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Nonlocality in peridynamics




o Sandia

O u t I l n e m gangrg?tllries
* Nonlocality

* It’s not as weird as everybody thinks
* Peridynamics background

e All-in on nonlocality
e Can nonlocality be derived or observed?

* Long-range forces

 Smoothed degrees of freedom (homogenization)

* Multiple pathways for flux

* Wave dispersion

Do we ask too much of the local theory of
continuum mechanics?




What peridynamics seeks to accomplish &z

* Treat material points on or off of evolving discontinuities with the same equations.
* Include long-range forces in the basic equations.
e Fit all this into a thermodynamic framework that’s consistent with the mechanics.

Peridynamic simulation

Metallic glass crack tip*

*Hofmann et al, Nature (2008)




Nonlocality: Not as weird as everybody thinks —

Discretized numerical methods are
nonlocal

* Node i interacts directly with node j through

Ax the finite element equations.

* Interaction is across a finite distance Ax.

* Thisis a form of nonlocality.

j. i’ * Notwithstanding that the result
converges to the local result as Ax — 0.




Nonlocality: Not as weird as everybody thinks

Local PDEs get themselves into trouble

e Classical (Cauchy) PDE:

pﬁ:\_/'-cr(@)—l—b.
ox

o Many material models o (-) evolve into deformations that are incompatible
with the fundamental assumptions.

Sandia
| Netiona
Laboratories

A A
— Phase boundaries, shock waves, cracks, ... Stress o Smooth

e Can't directly treat some important physical effects.

'\ Phase

—Wave dispersion, surface energy, microstructure evolution, long-range

forces, ... transition
e People often take drastic measures if they want to work with this PDE. B
7 “in 22
Fracture Sl ox

— Element deletion, ...

Material models and the features
they “try” to predict




Nonlocality: Not as weird as everybody thinks

These drastic measures often involve

nonlocality

e Example: Artificial viscosity spreads out a shock wave and dissipates en-

ergy.
ou

It avoids the need to apply jump conditions across an ideal shock.

It allows converntional discretization to be used “within” a shock.
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By spreading out a shock it introduces a length scale.

e This is a type of nonlocality. Stress @

A

Propagation direction

Ideal shock (zero thickness)

&~

L

—

Shock with artificial viscosity

B

* J.Von Neumann & R. D. Richtmyer, J. Appl. Phys. 21 (1950). 232

—
Artificial length

scale

FEM codes spread out a shock wave
over ~6 elements

>

Position x




Peridynamics background

Peridynamics goes all-in on nonlocality
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Classification of some theories with respect to local/nonlocality:

PDEs with no length scale: PDEs with a length scale: Full nonlocality:
* Classical continuum * Micropolar e Kunin
mechanics  Mindlin e Peridynamics
* Kroner
* Eringen
* Phase field

* Nonlocal damage
 Plate & shell theories
e Gradient theories

* Every fundamental relation in peridynamics is nonlocal in space:
* Transport
* Conservation
* Material models




Peridynamics background

Peridynamic* momentum balance

Sandia
m National
Laboratories

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance ¢ of x is called the “family” of x, Hj.

Peridynamic equilibrium equation

/ f(q,x) dVq +b(x) =0

X

f = bond force density (from the material
model, which includes damage)

Hy= family of x

« |If f satisfies f(x, q) = —f(q, x) for all X, q then linear momentum is conserved.

. SS, JMPS (2000)

* Peri (near) + dyne (force)
I



Peridynamics background

Formalism for nonlocal interactions:
States

e A state is a mapping whose domain is all the bonds £ in a family.
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A (&) = something V€ € H.

Y[xq—x) .
/zon L — ‘/7'
X - Deformed

bond

e Deformation state...

Y [x]{(q—x) =y(q) — y(x) = deformed image of the bond




Peridynamics background —

National

States: Nonlocal analogues of second orde@“""”‘“"“
tensors

* Classical theory uses tensors (linear mappings from vectors to vectors).
* Peridynamics uses states (nonlinear mappings from vectors to vectors).

