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Outline

1. Introduction - Nanoparticle Self-Assembly
• Nanoparticle interactions
• Collective properties of nanoparticle arrays

 , • Current progress

2. Pressure-lnduced Assembly and Formation of 1-3D Nanostructures
• High pressure induced assembly
• 1-3D metallic nanostructures (Au and Ag)
• Semiconductor nanowires (CdSe, etc.)
• Pressure-tuned nanoparticle coupling and collective

property

Diernond anvil cell (DAC)

Arnbient pressure

3. Summary

Increasing pressure

101* V* Reversible. tio 9GPa > 9GPa

Interparticle distance shrinkage Interparticle sintering



Nanoparticle Assembly at Ambient Pressure:
Balanced Nanoparticle Interactions

Balanced Nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
•

Disordered with defects:
vacancy, grain boundary, etc.

Ordered array

Lennox, R.B. et al. Chem. Eur J. vol. 2, 359-363, 1996,
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Nanoparticle Self-Assembly at Ambient Pressure:
1. Balanced Nanoparticle

•
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2. Heterogeneous nucleation

a
Non-

solvent
layer

Buffer layer

CdSe
rianocrystals
in a solvent

Talapin, et al., Adv. Mater. 2001.

3. Solvent Evaporation
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Nanoparticle Self-Assembly at Ambient Pressure:
2. DNA-Programmable
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Nanoparticle Self-Assembly at Ambient Pressure:
3. Dipole-Dipole Interactions and Chemical Reactions

Dipole-Dipole Interaction
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Nanoparticle Interactions and Coupling

Nanoparticle coupling depends on interparticle separation distance

Organic ligands
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Balanced nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
•
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Tuning Plasmonic Response from Alkanethiolate-Stabilized Gold
Nanoparticle Superlattices
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Langmuir-Blodget to Tune Nanoparticle Separaion

LB process
pressure sensor

Teflon trough
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• 2-dimensional
• limited pressure range
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Our Research Pressure Induced Nanoparticle Assembly:
Mimic Manufacturing Processes - Embossing or lmprinting

Controlled pressure

1 If Je Je if 1

release

Features:
• Rapid
• Cost effective
• High throughput
• High fidelity
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Pressure-Induced Assembly and Fabrication

An external pressure overcomes balanced interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance to fabricate new nanoparticle architectures.
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Balanced Nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
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• Provide controlled pressure fields:
- Hydrostatic & uniaxial
- Controlled pressure range

• Allow in-situ structural and property characterizations
- Absorption, emission, etc.
- Crystal structure, phase transition, etc.
- Structural evolution with pressure
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Before Compression Starting Materials: Ordered
Spherical Gold Nanoparticle Arrays

a)

Balanced particle interactions

Diamond anvil cell (DAC)

Ambient pressure

5 nm gold nanoparticles and fcc lattice (a = 10.4 nm)

hkl de IA dt /A
111 59.7 N.0
200 51.5 52.0
220 36.2 36.8
311 31.2 31.4
222 29.8

0.5 1.0 1.5
2 Theta (degree)

30.0

2.0

les,

*

* -N.

t

Ai * ,*
V Ai

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
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After Compression Formation of 10 Nanowires

a

b

Diamond anvil cell (DAC)
Ambient pressure 13 GPa—Ambient pressure

c hkl de/A t /A 
10 70.6 70.5
11 42.1 40.7
20 35_4 35.3
12 26.8 26.6
30 23.5 23.5

0 5 1.0 1.5 2.0
2 Theta (degree)

f g

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
Sandia
National
Laboratories



Bundles of 1D Nanowire Arrays

a

c

100 nm

d

Uniform length
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Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
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Pressure Tuned 1D Nanostructures
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In-situ Synchrotron X-ray Studies of Nanoparticle
Assembly under Pressure

An external pressure overcomes specific interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance to fabricate new nanoparticle architectures.
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Pressure-Induced Nanoparticle Assembly Processes
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Pressure-Induced Formation of 3D Nanostructures

Interconnected 3D gold networks are formed depending on initial nanoparticle packing
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Electron Microscopy of 3D Networks

SEM images

TEM image
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National
Laboratories Wu, H. et al. J. Am. Chem. Soc. 2014, 136, 7634-7636.



Pressure-Tuned Nanoparticle Interactions and Coupling
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Structure - optical property correlation of Ag nanoparticle arrays
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Adv. Mater. 2016, 28, 1989-1993.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).



Semiconductor Nanoparticles (CdSe) under Pressure

Previous studies were focused on structural transformation in atomic lattice of
CdSe nanoparticles and associated optical property changes under pressure.

