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Motivation

Spin computing devices
Spin-FETs Spin-orbit qubits
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€ Spin FETs = Manipulate spins via SOC to control on/off
€ Spin-based QC = Manipulate spins via SOC to operate
qubits
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Spin manipulation—> SOC

Electron coordinate

€ e will feel an effective magnetic field due to the
relative motion between e- and atom
€ Spin orientation changes by the effective magnetic field
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Dresslhaus and Rashba Spin-orbit Coupling

Dresselhaus Rashba
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https://en.wikipedia.org/wiki/File:Sphalerite- Winkler, Spin-Orbit Coupling Effects in Two-
unit-cell-depth-fade-3D-balls.png Dimensional Electron and Hole Systems, 2003.

@ Dresselhaus SOC
—> Arising from bulk inversion asymmetry
—> Exist in zinc blende structure (111-V material)
€ Rashba SOC
—> Arising from structure inversion asymmetry
- Tunable by external gating
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Why focus on GeSn SOC?
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€ GeSn is expected to have larger SOC, and is compatible to
Si VLSI Technology
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Ge/GeSn Epitaxial Structures

Epi structure XRD
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€ [Sn]=6,9,11% and thickness = 10 nm by XRD

’ 1

€ GeSn is fully strain on Ge layer with € = -0.57%,-0.96%,-1.24%
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Device Structure
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Top view Side view  Simulation band diagram
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€ Two-dimensional hole gas (2DHG) formed in the
GeSn quantum well by gating

€ Band diagram simulated by Schrodinger + Poisson
- Valence band offset at Ge/GeSn creates a QW
- [Sn]TVaIence band offsetTQuantum confinementT
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Hall measurement at T=1.2K
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Weak Antilocalization Effect Nt
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€ The Ap,., shows the transition from WL->WAL when P {
@ The red-dashed line shows the fitting result with HLN formula
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Characteristic Time/Length -
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2018,Nanoscale.
@ [Sn]4,T, 0101, SOCY = Due to strain effect
® L s < Lianspore (spin-diffusive regime) -> HLN is eligible
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Spin-subband splitting it
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ASO-P Band structure
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Spin-splitting due to Rashba SOC

& [Sn]4, ASOY, SOCY - Due to strain effect
@ Spin degeneracy of HH band broken by SOC
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Rashba Coefficient Extraction -
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@ [Sn]t, a3V = HH-LH splitting affects Rashba SOC
€ HH-LH splitting quantized in z direction
B A } Apitad
rRashba dUantized in x-y plane
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Conclusions

€ Demonstration of magneto-transport in Ge/GeSn
QW structures

& Clear transition from WL-> WAL, and Rashba
coefficient, spin-subband splitting energy has
extracted

€ The experiment result shows a negative strain
effect on SOC
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Fabrication Process flow
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Fabrication process flow of Hall-bar Undoped
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D'yakonov-Perel (DP) spin relaxation
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= An indication of DP spin-relaxation mechanism
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Temperature Dependence
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4 T X T-1 > e-e interaction dephasing is dominant
4 Tspin-relax IS iIndependent of temperature
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Dingle-ratio
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_ Ttrans _ E _ fW(k'k,)
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€ Remote charge scattering (small angle scattering)

- Dingle ratiot
Background charge scattering (large angle scattering)

—>Dingle ratio close to unity
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