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Abstract—Neuromorphic engineering only works well if lim-
ited hardware resources are maximized properly, e.g. memory
and computational elements, scale efficiently as the number
of parameters relative to potential disturbance. In this work,
we use realistic crossbar simulations to highlight a significant
trade-off between the complexity of deep neural networks and
their susceptibility to collapse from internal system disturbances.
Although the simplest models are the most resilient, they cannot
achieve competitive results. Our work proposes a middle path
towards high performance and moderate resilience utilizing
the Mosaics framework, by re-using synaptic connections in a
recurrent neural network implementation.

I. INTRODUCTION

A variety of neuromorphic systems have been implemented
using emerging memory devices, but few perform at indus-
trial levels due to the difficulties of implementing software-
quality synapses and gradients. These challenges are somewhat
simplified in the inference-only application, where imported
weights from a separately pre-trained network are used to
accelerate predictions on a known task. Nevertheless, electrical
issues such as parasitic voltage drops, parasitic resistances,
and cycle-to-cycle read noise may limit the ultimate size and
accuracy of inference-only neuromorphic accelerators [1], [2].
These issues can quickly degrade the performance of deep
networks with hundreds of thousands of parameters. Accel-
erators have been proposed to leverage memristive crossbars
such as PUMA [3], ISAAC, [4], but they typically discuss
the implications of these issues at minimal length. We explore
the idea that these systems may be unexpectedly fragile to
perturbations, and seek mitigations.
The use of temporal neural networks is a legitimately brain-

inspired computing approach that may yield new sources of
power and resilience [5]. In order to efficiently mapp standard
networks to temporal ones, the efficiency of fundamental
operations and components in a given graph must be con-
sidered. As illustrated in Fig. 4, while the overall size of an
artificial neural network (ANN) graph may be very large, parts
of the necessary computation are done repeatedly. Mosaics
in this context refers to a temporal form of neuromorphic
multiplexing, whereby certain computations (in this example,
the neurons, which are often a limiting resource) can be
reused for different stages of an algorithm; allowing larger
scale algorithms to be implemented on a resource restricted
neuromorphic platform. By exploring the partitioning of a

neural graph into sub-graphs that enable the computation to
be performed in isolation on a smaller subset of available
computing nodes - trading space for time in computation -
we open a new avenue for failure and resilience analysis.
Concretely, in the following sections we explore this con-
trast through three relatively well-known ANNs: a) a simple,
low parameter multi-layer perceptron, b) a complex, medium
parameter convolutional neural network (CNN), and c) a
medium-parameter, medium complexity recurrent neural net-
work (RNN) inspired by Mosaics re-use concepts. In general,
RNNs are an attractive emerging option for the demonstration
of on-chip learning or inference, as they are powerful general
computational models [6] . Recently, long-short-term memory
(LSTM) networks have been the most heavily considered for
implementation with dense non-volatile memory arrays [7];
however, such schemes involve complex crossbar partioning
and the hardware implementation of transcendental functions.
Feasibly, LSTM implementations can be done on-chip during
inference (prediction) only mode [8], yet the exact energy and
complexity overhead of such systems are unknown. Drawing
on previous work which shows that an RNN network using
apprpriate activation functions can still perform competitively
to an LSTM on certain tasks [9], in the following sections
we demonstrate that a carefully designed RNN system can
perform competitively to a comparable CNN on two state of
the art machine learning (ML) tasks, at a lower energy budget.

II. METHODOLOGY

In order to implement the previously described neural
network models, we imported pre-trained Keras models [10]
into CrossSim trained on the iconic MNIST data task [11] as
well as the newer fashion-MNIST data task [12]. CrossSim is
a crossbar simulation tool that helps model resisitve memory
crossbars as highly parameterizable neural cores [13], and
which has recently been extended to perform physics-rich
analysis of inference operations. Our imported models for
CNNs contain 119,322 trainable parameters and contain both
convolutional and fully connected (FC) layers, each followed
by a bounded rectified linear function (ReLU) as visible in Fig.
2(a); exact model is given in Table 1. [14] and as visible in
Fig. 2(a). Our imported MLP models are standard consisting of
one hidden layer (128 ReLU functions) and a logit of 10; this
model has 101,770 trainable parameters. Our recurrent neural
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Fig. 1. (a) Simple ANN depiction with yellow sub-graphs as neurons and
blue tiles as weights. (b) A recunent Mosaic implementation, with processing
neurons recurrently connected to a dynamically used single set of weights. (c)
Future Mosaics implementation, with each layer broken into component sub-
layers. This requires that the connection matrices be partitioned with different
delays to permit connections to 'skip' layers to target appropriate node
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(b) Time Slice Recurrent cell Rt=o  Rrrc R.T

