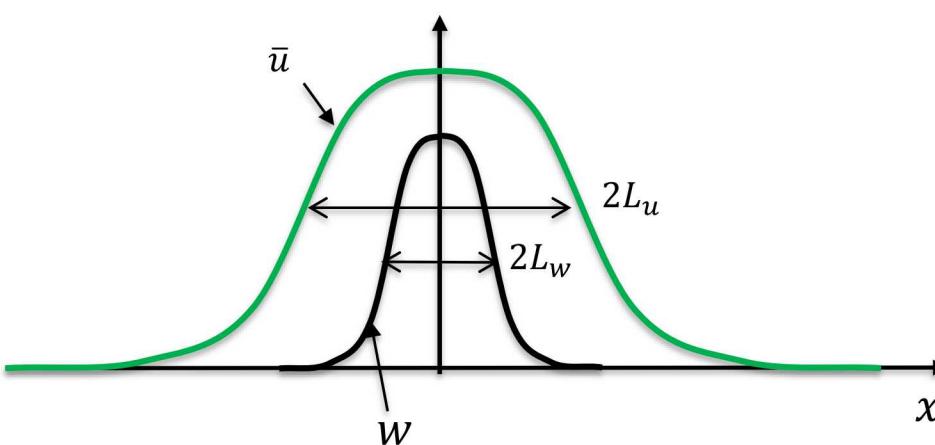
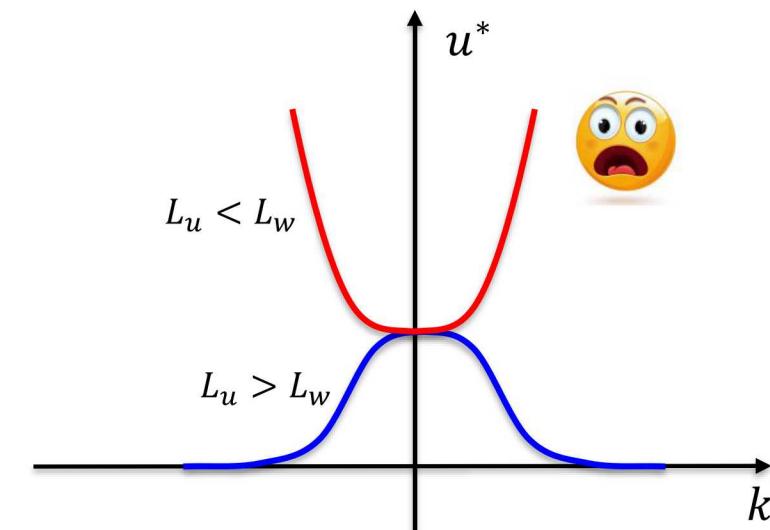
- Can we arbitrarily prescribe \bar{u} ?
- Suppose w and \bar{u} are both Gaussians:

$$\bar{u}(x) = e^{-(x/L_u)^2}, \quad w(x) = e^{-(x/L_w)^2}.$$

- Then

$$u^*(k) = \frac{\bar{u}^2(k)}{w^*(k)} = \sqrt{\frac{L_u}{L_w}} e^{\pi^2(L_w^2 - L_u^2)k^2}$$

- Bad news if $L_u < L_w$!

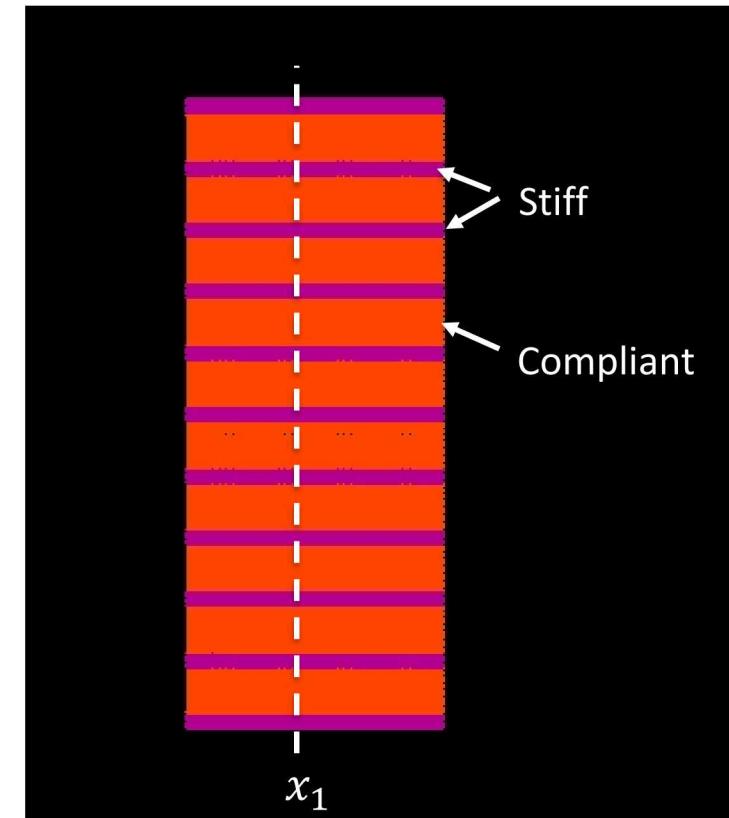


Can nonlocality be observed experimentally in elastostatics?

- Consider a 2D composite composed of alternating layers of stiff and compliant material.
- Smoothed DOF is the average x displacement along a vertical line.