Tensor F
—_—> .
Ellipsoid
State Y
—
A

ny shape




Peridynamics background
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Peridynamic vs. local equations
e Structurally similar but with states instead of local operators.
Relation Peridynamic theory Standard theory
Kinemtics Y(a-x) = y(a) - ¥(x Fx) = 22(x)
X
Linear momentum . _ _ vix) =V - -o(x) +b(x
e py(x) = /H (t(q, x) — t(x, q)) dVy + b(x) py(x) (x) + b(x)
Constitutive model t(q,x) = T{q — x), T =T(Y) o =o(F)
Angular momentum _ . _ —
Anguler | Y% xTla—x v =0 c=o
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law 5:Toi—|—q+r éZO'-F—I—q—i—T

T(&) - Y (&) dVe




Peridynamics background |I'| —

Damage

Laboratories
e Damage is usually treated through bond breakage.

e After a bond & breaks according to some criterion, it no longer carries

any force.

e Typical breakage criterion: prescribed critical bond strain sq:

_Y©l-l¢
€]

s >= §p at some timetg

bond strain.

S

means the bond remains broken for all ¢t > {y.

Bond & Y )

-

o -~~~ Broken bond Y()




Peridynamics background

Autonomous crack growth
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* Cracks do what they want (grow, arrest, branch, curve, oscillate, ...)

csaseessssse 0085080088880 s
00000000000 e000 00000000 OO Brokenbond
G bk e Crack path
00000000000 3 0000000000

A o

./

* SS & Askari, Computers and Structures (2005)



Peridynamics background

Many validation studies have been done

* First issue of the new Journal of Peridynamics and Nonlocal Modeling had a review article by Diehl

on published validation to date:

Journal of P ics and Nonlocal
https://doi.org/10.1007/542102-018-0004-x

h
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Table3 Applications of bond-based and state-based peridynamics for the comparison with experimental data

Material Mechanical test B S Exp Sim
Composite Flexural test with an intial crack v [75] [2]
Composite Damage growth prediction (six-bolt specimen) v [120] 196]
Composite Damage prediction (center-cracked laminates) v [6, 12, 69, 134] [70]
Composite Dynamic tension test (prenoteched rectangular plate) v [12, 65] 58]

Steel Crack growth (Kalthoff-Winkler) v v [66-68] [3,52, 114, 144]
Aluminum/Steel Fracture (compact tension test) v 19, 77, 89, 91] [135, 141, 142)
Aluminum Taylor impact test v 4, 21] 3, 43, 45]
Aluminum (6061-T6) Ballistic impact test v [132] [127]
Concrete Lap-splice experiment v [48] 48]
Concrete 3-point bending beam v v 19, 63] 17,51]
Concrete Failure in a Barazilian disk under compression v [51] [54]
Concrete Anchor Bolt Pullout v [128) [83)

Glass Dynamic crack propagation (prenotched thin rectangular plate) v [15, 36, 100] [2, 53, 144]
Glass Impact damage with a thin polycarbonate backing v |8, 20, 40] 159]

Glass Single crack paths (quenched glass plate) v [13, 103, 136] [71]

Glass Multiple crack paths (quenched glass plate) v [102, 137] [71]

Glass Crack tip propagation speed v [15] [52, 53, 144]
PMMA Fast cracks in PMMA v [39] 12]

PMMA Tensile test v [124] [32]
Soda-lime glass Impact on a two-plate system v [16, 130] [130]

Legend: B refers to bond-based peridynamics, S refers to state-based peridynamics, Exp to experimental data, and Sim to simulation




Peridynamics background

m Il%agl?ﬁ%tliries
Peridynamics converges as the horizon — (S:

* Linear peridynamics converges to Navier equations of linear elasticity.

e Linear or nonlinear material models converge to a stress-strain relation.

* Problems with nonconvex elastic peridynamic models can converge to
nonlinear elasticity with Griffith cracks.

E. Emmrich & O. Weckner, Communications in

Mathematical Sciences (2007).

* F. Bobaru et al., Int. Journal for Numerical Methods in
Engineering (2009).

* T Mengesha, & Q. Du, Journal of Elasticity (2014).

 S.S. &R.B. Lehoucq, Journal of Elasticity (2008).

* P. Seleson & D.J. Littlewood, Computers & Mathematics
with Applications (2016).

e *R.P. Lipton, R. B. Lehoucq, & PK. Jha, Journal of

Peridynamics and Nonlocal Modeling (2019).

Angled crack growth simulated with a
nonconvex peridynamic material model*




Peridynamics background

Example: Fracture in a brittle plate with a
lot of defects VIDEO
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Peridynamics background
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Example: Fragmentation due to impact ) 5.

