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€ With the development of Moore’s law, higher I_, current
device is needed
€ To achieve high |
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Motivation

Why we choose GeSn?
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€ GeSn is a direct band gap material
- Better emission efficiency (No need phonon assist)

€ GeSn shows higher hole mobility than Ge and GeSi

- GeSn has smaller m*
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Motivation

GeSn has smaller m”

Effective mass- -Strain
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€ Adding Sn into Ge can increase strain and hence decrease m”

Biaxial compressive strain (%)

4 m*l with compressive strain, due to the deformation of

IEDM (2016)
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Ge/GeSn Epitaxial Structures
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€ The XRD gives [Sn]=6,7.5,11% for doped samples, and [Sn]=6,9,11%
for undoped samples
€ The RSM results show that the GeSn is fully strain on Ge layer
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Device Structure (Undoped)

Top view Side view  Simulation band diagram
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€ Two-dimensional hole gas (2DHG) formed in the
GeSn quantum well

€ Band diagram simulated by Schrodinger + Poisson
- Valence band offset at Ge/GeSn creates a QW
- [Sn]TVaIence band offsetT Quantum confinementT

NTUEE QEL

Probability |y

National
Taiwan
University



Electrical Characterization =
.-V, at 4 K

University
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@ 1,-V; curve shows transistor characteristics
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Hall measurement at T=1.2K
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sdH oscillation and Quantum Hall effect %

MOD sample (Sn 11%)
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€ Integer quantum hall effect and spin-splitting observed at T=1.2K
€ Clear temperature-dependent SdH oscillation observed
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Effective mass extraction
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Effective mass simulation
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Effective mass simulation
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Relaxed GeSn
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Conclusions

€ Demonstration of enhancement-mode FETs
in Ge/GeSn QW structures

€ Clear SdH oscillation and Integer Quantum Hall
effect observed at high magnetic fields and low
temperatures

& Effective mass extraction from temperature-
dependent SdH oscillations and the simulation of
strain effect on m”
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Fabrication Process flow
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Fabrication process flow of Hall-bar Undoped MOD
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€ No Gate for doped
sample
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Hall measurement at T=1.2K
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Dingle-ratio
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€ Remote charge scattering (small angle scattering)

- Dingle ratiot
Background charge scattering (large angle scattering)

—>Dingle ratio close to unity
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Electrical characterization
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Effective mass extraction
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From this plot, we can see that the intermediate
magnetic field gives more reasonable m”
For large and small B, the deviation is big
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