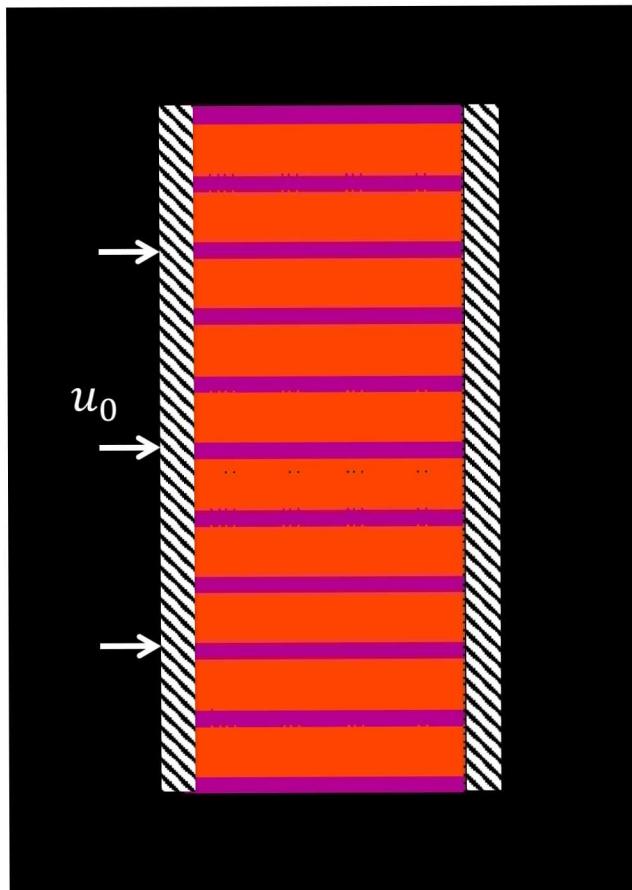
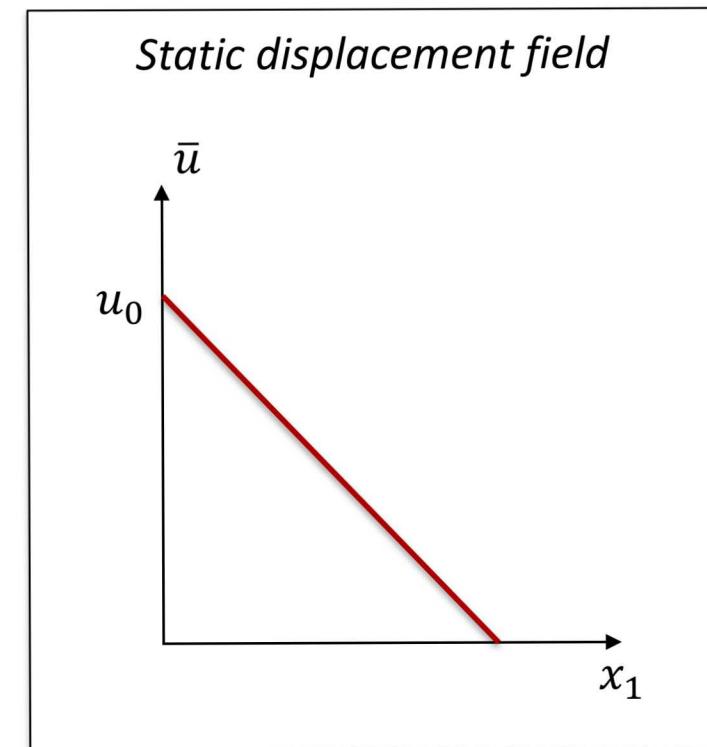
$$\bar{u} = \frac{1}{L} \int_0^L u_1 \, dx_2$$

- We will examine “seemingly” 1D deformations.



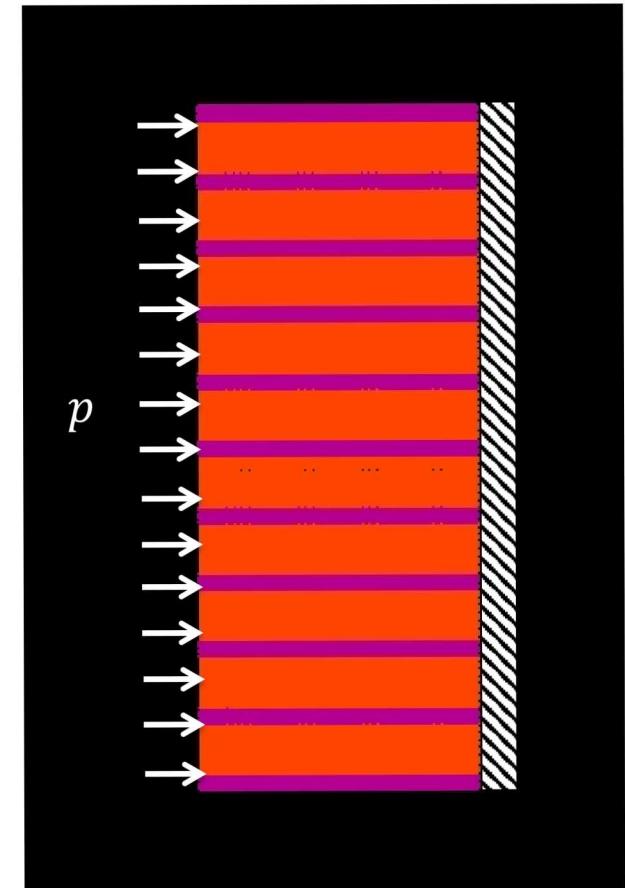
Static Dirichlet problem for a composite

- Solve for the 2D displacements in the local theory.
- Both phases deform the same way.
- No surprises (yet).