* Brittle cylinder vs. rigid plate at 1km/s.

Colors show damage




Peridynamics background

Example: Microstructure evolution
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* Plate with ends fixed. Global strain €, is in the unstable part of the material
model.

* Complex microstructure appears at first, then simplifies.

* Driving force is the energy stuck in a phase boundary.

VIDEO

Bond force
4 density f

Initial strain €

Colors show bond strain




Peridynamics background

Example: Microstructure evolution
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Colors show bond strain

\""/ \/

,\vw, /

X<{//




Is nonlocality real?

Straightforward case for nonlocality:
When there really are long-range forces

* Fracture of nanofiber network held together by Van der Waals forces.

Sandia
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F. Bobaru, Modelling and Simulation in Materials Science and Engineering 15, no. 5 (2007): 397.

20



Is nonlocality real?

Smoothing the smallest scale degrees of
freedom results in nonlocality

* Try to approximate known, small-scale response (e.g. molecular motion) by a
continuous variable, yet retain realistic behavior.
* How to make the connection?
* One approach: Smooth out the small-scale degrees of freedom.
e Example:
* Heterogeneous infinite bar.
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e Small-scale model (local):
p(m)u(m, t) — GJ('T: t) £ b(ﬂ:, t)

where p=density, u=displacement, o=stress, and b=body force density.

e Material model:
o(z,t) = E(x)u'(z,t)

where E=Young's modulus.




Is nonlocality real? -
Define a smoothed displacement field @&

e Let w(z) be a smoothing function on z € [—e,¢], [w = 1, w(—2) =
w(z).

e Define the smoothed displacement field @ by

G = ﬁ / D; W)@, . pla) = [ i wlp—)ple) i

e Recall

p(x)i(z,t) = gf(mat) + b(z, t).

e Multiply through by w and integrate, find that

o0 o0

Az, £) = f wiz—p)e'(o,) dptBla,t), B, i) = f w(z—p)b(p, ) dp

— 0 — 0

rw(z)

SN

—E €




Is nonlocality real?

Evolution equation for smoothed DOFs

e Recall -

plz)aile, L) = f w(z — p)o’(p,t) dp + b(x,1).

—0D

Integrate by parts (surprise!):

o0

pa)i(e,) == [ w/a—p)o(p,t) dp+Ba, 1)

Starting to look nonlocal.

L u(x)

Let g be defined so that p is halfway between ¢ and z, i.e.,

5% g

p=—g

h

L
—
=
D
=

aliafir, £ — —% /m . (‘5" - ‘”) . (“T“'“t) -t Bt
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Is nonlocality real?

Evolution equation is nonlocal
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e Recall

5(w)ii(x, £) = —% /m o (q . m) - (‘“2'5'”::) dq + b(z, 1).

e Now define the pairwise bond force density by f(q x) ﬁ (x,9)
_ 1, (q—x g+ !
o= 3o (1) (579
and define the horizon by X q
d — 2e.

¢ We now have

-+

Aa)ii(z, t) = f Pl 7} g1, 1)

T—4

Observe that f has the required symmetry

f(z,q) = —f(g,x).




Is nonlocality real?

Need a material model in terms of the
smoothed DOFs
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e Unfortunately we don't know o.

e One possibility is to back out «' from the Fourier transform using the
convolution theorem:

Fla) = FlwlFle] —> wn=F"1 { ﬁi}} }

hence

o(z) = E(m)%f—l {%} .

e [his is too much work!

e [nstead come up with a nonlocal material model.




Is nonlocality real?
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Bond-based heterogeneous material model

e Observe that in equilibrium with b = 0 and fixed stress oy,

ug(z) = /UI EGE{;) dz.

e From this compute the smoothed displacements:

a(z) = [ " el o $ £} dE.

—€

e Define a nonlocal material model by (omit ¢):

— z)(u(g) — ulzx ) — oow'((g — x)/2)
f(Q:m) — C(Q: )( (ri') ( )): O(Qa ) . ﬂ[](@) — ﬂ-[}(l’) .

e This exactly reproduces the local result for equilibrium with 6 = 0.

e (But not in general.)




Is nonlocality real?

Bar with a soft spot: Micromodulus
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Micromodulus

Position

Y A



Is nonlocality real?
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Bar with a weak spot: Displacement e
-

Red: Peridynamic
Blue: Exact (local)

\

Displacement
|

Position




Is nonlocality real?

