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1. Introduction - Nanoparticle Self-Assembly

* Nanoparticle interactions

» Collective properties of nanoparticle arrays
» Current progress

J

2. Pressure-Induced Assembly and Formation of 1-3D Nanostructures
* High pressure induced assembly

N 4D » 1-3D metallic nanostructures (Au and Ag)
% « * Semiconductor nanowires (CdSe, etc.)
et o Pressure-tuned nanoparticle coupling and collective
property
3. Summary

Increasing pressure
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Nanoparticle Assembly at Ambient Pressure:
Balanced Nanoparticle Interactions
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Nanoparticle Self-Assembly at Ambient Pressure:

1. Balanced Nanoparticle
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Nanoparticle Self-Assembly at Ambient Pressure:

2. DNA-Programmable

Ligand-receptor interactions
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Nanoparticle Self-Assembly at Ambient Pressure:

3. Dipole-Dipole Interactions and Chemical Reactions

Dipole-Dipole Interaction Chemical Reactions
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Nanoparticle Interactions and Coupling

Nanoparticle coupling depends on interparticle separation distance

Organic ligands

Balanced nanoparticle interactions:
Attraction

*VVan der Waals

*Charge interactions

*Dipole-dipole
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Tuning Plasmonic Response from Alkanethiolate-Stabilized Gold
Nanoparticle Superlattices
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Langmuir-Blodget to Tune Nanoparticle Separaion
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Our Research — Pressure Induced Nanoparticle Assembly:

Mimic Manufacturing Processes - Embossing or Imprinting

Controlled pressure
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Pressure-Induced Assembly and Fabrication

An external pressure overcomes balanced interparticle interactions, enables
engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and
interparticle separation distance to fabricate new nanoparticle architectures.
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Before Compression — Starting Materials: Ordered
Spherical Gold Nanoparticle Arrays

5 nm gold nanoparticles and fcc lattice (a = 10.4 nm)
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After Compression — Formation of 1D Nanowires
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Bundles of 1D Nanowire Arrays

Uniform length
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Pressure Tuned 1D Nanostructures

Diameter
~5nm
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In-situ Synchrotron X-ray Studies of Nanoparticle

Assembly under Pressure

An external pressure overcomes specific interparticle interactions, enables
engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and
interparticle separation distance to fabricate new nanoparticle architectures.
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Pressure-Induced Nanoparticle Assembly Processes

fcc 2D-Hexaganol Array
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Pressure-Induced Formation of 3D Nanostructures

Interconnected 3D gold networks are formed depending on initial nanoparticle packing
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Electron Microscopy of 3D Networks

SEM images

TEM image
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Pressure-Tuned Nanoparticle Interactions and Coupling

Structure - optical property correlation of Ag nanoparticle arrays
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Semiconductor Nanoparticles (CdSe) under Pressure

Previous studies were focused on structural transformation in atomic lattice of
CdSe nanoparticles and associated optical property changes under pressure.
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Semiconductor Nanoparticles (CdSe) under Pressure

Our studies were focused on structural transformation in CdSe nanoparticle
mesophase and fabrication of new nanostructures under pressure.
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Structural Evolution of Ordered, Self-assembled CdSe

Nanoparticle Arrays under Pressure

5 nm CdSe nanoparticles coated with Octadecylphosphonic acid (ODPA), Trioctylphosphonic oxide (TOPO)
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Tunable Interparticle Spacing in CdSe Arrays

during Compression and Release
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Atomic Lattice Phase Transition of CdSe Nanoparticles

during Compression and Release
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Transmission Electron Microscopy Image of CdSe Nanowires
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Scanning Transmission Electron Microscopy Image of CdSe Nanowires
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STEM image
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Stress Induced CdSe Nanoparticles Interactions
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Optical Property of CdSe Nanowires
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Superfast assembly and synthesis of gold
nanostructures using nanosecond low-temperature
compression via magnetic pulsed power
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Ultrafast assembly and synthesis of gold nanostructures

using nanosecond compression via pulsed power
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Ultrafast assembly and synthesis of gold nanostructures

using nanosecond compression via pulsed power
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Ultrafast Assembly and Synthesis of 1-3D Nanostructures

Initial
uncompressed
state

Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).



Summary: Pressure-Induced Nanoparticle Engineering

Pressure-Directed Assembly presents a paradigm shift in engineering nanoparticle arrays:

* Allow precise, systematic, and reversible tuning of interparticle distance for interrogation of new
chemical and physical properties.

* Produce new chemically and mechanically stable 1-3D nanostructures, which is not possible for
current top-down and bottom up methods.

Increasing pressure

% * Revarsible < 9GPa m >9GPa .
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Pressure Induced Nanoparticle Phase Behavior, Property, and
Applications
Feng Bai,*’+ Kaifu Bian,i Xin Huang,§ Zhongwu Wang,*’§ “and Hongyou Fan*+I-€

"Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
*Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
“Comell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, United States

”Deparltment of Chemical and Biological Engineering, Albuquerque, University of New Mexico, Albuquerque, New Mexico 87106,
United States

“Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States

ABSTRACT: Nanoparticle (NP) high pressure behavior has been extensively studied
over the years. In this review, we summarize recent progress on the studies of pressure
induced NP phase behavior, property, and applications. This review starts with a brief
overview of high pressure characterization techniques, coupled with synchrotron X-ray
scattering, Raman, fluorescence, and absorption. Then, we survey the pressure induced
phase transition of NP atomic crystal structure including size dependent phase transition,
amorphization, and threshold pressures using several typical NP material systems as
examples. Next, we discuss the pressure induced phase transition of NP mesoscale
structures including topics on pressure induced interparticle separation distance, NP
coupling, and NP coalescence. Pressure induced new properties and applications in
different NP systems are highlighted. Finally, outlooks with future directions are discussed.
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