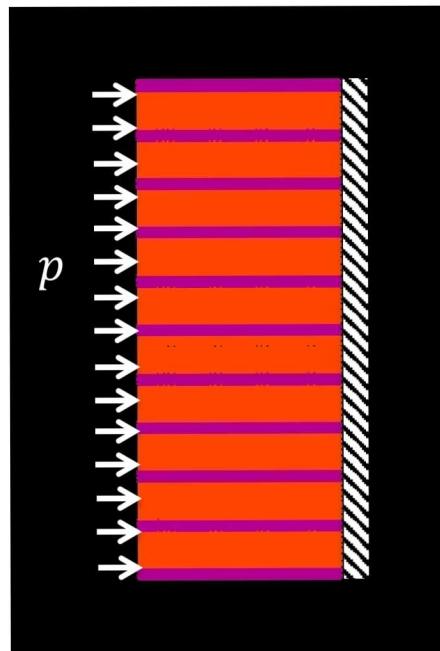
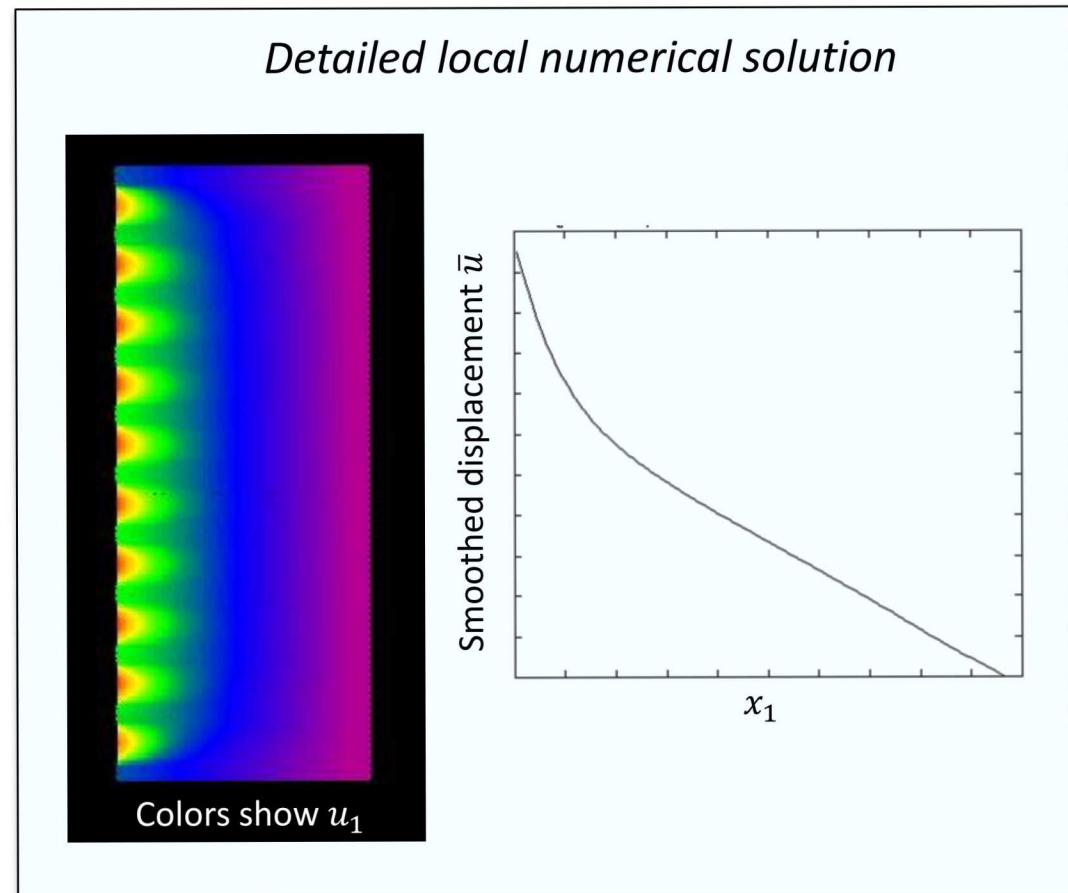
Now consider a mixed Dirichlet/Neumann static problem

- Apply a constant traction p along the left surface.
- Still using 2D local theory.
- Should we still expect \bar{u} to vary linearly with x_1 ?



Smoothed DOFs show interesting features

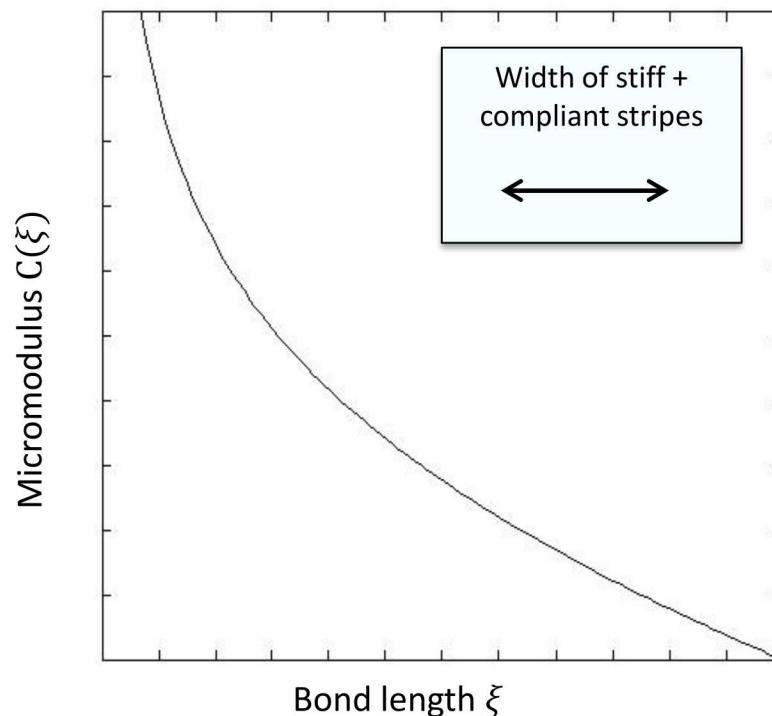
- A detail computational model shows complex behavior near the left edge.
- Smoothing this solution results in nonlinear $\bar{u}(x_1)$.



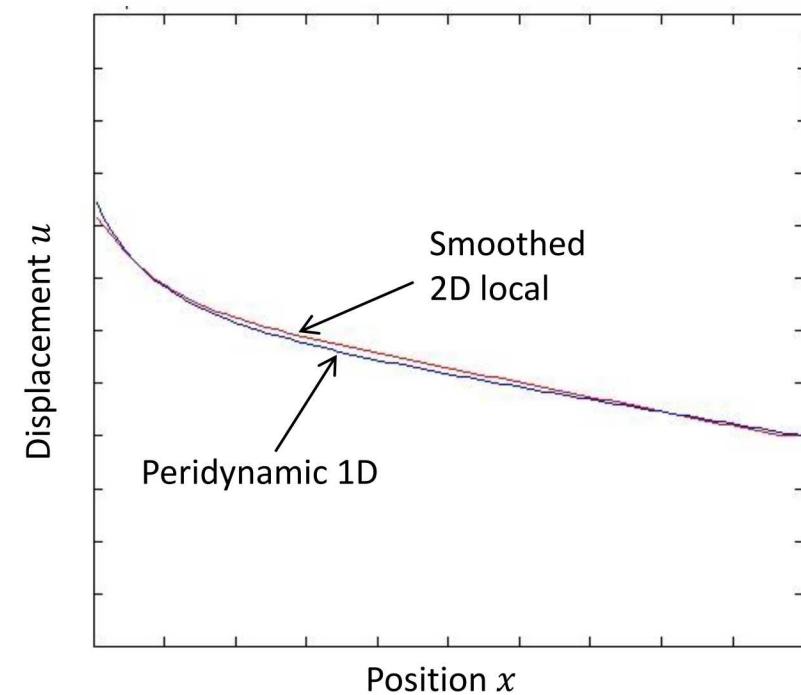
Nonlocality helps reproduce response near loaded boundary

- Tune a 1D peridynamic microelastic material model.
- Try to reproduce the behavior seen in the detailed 2D local solution..