(
O
v
a
)
 Il
ea
 !
y
u
l
e 
p
u
o
L
u
e
l
C
I
 

Synchrotron
X-ray

pressure
111 1 111

f1TITIM
pressure

Wurtzite 4 Rock salt 4 Zinc Blende

A (1li) (2400) (210)

Rock salt

Wurtzite t
(100),(002) fff

(101) (102)(110)(103)(112)

9t7 GPa

8.8 GPa

7.5 GPa

6.3 GPa

5.9 GPa

5.1 GPa

4.1 GPa

2.5 GPa

0.7 GPa

B (11i) (10) (+)

Rock salt

ZB-WZ

(111)

:Gasket

(220) (311)

9.7 GPa

8.1 GPa

6.7 GPa

5.1 GPa

4.1 GPa

2.3 GPa

0.7 GPa

atm

8 12 16 20 24 28 32 36 40 8 12 16 20 24 28 32 36 40

20 (dlegram) 20 Wegram*

Tolbert S.H., AlivisatosA.P., Science, 265: 373-376, 1994 &
J. Chem. Phys. 102: 4642-56, 1995. Sandia

National
Laboratories



Semiconductor Nanoparticles (CdSe) under Pressure

Our studies were focused on structural transformation in CdSe nanoparticle
mesophase and fabrication of new nanostructures under pressure.
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Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).



Structural Evolution of Ordered, Self-assembled CdSe
Nanoparticle Arrays under Pressure

5 nm CdSe nanoparticles coated with Octadecylphosphonic acid (ODPA), Trioctylphosphonic oxide (TOPO)
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B. Li, K. Bian, et al, Science Advances 3, e1602916 (2017).



Tunable Interparticle Spacing in CdSe Arrays
during Compression and Release
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Atomic Lattice Phase Transition of CdSe Nanoparticles
during Compression and Release
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Transmission Electron Microscopy Image of CdSe Nanowires



Transmission Electron Microscopy Image of CdSe Nanowires

B. Li, K. Bian, et al,
Science Advances
3, e1602916 (2017).



Scanning Transmission Electron Microscopy Image of CdSe Nanowires

STEM image

TEM by Dr. Ping Lu
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Stress Induced CdSe Nanoparticles Interactions

637.0 nm
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National WLaboratories avelength (nm)
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Absorption peak became sharper and stronger. Absorption
peak shows 31 nm red shift (from 605.6 nm to 637.0 nm).

14.49 
Absorption peak further extends to longer wavelength (up to
about 800 nm), indicating nanowires formation.

8.03

7.47
7.05

6.32 -

4.62

Absorption peak starts to extend to longer wavelength at
around 7 GPa, indicating the nanoparticles become
consolidated.

Absorption peak blue shifts due to nanoparticle
aggregation under pressure. The peak blue-shifts until

- pressure reaches to 4.62GPa, then remains almost no
2.67 change until 6.32GPa, indicating the nanoparticles

become very close or start to contact at - 4.62GPa.

B. Li, K. Bian, et al, Science Advances 3, e1602916 (2017).



Optical Property of CdSe Nanowires

B. Li, K. Bian, et al,
Science Advances 3,
e1602916 (2017).
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Superfast assembly and synthesis of gold
nanostructures using nanosecond low-temperature
compression via magnetic pulsed power
Binsong Kaifu Bianl,*, J. Matthew D. Lane1, K. Michael Salerno1, Gary S. Grest1, Tommy Ao1,

Randy Hickman1, Jack Wise1, Zhongwu Wang2 & Hongyou Fan1,3,*
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Ultrafast assembly and synthesis of gold nanostructures
using nanosecond compression via pulsed power
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Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).



Ultrafast assembly and synthesis of gold nanostructures
using nanosecond compression via pulsed power
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Ultrafast Assembly and Synthesis of 1-3D Nanostructures
within Nanoseconds via Pulsed Power
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Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).



Summary: Pressure-Induced Nanoparticle Engineering

Pressure-Directed Assembly presents a paradigm shift in engineering nanoparticle arrays:

• Allow precise, systematic, and reversible tuning of interparticle distance for interrogation of new

chemical and physical properties.

• Produce new chemically and mechanically stable 1-3D nanostructures, which is not possible for

current top-down and bottom up methods.
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Increasing pressure

Reversible too 9GPa > 9GPa
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CHEMICAL Review
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Pressure Induced Nanoparticle Phase Behavior, Property, and
Applications
Feng Bai,*'. Kaifu Xin Huane Zhonvu Wang,° and Hongyou

tKey Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China

tSanclia National Laboratories, Albuquerque, New Mexico 87185, United State.s

Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States

IlDepartment of Chemical and Biological Engineering, Albuquerque, University of New Mexico, Albuquerque, New Mexico 87106,
United States

'Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States

ABSTRACT: Nanoparticle (NP) high pressure behavior has been extensively studied
over the years. In this review, we summarize recent progress on the studies of pressure
induced NP phase behavior, property, and applications. This review starts with a brief
overview of high pressure characterization techniques, coupled with synchrotron X-ray
scattering, Raman, fluorescence, and absorption. Then, we survey the pressure induced
phase transition of NP atomic crystal structure including size dependent phase transition,
amorphization, and threshold pressures using several typical NP rnaterial systerns as
exarnples. Next, we discuss the pressure induced phase transition of NP rnesoscale
structures including topics on pressure induced interparticle separation distance, NP
coupling and NP coalescence. Pressure induced new properties and applications in
different NP systems are highlighted. Finally, outlooks with fiiture directions are discussed.
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