Fig. 2. (a) A CNN architecture is demonstrated; parts of images are fed to
ANN sequentially. (b) As in the CNN, pieces of the image are fed to the
recurrent cell until the entire image has been presented; now, the read-out or
fully connected logit system only activates on the last time-step.

network design, newly developed for this work and visible
in Fig. 2(b), consists of a recurrent matrix which is re-used
during multiple time steps. Notably it is partioned into two
cores, a core which always receives a component of the input
and a part which receives the hidden layer activation ht from
the previous time step t — 1 (or null ift = 0) . There are 400
total hidden (input) neuron units, and depending on the chosen
time steps t, the number of differentiable hidden nodes Dhl is
given as 400 — M , where M = 784 is the dimensionality
of our task. The number of parameters of our RNN networks
vary from 118,37 trainable parameters at t = 7 up to 158,656
parameters at t = 56 ( time step integers are divisors of M).
The exact paratmers used for all three major network varieties
are given in Table 1.

The RNN core crossbar is connected to a read-out/logit
crossbar of dimensions Dhl x L, where L is the number

TABLE I
PRIMARY SYSTEM ARCHITECTURES.

Neural Net Design Layout

MLP
RNN
CNN

785x300, 301x10
301x400, (t time steps), 401x10 4

C3/3-C3/3-MP2-C3/6-C3/6-D100-D10

TABLE II
STANDARD RESILIENCE RESULTS (t = 7)

Architecture Noise Scenario

Intemal (usyn*) External (ate*) Both Effects

MLP- MNIST 96.8% 94.1% 93.1%
RNN - MNIST 97.4% 95.1% 94.9%
CNN-MNIST 98.5% 96.7% 96.05%

MLP- f-MNIST 82.2% 69.91% 62.35%
RNN - f-MNIST 86.3% 84.22% 81.11%
CNN-f-MNIST* 85.1% 57.91% 42.35%

*In all cases, asyn = ate = 0.025

of classes (here L = 10); critically, the second core is only
activated at the final time step (every t steps). In our resilience
testing strategy, we have considered two classes of pre-trained
networks: noise-prepared or regularized networks, which train
with jittered gaussian filters on every hidden neuron's ReLu
function during training following the scheme given in [14]
and standard/un-prepared networks which have been trained
without noise. As first suggested in [15], the use of noise
regularization provides a definitive improvement in inference
(Test ) performance of models to internal and external noise
or perturbation effects. During training phase, noise centered
around 0 with a distribution width a is injected into every- neu
ReLu neuron; during testing phase asyn is then injected on
a synapse-per-synase basis . This device-by-device synaptic
dispersion most closely relates to intrinsic noise effects that
would occur during the operation of large arrays (Johnson-
Nyquist noise), but can approximate shot noise or device-
specific perturbations or weight variance as suggested in [1].
In addition, given the test set y, we have also considered the
addition of additive gaussian noise at dispersion ate where

Ynoisy = +y(ate)• We have perturbed all weight matrices in
every system consistently based on the generation of random
numbers with seeds different in every run.

III. RESULTS

A. Resilience to noise sources

First, we consider the raw resilience of MLP, RNN, and
CNN networks to noise at physically plausible values. As
in Table II, all considered systems perform best with just
the internal noise, second best with just external noise, and
suffer the most when the effects are compounded. There is
a significant task-dependence, with CNN systems performing
best on MNIST (easier task) even in the worst-case, and with
RNN systems performing by far the best on the fashion-
MNIST (harder task) case. Of particular concern/interest is



the degradation of the CNN f-MNIST models to test-set
noise degradation and combined noise degradatio, which does
even worse than the MLP system. Although the possibility
of catastrophic responses of CNN networks to adversarial
perturbations are welll-known, this effect can probably be at
least partially lessened by a more complex CNN architecture
with more parameters and/or larger filter sizes [16].

Next, we consider broader sweeps of the internal noise
parameter o-syn along with a consideration of the effect of
noise-regularization during inference time for the two best-
performing systems overall (CNN, RNN). As visible in Figure
3, in both the MNIST (a,b) and f-MNIST (c,d) cases, the
stochastic ReLU behavior during training helps the CNN
systems far more than the RNN systems. For MNIST, the
regularization helps the CNN achieve best overall performance
at both the purely internal and combined noise source cases
(blue improves to orange), while the regularization assists the
RNN but not as dramatically (green to red). This same trend
holds in fashion MNIST with only internal noise; however, in
the combined noise case for fashion-MNIST, at o-syn < 0.075
the regularized and non-regularized models are broadly supe-
rior to CNN approaches. Overall, the current results support
the argument that RNNs seems to have greater intrinsic noise
immunity as compared to CNNs, while CNNs benefit far more
from a standard neuron-level regularization approach.
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Fig. 3. (a) Test inference accuracy on the MNIST task for regularized
and non-regularized CNN and RNN systems as a function of progressively
increased crsyn value; (b)) MNIST performance on highlighted systems given
both internal and noisy test set scenario ( ate = 0.025). (c) fashion-MNIST
performance given internal noise and (d) both internal and test-set noise
fashion-MNIST degradation (again cite = 0.025).

