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Motivation

Spin computing devices

Spin-FETs
On
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2010 Proc. IEEE

Spin-orbit qubits

2010 Nature

• Spin FETs 4 Manipulate spins via SOC to control on/off
• Spin-based QC 4 Manipulate spins via SOC to operate

qubits
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• e- will feel an effective magnetic field due to the

relative motion between e- and atom

• Spin orientation changes by the effective magnetic field
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Motivation

Dresslhaus and Rashba Spin-orbit Coupling
Dresselhaus Rashba

https://en. i ipedia.org/wiki/File:Sphalerite-
unit-cell-depth-fade-3D-balls.png

• Dresselhaus SOC
4 Arising from bulk inversion asymmetry
4 Exist in zinc blende structure (lll-V material)

• Rashba SOC
Arising from structure inversion asymmetry

4 Tunable by external gating

Winkler, Spin-Orbit Coupling Effects in Two-
Dimensional Electron and Hole Systems, 2003.
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Why focus on GeSn SOC?

Low Temperature Mobility (cm2/Vs)

Rashba spin-orbit pararneter or Li

Rashba spin-orbit energy (melt)

Lattice mis-match strain

0.006

Si
0.044

Ge

0.29

Sn

0.80

6 Ge 2DHG (C)I

2014,PRL 2002,PRB
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Stronger SOC
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2.1%
2014,APL

•GeSn is expected to have larger SOC, and is compatible to
Cl Tankehrtednesti
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Ge/GeSn Epitaxial Structures

Epi structure
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• [Sn]=6,9,11% and thickness = 10 nm by XRD

• GeSn is fully strain on Ge layer with c = -0.57%,-0.96%,-1.24%
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Device Structure

Top view Side view
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Simulation band diagram
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• Two-dimensional hole gas (2DHG) formed in the
GeSn quantum well by gating
• Band diagram simulated by Schrodinger + Poisson
• Valence band offset at Ge/GeSn creates a QW
• [Sn]f Valence band offset tQuantum confinementt
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Hall measurement at T=1.2K

1
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a=1.51

*
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Density (x1011 on-2)

• Hole density increase with VG and
saturated at high bias

• O. 5 ~' a < 1. 5 and small dingle ratio
4 Background charge scattering

(large angle scattering)
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Weak Antilocalization Effect
VyA!.
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• The Ap„ shows the transition from WL4WAL when P t
• The red-dashed line shows the fitting result with HLN formula
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Characteristic Time/Length
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: —N— 6% Sn To —.— Tspin-relaxation
. —0— 9% Sn T

o 
—0— T

spin-relaxation

. —A— 11% S n to —A— Tspin-relaxation

. The onset of WAL

10°
2

.

9% t+

3 4 5

Density (x1011 cm-2)

h
Bso(0) = 

4earso(0)

6 7

10°

Characteristic len th-P
4411:101 -pre7

liv..s2% I- p41S11

6% Lpre

11 % Lb.'

—s- 6% L
spin-precession —.— Ltrans .

9% Lspin-precession —e— Ltrans -
11% Lspin-precession —A— Ltrans :
' • . . .

2 3 4
Density (x1011 crn-2)

National
Taiwan

University

DP spin-relaxation mechanism
1
= 2 I n3 12 Ttrans

TS0 Spin precession frequency

2018,Nanoscale.

• [Snl itJ .1Trelaxt SOC, 4 Due to strain effect
• Lprecess < Ltransport (spin-diffusive regime) 4 HLN is eligible
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Spin-subband splitting National
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Band structure
E

Spin
subband 2

Spin-splitting due to Rashba SOC

• [Sn]f , AS04, SOO, 4 Due to strain effect
• Spin degeneracy of HH band broken by SOC
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Rashba Coefficient Extraction

10
Rashba coefficient-E,
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• [Sn] a3; HH-LH splitting affects Rashba SOC
• HH-LH splitting quantized in z direction
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Conclusions______________

• Demonstration of magneto-transport in Ge/GeSn
QW structures

• Clear transition from WL4WAL, and Rashba
coefficient, spin-subband splitting energy has
extracted

• The experiment result shows a negative strain
effect on SOC
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Fabrication Process flow

Fabrication process flow of Hall-bar Undoped
Undoped
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D'yakonov-Perel (DP) spin relaxation Nati.,
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ttrans (ps)

• T spin—relax is inverse proportional to Ttrans
4 An indication of DP spin-relaxation mechanism
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Temperature Dependence

10-1°
• 6% Sn t(1) ❑ 6% Sn tspin-relax

• 9% Sn t(1) O 9% Sn %pin-relax
A 11% Sn A 11% Sn %pin-relax.

2 3 4

Temperature (K)

5 6

• To oc 1 e--e- interaction dephasing is dominant

• Tspin—relax is independent of temperature
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Dingle-ratio

T trans 
a = 

_ 
—

Ta

1
-Ta f w(k, k')

1 f w(k,k')(1— cos(9))
T trans

• Remote charge scattering (small angle scattering)
4Dingle ratiot
Background charge scattering (large angle scattering)
4Dingle ratio close to unity
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