National

Bar with a very weak spot: ) .
Micromodulus shows broken bonds

Micromodulus
|

Position

* The heterogeneous peridynamic material model zeroes out the
micromodulus for bonds crossing the crack.
* Bond breakage!
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What the preceding analysis shows

* Using smoothed displacements results in a nonlocal evolution law.

* This evolution law is peridynamics provided a material model in terms of u
is defined.
 The micromodulus is determined by:
* The small-scale (local) material model and heterogeneity.
* The smoothing function w.
* A nonlocal concept of damage (bond breakage) emerges naturally when the
original problem contains a crack.




Is nonlocality real?

A hint of unexpected behavior
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e Recall

(@) = [ wia —pulp) dp.
e Fourier transform of any function v:
v (k) = Flv{z)} = f e~ *%y(z) da.
e Convolution theorem

so that formally we can derive the small-scale displacements from any

given .
i Vet Tl
u(z) = F {—* } .




Is nonlocality real?

A hint of unexpected behavior, ctd.

e Can we arbitrarily prescribe u?

e Suppose w and u are both Gaussians:

h

u(x) = e_(m/L“)Z, w(x) = e~ (@/Lw)?,
e Then :
u(k) L 2072 _72\1.2
* k — — _u ‘Tl' (L'w Lu)'t"
L S e
e Bad news if L, < L! 4
a A
N\
2L,
2L,
\ x
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Is nonlocality real?

Can nonlocality be observed
experimentally in elastostatics?
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* Consider a 2D composite composed of
alternating layers of stiff and compliant
material.

> stiff
 Smoothed DOF is the average x displacement r
along a vertical line.
1 L “~ .
==\ udx, Compliant
L),

* We will examine “seemingly” 1D deformations.




Is nonlocality real?

Static Dirichlet problem for a composite

« Solve for the 2D displacements in the local theory.
* Both phases deform the same way.
* No surprises (yet).

Static displacement field

u
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Is nonlocality real?

Now consider a mixed
Dirichlet/Neumann static problem
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* Apply a constant traction p along the left surface.
e Still using 2D local theory.
* Should we still expect u to vary linearly with x;?

—_
—_
—_
—_
—_
—_
—
—_
—_
—>
—
—_
—_
—_
—_

w0,




Is nonlocality real?

Smoothed DOFs show interesting features

* A detail computational model shows complex behavior near the left edge.
« Smoothing this solution results in nonlinear @ (x4).

-
—_
-
-
e
—_
—_
-
—
—
-
—_
—
—
—

/S

Detailed local numerical solution

Smoothed displacement u

YVYVYVYV¥Y¥YV¥YYY

Colors show u4
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Is nonlocality real?

Nonlocality helps reproduce response
near loaded boundary

* Tune a 1D peridynamic microelastic material model.
* Tryto reproduce the behavior seen in the detailed 2D local solution..
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Peridynamic material model Predicted displacement

T T T T T T T T T T T

Width of stiff +
compliant stripes

<>

Smoothed

/ 2D local

Micromodulus C(¢)

1

1

1 1 1 1 1 1 1

1

Bond length &

Displacement u

s

Peridynamic 1D

Position x



Is nonlocality real?

Nonlocal material parameters can be ) e,
derived from static full-field data

» Digital image correlation (DIC).
e Virtual field method (VFM).
* Electronic speckle pattern interferometry (ESPI).

( Start )

|

/ Initial guess (K, #) € R and actual displacement field @ /

[
v

| PeriPyDIC: Compute the dual force density fu» (Eq. (17)) |

|

I PeriVFM: Compute the internal works W}, (Eq. (30)) I

| PeriVFM: Compute the residual @ (Eq. (25)) |

Strain concentration in a composite is <55 No I NOMAD: Get new (K] ——
influence by nonlocal length scales

Yes

* L. Toubal, M. Karama, & B. Lorrain, Composite
structures, (2005).
* D. Turner, B.Van Bloemen Waanders, & M. Parks J.

Y
(Materia.l properties (K, p) found)

Mechanics of Materials and Structures (2015). Flow chart for obtaining PD
* D.Turner, J. Engineering Mechanics (2015). parameters by VFM*.
*  *Delorme, R., Diehl, P., Tabiai, I. et al., J Peridyn

Nonlocal Model (2020)
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Dynamics: impact problem )

* |mpactor strikes the composite edge-on.

