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Atomic Precision Advanced Manufacturing

Assess the opportunities presented
by atomic-scale devices and
processing for the digital
microelectronics of the future
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What is the opportunity?

Rising cost to R&D and
unclear technology path
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Assess device ideas from
the atomic limit
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Increasing difficulty from
process limitations
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How does Atomic Precision Advanced Manufacturing (APAM) work?

"Chemical contrast" at Si surface
• Unterminated Si: 1 reactive bond/ atom
• H-terminated Si: unreactive
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STM Tip Junction
Bias

Scanning tunneling microscope (STM)
can image and pattern the surface
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Phosphine surface chemistry

Top view

Ward, EDFA (2020)
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Phosphorus 'donates' an electron to silicon.
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Chemical error correction : need 3 open sites for phosphine

Opportunities outside of just atomic-scale devices for quantum demonstrations
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Why photolithography with APAM (1)?

Traditional (analog) resist Atomic-scale (digital) resist
lnhomogeneity of light

lnhomogeneity of resist
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Underexpose = like no exposure
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Exposure 1 Exposure 2

No overexposure on multiple exposure

APAM processing has unique advantages
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Why photolithography with APAM (2)?
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Why photolithography with APAM (3)?
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Integrate non-atomically precise features at wafer scale
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Needed for atomic-scale devices too...

Now (3 US labs, 6 labs worldwide) 

Simple devices
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1-2 devices per chip.
Simple chips

Desired future state 

"Real" transistor

Body Source Gate Drain

Many devices per chip.
Integrated with CMOS.
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STM lithography not close to the throughput needed for process development
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What's a scalable path to APAM?
2 hours

Flash clean H terminate

oxide

Si(100)
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Skeren, Nanotechnology (2018)

8 hours 2 hours

Pattern

Scanned probe slow
Electron beam spot
Mid-IR large size
Vacuum UV hard

Dose & incorp.
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MBE

UV-Vis wavelengths (180-1000 nm) : easy optics vs. size of features
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Mechanism

UV-Vis wavelengths (180-1000 nm)
X > band gap
X < Si-H bond energy

430° C
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Concept of dose is not relevant for photothermal desorption.
• Below threshold = no H desorbed.
• Above = no penalty for over-exposure

Sandia

k National
Laboratories

11



Photothermal desorption of hydrogen

Native oxide process flow

1 
Hydrogen

2.

3.

4.

Si(100)

Oxide

Fast path to reduce a huge phase space
(pulses, energy density, etc.)
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Below Threshold Above threshold,
Patterned

100 pm

10% change in energy density

337 nm, single 3.5 ns pulse
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Advantages of atomic resists

1 pulse
efocused

76 mJ/cm2 50 pm

Origin of edge roughness
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many pulses
focused

Edge rougness reduced.
Interior can't be over-exposed.

13



How wide is the window of operation?

Atomic step edge   Hydrogen desorption: 430° C
Silicon melting: 1400° C

Atomic step edge

Dimer rows

Vacancy

Addimer
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1 nm Roughening of surface at atomic scale.
Does not resemble "frozen" hot surface

0 nm

Working to capture data right at threshold,
as a function of number of pulses
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Surface roughness

101 mJ/cm2

Pits and islands

90 mJ/cm2

Window for photothermal desorption
without roughening is narrow.

81 mJ/cm2

Single layer
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Photothermal model

Hydrogen
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Not possible to measure temperature... need model
• Light converted to heat (10 nm)
• Nonlinear heat transport away from spot
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Ong, JOSA B (1986)
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Some remaining questions

ME Desorption+Disorder

MR Desorption

=I No desorption

*id 1160 1.10
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120

Roughening mechanism unclear —
• No mechanism at this temperature.

Hydrogen desorption mechanism unclear —
• Full depassivation in 3.5 ns suggests T is

near melting point
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Did it work? Similar electrical properties?
Hydrogen

Si(100)

' V '
pi"'
-FI I\ r+

Dosed region

phosphine

IIM

p. = 51.7 cm2(Vs)-1

n2D = 4.83 x 1014 cm-2!
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Yes! Mobility is as expected. Density is high.
• Geometry of VdP measurement?
• Not related to roughness
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Modeling & Simulation

Check out SPIE
proceedings
article

Demonstrated viability of photothermal
patterning for fast, large-scale APAM 
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