Peridynamic material model

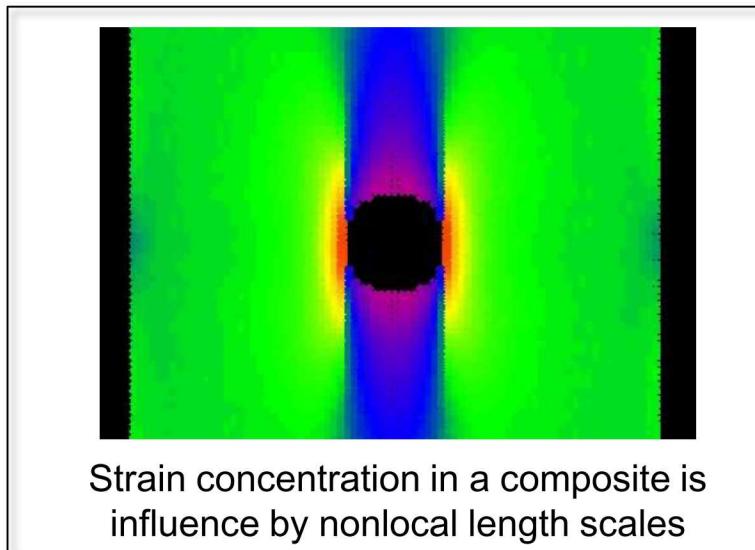


Predicted displacement

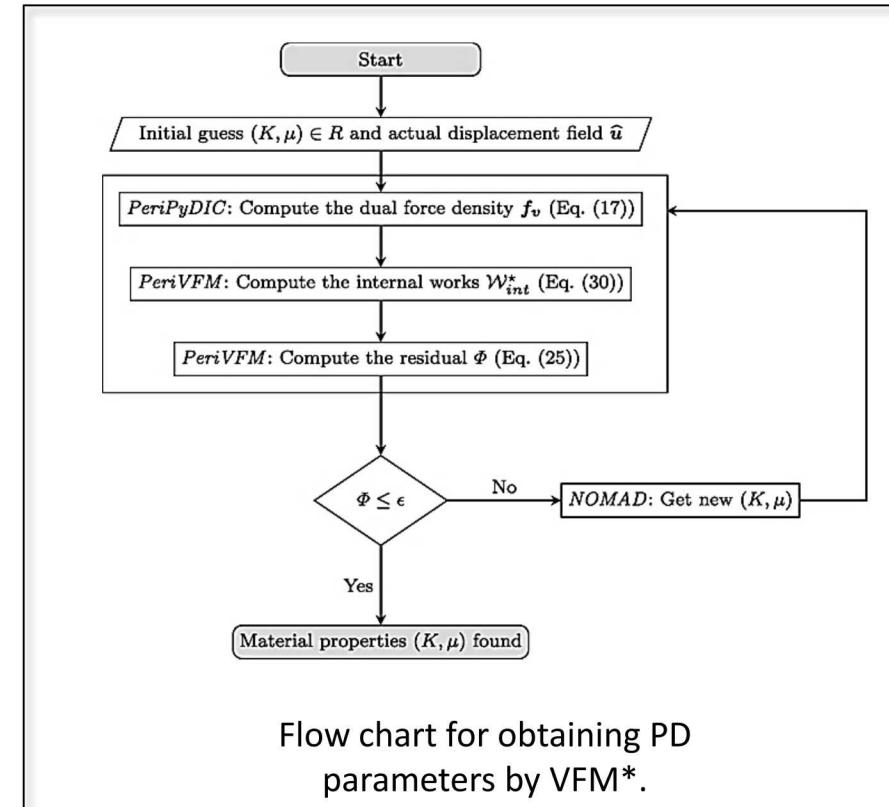


Nonlocal material parameters can be derived from static full-field data

- Digital image correlation (DIC).
- Virtual field method (VFM).
- Electronic speckle pattern interferometry (ESPI).

