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Atomic Precision Advanced Manufacturing e

Assess the opportunities presented
by atomic-scale devices and
processing for the digital
microelectronics of the future




What is the opportunity? o
Rising cost to R&D and Increasing difficulty from
unclear technology path process limitations

Inhomogeneity of light

Inhomogeneity of resist Silicon

Mask

Assess device ideas from New processing paradigm
the atomic limit with atomic-scale chemistry




How does Atomic Precision Advanced Manufacturing (APAM) work? () ===

“Chemical contrast’ at Si surface

 Unterminated Si: 1 reactive bond/ atom
 H-terminated Si: unreactive

STM Tip JJunction
Bias

Scanning tunneling microscope (STM)
can image and pattern the surface
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Phosphine surface chemistry e
Top view Phosphorus ‘donates’ an electron to silicon.
" \/
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Ward, EDFA (2020)
Chemical error correction : need 3 open sites for phosphine

Opportunities outside of just atomic-scale devices for quantum demonstrations
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Why photolithography with APAM (1)? T

Traditional (analog) resist Atomic-scale (digital) resist

Inhomogeneity of light

substrate

Underexpose = like no exposure

Inhomogeneity of resist

L L O A

_ substrate substrate

APAM processing has unique advantages

Exposure 1 Exposure 2

No overexposure on multiple exposure
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Why photolithography with APAM (2)? T
Exceeds solid solubility limit by 10x

Confinement Electronic structure

2 mA/ um

| (nA)

E;= 3‘08 ev

f Ward, EDFA (2020)-
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k =47(100) Holt, arXiv:1911.08274

[111) axis [100] axis

Ultra-doping transforms properties of silicon.




Why photolithography with APAM (3)? =
SiO
850° C H\ /| gsorc / H PH, p Si\ -

Incorporate P

PH_ d -
Si(100) Si(100) Si(100) g OB Si cap

Metal

FEOL

Silicon
Silicon

Integrate non-atomically precise features at wafer scale
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Needed for atomic-scale devices too... s
Now (3 US labs, 6 labs worldwide) Desired future state
Simple devices “‘Real” transistor
o Body Source Gate Drain
Source rain ( 1 r ' 1 1
AP v APAM

1-2 devices per chip. Many devices per chip.
Simple chips Integrated with CMOS.

STM lithography not close to the throughput needed for process development




What’s a scalable path to APAM?

Sandia

2 hours 8 hours 2 hours
Flash clean H terminate Pattern Dose & incorp. Cap
oxide STM Tip
Si(100)
HHHHHH H H HHHPHH

Skeren, Nanotechnology (2018)

Scanned probe slow
Electron beam spot
Mid-IR large size
Vacuum UV hard
UV/vis

UV-Vis wavelengths (180-1000 nm) : easy optics vs. size of features
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Mechanism e

UV-Vis wavelengths (180-1000 nm)

A > band gap
A < Si-H bond energy

finite dose - pattern

Concept of dose is not relevant for photothermal desorption.

« Below threshold = no H desorbed.
« Above = no penalty for over-exposure
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Photothermal desorption of hydrogen e
Native oxide process flow

1 Hydrogen Fast path to reduce a huge phase space
| Si(100) (pulses, energy density, etc.)

10% change in energy density
337 nm, single 3.5 ns pulse




Advantages of atomic resists e

Origin of edge roughness

W 0 Radial Position

Inhomogeneity of light

76 mJd/cm? 90 mJ/cm?

Edge rougness reduced.
Interior can’t be over-exposed.
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How wide is the window of operation? e

Atomic step edge

Dimer rows

Atomic step edge “’

Dimer rows

Vacancy
Addimer

After patterning

"\
20 nm

| 0nm

Hydrogen desorption: 430° C
Silicon melting: 1400° C

Roughening of surface at atomic scale.
Does not resemble “frozen” hot surface

Working to capture data right at threshold,
as a function of number of pulses
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Surface roughness e

101 mJ/cm? 90 mdJ/cm? 81 mdJ/cm?

1 nm

Pits and islands Single layer

Window for photothermal desorption

without roughening is narrow.
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Photothermal model N

Not possible to measure temperature... need model
» Light converted to heat (10 nm)

Hydrogen * Nonlinear heat transport away from spot

Si(100)

intensity, reflectivity diffusivity duration

rd

21(1 — R{ GM[D (Tinip), D(Tpeak)] A .
cM[chmia,K(Tpeak)]J +0 ([avDa] "),

[

Tpeak ~ Tinit + -

Ong, JOSA B (1986)

Thermal conductivity
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[ ] [ ] [ ) I
Some remaining questions e
1000 : .
- gZ:g;EEg:m'smer Roughening mechanism unclear —
% 200 e demraen _—"+ No mechanism at this temperature.
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@ Hydrogen desorption mechanism unclear —

g
H 2 T « Full depassivation in 3.5 ns suggests T is
near melting point

Pred

% 70 8 90 100 110 120
Estimated Energy Density [mjjcm?]
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Did it work? Similar electrical properties? e
Hydrogen ph&phine Si cap
Si(100)

) :E'&'
—
Af

+
i‘L/ Dosed region n=51.7 cm?(Vs)?
_f_l n,p = 4.83 x 10 cm?2!

Yes! Mobility is as expected. Density is high.
I » Geometry of VAP measurement?
+ * Not related to roughness




Demonstrated viability of photothermal Sandia
patterning for fast, large-scale APAM

ﬂPAM Device development \
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