Impactor




Is nonlocality real?

Dynamics: impact problem video
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* Detailed 2D local simulation.
* Complex wave structure is created in the composite.

Colors show maximum principal strain

40
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Is nonlocality real: -

Dynamics: impact problem )

* Detailed 2D local simulation.
* Complex wave structure is created in the composite.

MMM UMM MY
(LRI | LT
T

—
| ————
e
| esm—
| —
| eem——
| e——
| ——
—
| —
T——
| e——
| —
.
| e———
—

Colors show maximum principal strain



Is nonlocality real?

Nonlocality helps predict the dispersive
nature of waves in the composite
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* After smoothing the displacement along vertical lines, the complex wave structure is

manifested as dispersion.

* A 1D peridynamic model (after tuning of the micromodulus) reproduces some of

these features.

Peridynamic material model Wave structure
Width of stiff +
compliant stripes . - Peridynamic 1D
2 < 2 =
~ +—
© c
%) ()
= £
=) ()
© O
o &
: F;
= a
-§ Smoothed
2D local
Bond length & Position x




Is nonlocality real?

Wave dispersion

* All real solids exhibit dispersion for sufficiently short wavelengths.
 The wavelength depends on the microstructure and composition.
* Dispersion starts to appear for wavelengths < microstructure size.
* This implies that nonlocality is required to predict dispersion.
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A Material 1

Local theory

Wave velocity ¢

2nc/D

Material 2

Microstructure

[
>

w = Angular frequency = 2m * frequency




Is nonlocality real?

Wave dispersion in linear peridynamics

Sandia
m National
Laboratories

¢ Equation of motion with b = 0:
6 .
pife,t) = [ CO)ulz+& 0 —u(@v) dg

¢ ook for plane wave solutions of the form
H[Eﬂ, t) _ ei[:k:r—wt}

where k=wavenumber and w—angular frequency.

e Condition on w and k:
5 5 - rd |
wt= [ c@ea-p  P=[ cou

e or in terms of the Fourier transform C* = F{C'},

pw’(k) = P — C™ (k)




Is nonlocality real?

Wave dispersion in linear peridynamics

Typical peridynamic dispersion curve

Frequency w

Wavenumber k

e S.N.Butt, J. J. Timothy, & G. Meschke, Computational Mechanics (2017).
* V.S. Mutnuri, USNCCM15 presentation (2019).
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Is nonlocality real?

Finding peridynamic material properties
from measured dispersion data

e We found
pw? (k) = P — C* (k).

e Given measured wezper(k), formally solve

C(é') - F_I{P - ngmpe-r (k)}

(requires data to be cut off for large k).

Dispersion curve Micromodulus
A A
)
Fit through data C (SZ)
T Cutoff
Data *
k ) $

O. Weckner & S.S., Int. J. for Multiscale Computational Engineering (2011).
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Is nonlocality real?

Higher cutoff frequency leads to
narrower micromodulus curve
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e The limiting case of micromodulus — delta function corresponds to the local theory.

———————— Peridynamic Mat 2 g |
1.4 i |
Original .
1.2
&
3 -
S 1.0 re
5 2
> 0.8 = 4
9] Mat 1 S
= 2 3
— 0.6 e
B )
) = 2
® g S
P
< 1
0.2
0_
0.0 ! . . . ! -1 1 1 1 1 1 L ! ! L
0.0 0.4 0.8 1.2 1.6 2.0 a 4 B 12 16 20
Wavenumber k Bond length &
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Example: PD model calibrated to a LU
composite dispersion curve

* Boron-epoxy composite.
e Longitudinal waves normal to fibers.
 Compare measured ultrasonic group velocity* with calibrated peridynamic result.

Dispersion curve: Model & Data

4 =] i T T T I T ]

Peridynamic

N

Group velocity ¢, (km/s)

DIRECTION OF APPLIED PRESSURE
DURING CURE

. 0 50 100
Frequency w (MHz)

* T. R. Tauchert & A. N. Guzelsu, J. Applied Mechanics (1972).




Discussion: Nonlocality in peridynamics

* Nonlocality emerges from how we choose to model a problem.
* Origins

* Long-range forces

* Smoothed degrees of freedom

* Multiple pathways for flux (of momentum, heat, mass, ...)
* Consistency

* Peridynamics uses a consistently nonlocal approach to the

evolution of all fields including damage.
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