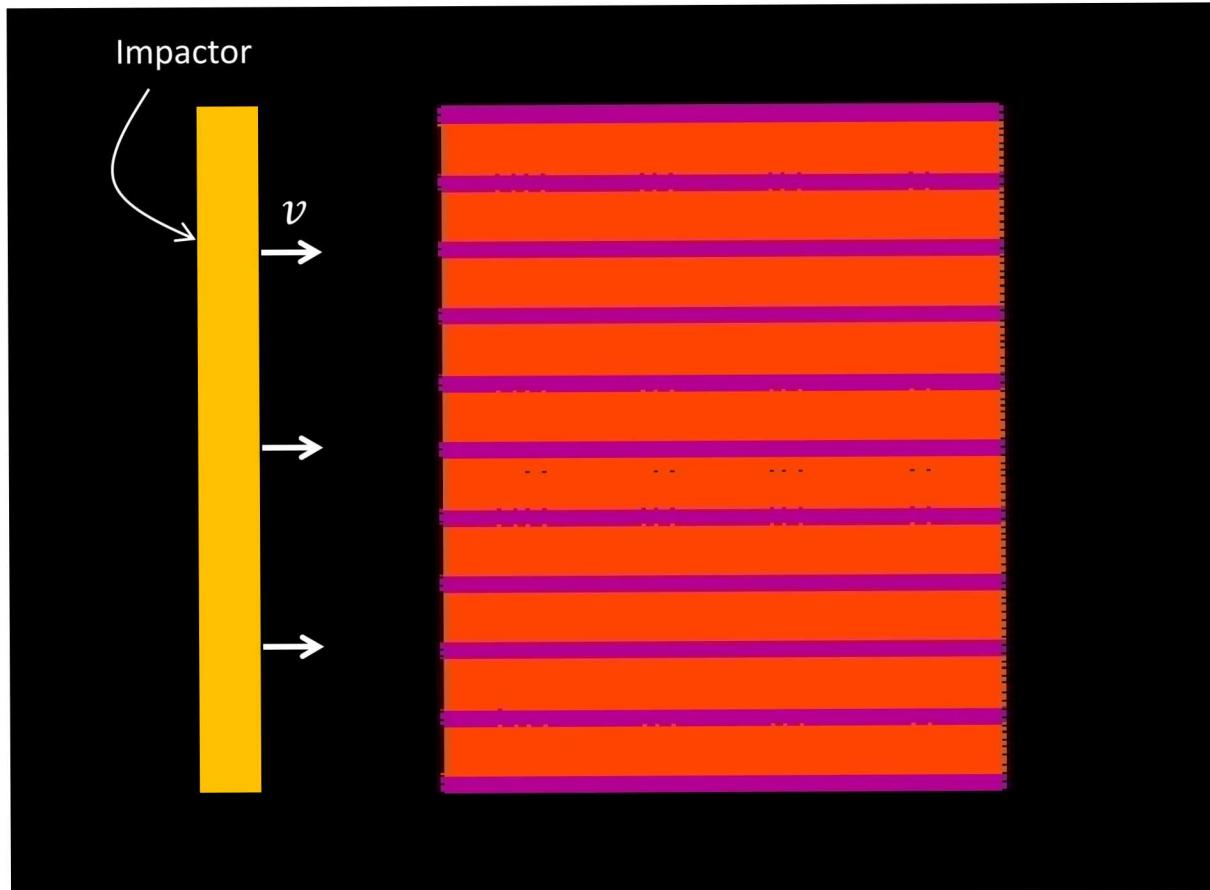


- L. Toubal, M. Karama, & B. Lorrain, *Composite structures*, (2005).
- D. Turner, B. Van Bloemen Waanders, & M. Parks J. *Mechanics of Materials and Structures* (2015).
- D. Turner, J. *Engineering Mechanics* (2015).
- *Delorme, R., Diehl, P., Tabiai, I. et al., *J Peridyn Nonlocal Model* (2020)



Dynamics: impact problem

- Impactor strikes the composite edge-on.



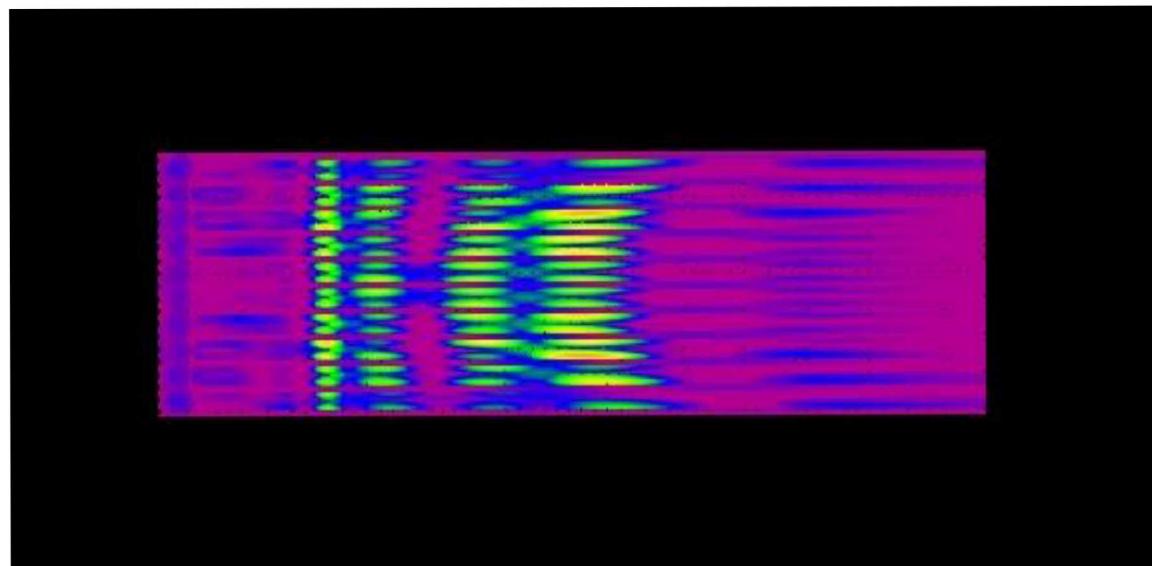
Dynamics: impact problem video

- Detailed 2D local simulation.
- Complex wave structure is created in the composite.

Colors show maximum principal strain

Dynamics: impact problem

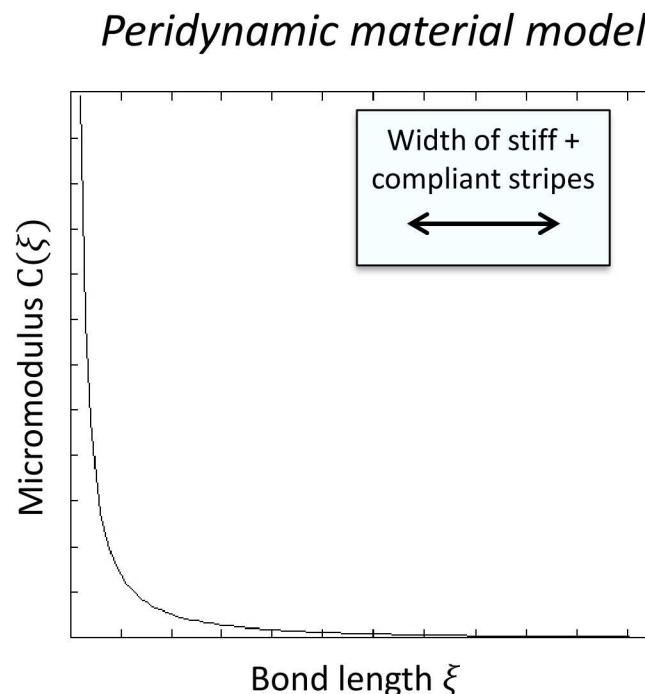
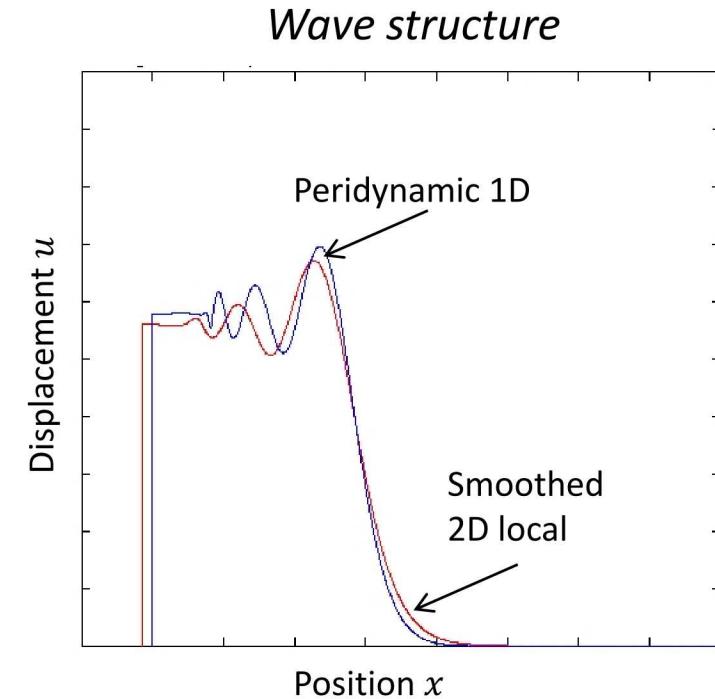
- Detailed 2D local simulation.
- Complex wave structure is created in the composite.



