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Introduction
• Bayesian model calibration (BMC) refers to

coupling of limited experimental data with an
expensive ,:omputer simulator [1].

y(xi) n(xj, 0) + Oxi) + Ei

Computer simulator takes a high dimensional
set of inputs known as calibration parameters.

Goal: Use Bayesian inference to learn the
posterior distribution of the physical
parameters.

Physical parameter inference
Consider the simple machine [2].
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The efficiency is 2 (physical parameter).

• Model discrepancy: Use a piecewise linear
simulator with slope a when x < y and slope
(3 when x y.

Optimal parameter values minimize a loss
function [3]

Lge), Tie, 19)).
• Optimal parameter values are often not the

same as the "true" parameter values.
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Modularization
• Sometimes physical parameters a and nuisance

parameters y are inherently jointly
unidentifiabl( .

Modularization improves identifiability by
forfeiting the ability to learn about nuisance
parameters, while rigorously accounting for
the associated uncertainty [4].
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The Modularization posterior can be
efficiently approximated numerically by
emulating the conditional posterior.

• Simple machmc example:

y- U(1.75, 2.20) - U(1.50, 2.50)
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Applications
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Borehole function simulations.
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Dynamic material property calibration.
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