B. Temporal stacking sensitivity of RNN

The considered RNN approach can treat the number of time-
steps of input presentation , which are automatically concate-
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Fig. 4. (a) Test inference accuracy on the MNIST task as a function of the
internally applied perturbation parameter for all of the considered time-step
values , in both regularized and non-regularized procedures (b) Same analysis
is presented for all pre-trained models on the fashion-MNIST task.

TABLE III
ENERGY OVERHEAD PER INFERENCE OP IN CONSIDERED SYSTEMS

Noise Mode Synapse Type

Total Energy/Op VMM Op Neuron Activation Op

MLP ReRAM* 
RNN ReRAM* t
CNN ReRAM*

4.24 nJ
35.6nJ
480 nJ

4.22nJ
35.5nJ
479 nJ

15pJ
66pJ
358 pJ

MLP SONOS* 
RNN SONOS* t
CNN SONOS*

6.04 nJ
42.7nJ

2.084 µ,./

6.02nJ
42.7nJ
2.084µJ

15pJ
66pJ
358 pJ

*We have assumed that softmax (all systems) and maxpool ( CNN only)
operations energy costs are negligible.
tRNN energy estimates are worst-case (t = 7). Note benefits are greater for
greater number of t.

nated at the output of the RNN core, as a free parameter.
As noted in [9], extending t too far can cause problems in
learning convergence since the temporal dependencies (trace)
between the eventual output and input stream can become too
weak. We find a similar result however greater sensitivity in
the NVM system. As shown in Figure 4, when t = 26 a slight
degradation is visible, and at t = 56 inference at the task even
at no noise loses 8 - 10% depending on the task.

C. Energy overhead considerations

Lastly we combine elementary energy costs and system di-
mensions to estimate total energy overhead. Notably, there are
two energy costs driving inference: the vector-matrix-multiply
(VMM) operation, which requires signficant energy to charge
and read out (given ADC costs) the memristive array, and the
neuron activation energy costs. Using the gseneral anaylsis
proposed in [17], the CMOS circuit for the ReLU function
given in [18], and considering two strong device candidates
for inference - optimized filamentary resistive RAM (ReRAM)
alongside charge-trap based ultra-low energy SONOS memory
[19]- we find that emerging memory CNN systems are energy
hungry relative to the other options (Table III). Our proposed
RNN system consumes only 7x more than the MLP system
by exploiting the weight re-use or temporal encoding strategy,
and saves between 13-38x energy compared to the competitor
CNN system.



IV. DISCUS SION

One phenomenon suggested but not proven in our analysis is
the idea that noise regularization is still helpful , but less criti-
cal than in more complex CNN models, due to the presence of
attractor basins in recurrent architectures which help to provide
some intrinsic level of noise resilience [20]. We have also
discovered that binary stochastic neurons may not be sufficient
for full RNN regularization; a more complex function or
method may be require. One interesting method suggested in
[21] would be the use of temporal skip connections. Another
fruitful extension of this work could be the exploration of
how recurrent , convoutional , or mixed architectures using
effective regularization mtehods (tuned based on the time-
step dynamics of networks) could provide defensive properties
against adversarial noise or perturbation effects [22], [23]. Fi-
nally, while we have showed the Mosaics concept implemented
in the temporal domain in this work, the efficient parallel or
horizontal stacking of convolution operations may yield more
efficient and/or resilient convolutional operations (Figure 4c).

V. CONCLUSION

Making emerging memory inference systems more
noise/perturbation reslient is an important goal for the
neuromorphic engineering field, but results in this direction
so far have focused almost exclusively on the limitations of
CNN systems. In this work, we have put CNN resilience
in conversation with other approaches and in particular our
novel RNN approach. We have shown that an ostensibly
simple recurrent neural network design efficiently implements
the idea of temporal stacking or weight re-use necessary to
reduce energy costs by at least 13.5x while still achieving
results that are competitive with CNNs - at least on tasks
of intermediate complexity. In the future, we plan to extend
our physics-aware methods to analyse the cross-over points
at which various deeper ANNs scale to state-of-the-art tasks
given both temporally and physically sequential sub-systems.
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