Colors show maximum principal strain

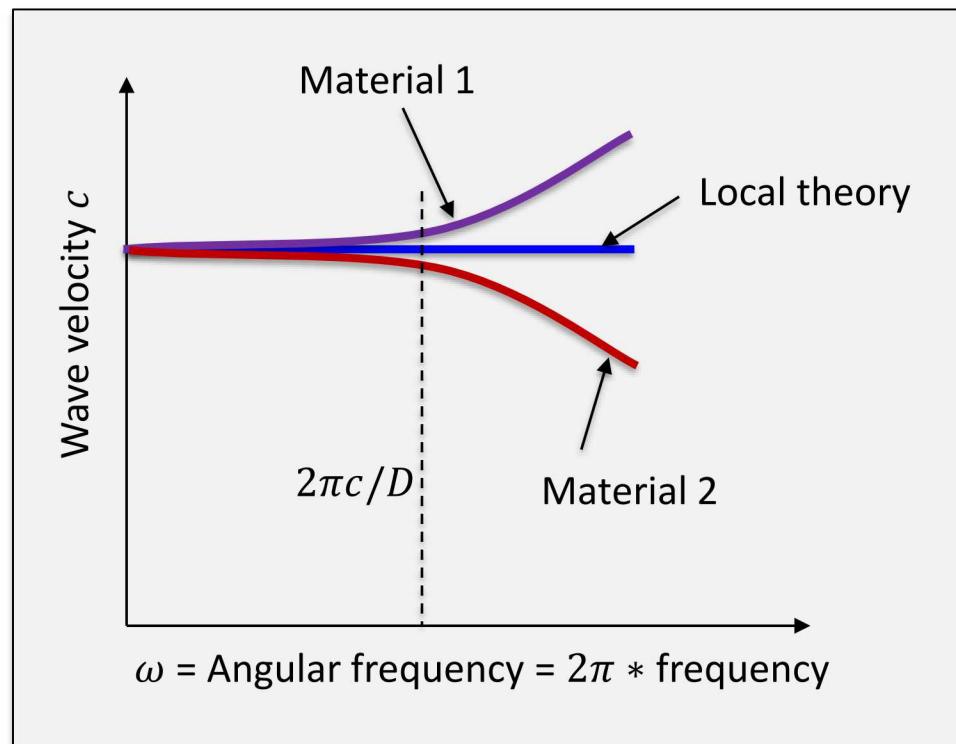
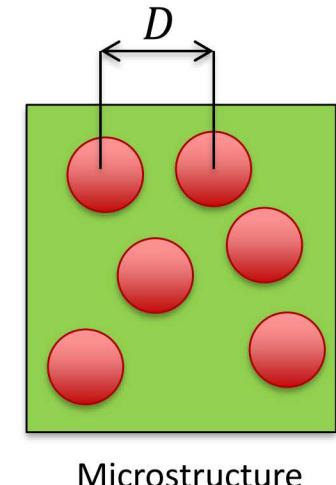
Nonlocality helps predict the dispersive nature of waves in the composite

- After smoothing the displacement along vertical lines, the complex wave structure is manifested as dispersion.
- A 1D peridynamic model (after tuning of the micromodulus) reproduces some of these features.



Wave dispersion

- All real solids exhibit dispersion for sufficiently short wavelengths.
- The wavelength depends on the microstructure and composition.
 - Dispersion starts to appear for **wavelengths < microstructure size**.
 - This implies that nonlocality is required to predict dispersion.



Microstructure

Wave dispersion in linear peridynamics

- Equation of motion with $b \equiv 0$:

$$\rho \ddot{u}(x, t) = \int_{-\delta}^{\delta} C(\xi)(u(x + \xi, t) - u(x, t)) d\xi$$

- Look for plane wave solutions of the form

$$u(x, t) = e^{i(kx - \omega t)}$$

where k =wavenumber and ω =angular frequency.

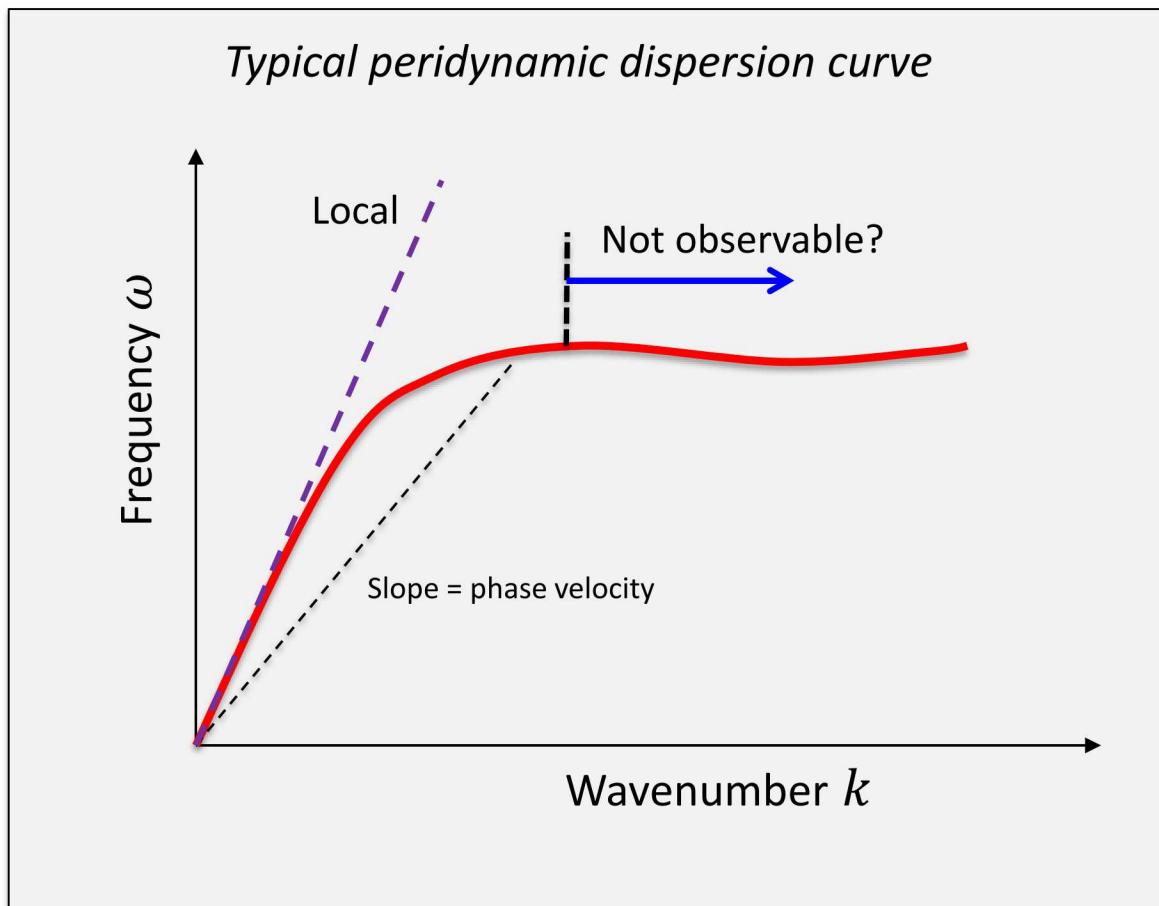
- Condition on ω and k :

