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; * Modularization improves identifiability by
Introduction forteiting the ability to learn about nuisance
* Bayesian model calibration (BMC) reters to parametets, while tigorously accounting for
coupling of limited experimental data with an the associated uncertainty [4].
expensive computer simulator [1].
y(x) =n(x;, 0) +6(x;) + ¢ mu(aly) = o m(aly, y)m(y)dy
q

*  Computer simulator takes a high dimensional
set of inputs known as calibration parameters. *  The Modulatization posterior can be

*  Goal: Use Bayesian inference to learn the efﬁciegtly approximgted numeric.ally by
posterior distribution of the physical emulating the conditional posterior.
parameters.

Simple machine example:

Physical parameter inference

y~U(1.75, 2.20) y ~U(1.50, 2.50)
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*  Consider the simple machine [2]. | W S
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*  Optimal parameter values are often not the Apphcatlons
same as the “true” parameter values.
*  Borehole function simulations.
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g *  Dynamic material property calibration.
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*  Sometimes physical parameters a and nuisance ] -
parameters Y are inherently jointly
unidentifiable. = ' 8
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