$$-\rho\omega^2 = \int_{-\delta}^{\delta} C(\xi) e^{ik\xi} d\xi - P, \quad P := \int_{-\delta}^{\delta} C(\xi) d\xi$$

- or in terms of the Fourier transform $C^* = \mathcal{F}\{C\}$,

$$\rho\omega^2(k) = P - C^*(k)$$

Wave dispersion in linear peridynamics



- S. N. Butt, J. J. Timothy, & G. Meschke, *Computational Mechanics* (2017).
- V. S. Mutnuri, USNCCM15 presentation (2019).

Finding peridynamic material properties from measured dispersion data

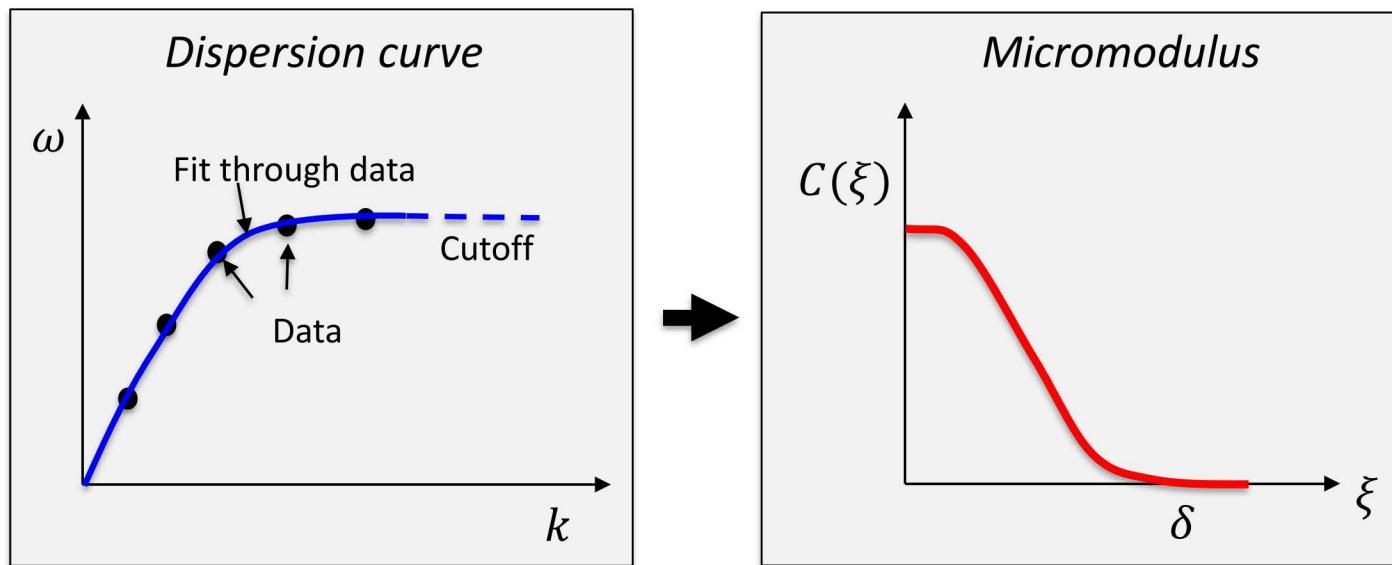
- We found

$$\rho\omega^2(k) = P - C^*(k).$$

- Given measured $\omega_{exper}(k)$, formally solve

$$C(\xi) = \mathcal{F}^{-1}\{P - \rho\omega_{exper}^2(k)\}$$

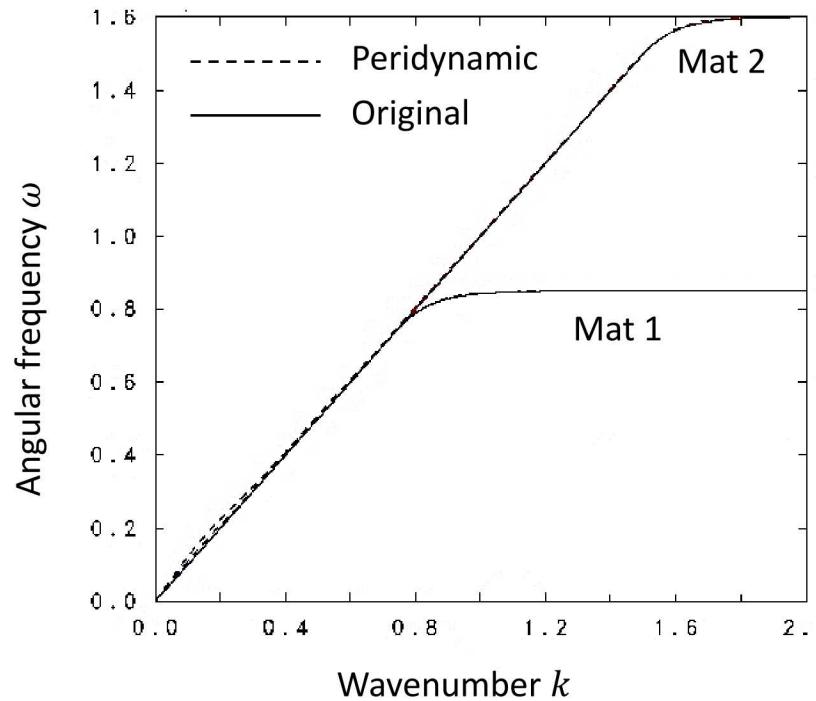
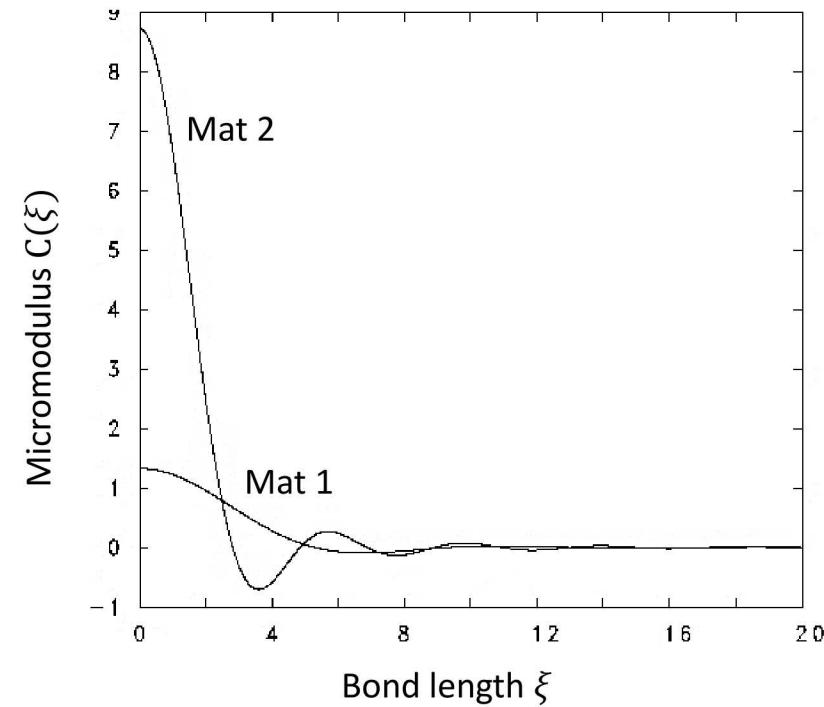
(requires data to be cut off for large k).



- O. Weckner & S.S., *Int. J. for Multiscale Computational Engineering* (2011).

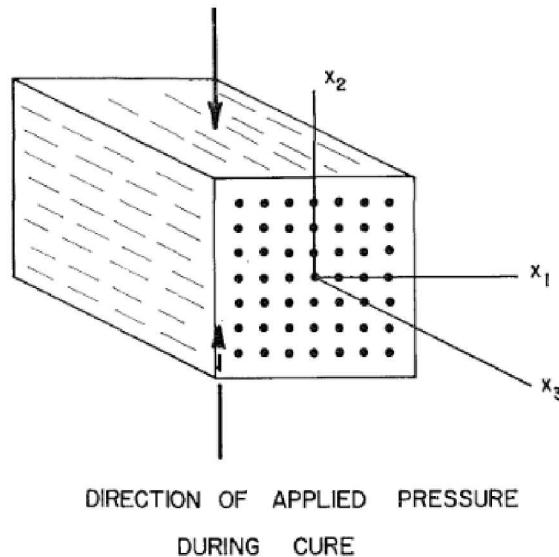
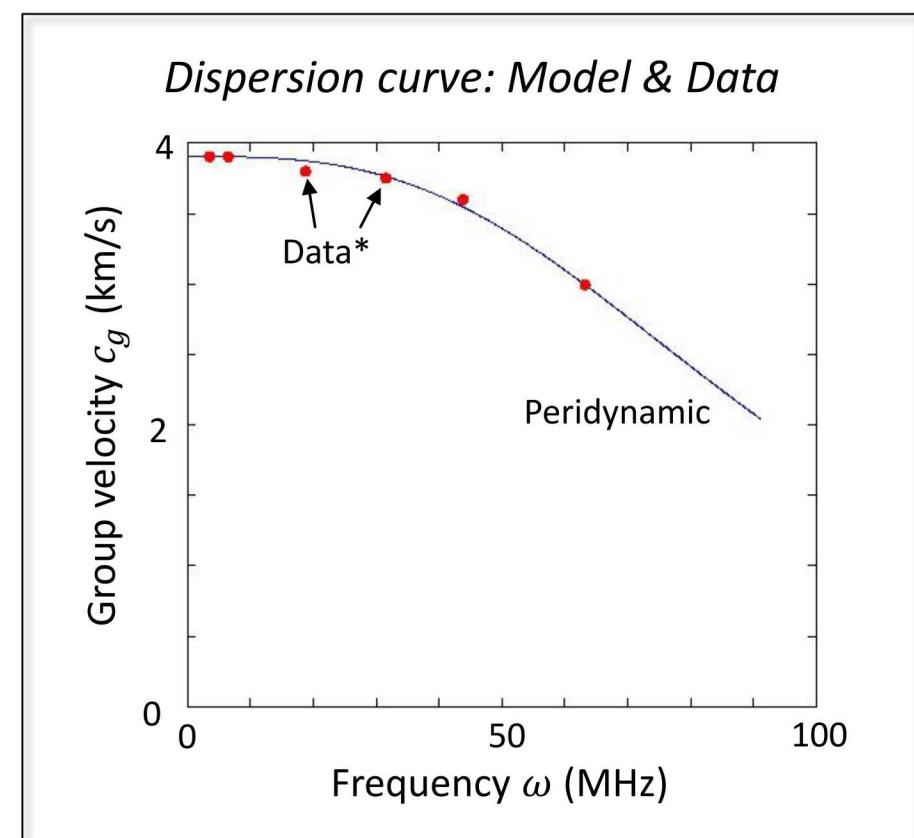
Higher cutoff frequency leads to narrower micromodulus curve

- The limiting case of micromodulus \rightarrow delta function corresponds to the local theory.



Example: PD model calibrated to a composite dispersion curve

- Boron-epoxy composite.
- Longitudinal waves normal to fibers.
- Compare measured ultrasonic group velocity* with calibrated peridynamic result.



* T. R. Tauchert & A. N. Guzelsu, *J. Applied Mechanics* (1972).

Discussion: Nonlocality in peridynamics

- Nonlocality emerges from how we choose to model a problem.
- Origins
 - Long-range forces
 - Smoothed degrees of freedom
 - Multiple pathways for flux (of momentum, heat, mass, ...)
- Consistency
 - Peridynamics uses a consistently nonlocal approach to the evolution of all fields including damage.