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Motivation
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Motivation

Why we choose GeSn?
Direct band gap
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• GeSn is a direct band gap material

• Better emission efficiency (No need phonon assist)

• GeSn shows higher hole mobility than Ge and GeSi

• GeSn has smaller m*
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Motivation

GeSn has smaller m*
Effective mass-Strain
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• m* 1 with compressive strain, due to the deformation of
HH-LH band
• Adding Sn into Ge can increase strain and hence decrease m*
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Ge/GeSn Epitaxial Structures
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• The XRD gives [Sn]=6,7.5,11% for doped samples, and [Sn]=6,9,11%
for undoped samples
• The RSM results show that the GeSn is fully strain on Ge layer
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Device Structure (Undoped)

Top view Side view

Ge

Ge),Sni„

Ge

Si

A120, Ge spacer Ge,_xSnx Ge
_ 

961 sSnn 
0.0100.012 

11% Sri 

rl

- 0.008

- 0.006

- 0.004

• P•

•

O
;.•

- 0.002 pi

Simulation band diagram

0.000
100 110 120 130 140 150

Depth (nm)

• Two-dimensional hole gas (2DHG) formed in the
GeSn quantum well
• Band diagram simulated by Schrodinger + Poisson
• Valence band offset at Ge/GeSn creates a QW
• [Sn]f Valence band offsett Quantum confinementt

100

50

0

44 -50

ct • -100
4:1

c.0 • -150

ct -200
90

National
Taiwan

university

NTUEE QEL

7



Electrical Characterization

D VG at 4 K
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Hall measurement at T=1.2K
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SdH oscillation and Quantum Hall effect,,,,ona,
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• Integer quantum hall effect and spin-splitting observed at T=1.2K

• Clear temperature-dependent SdH oscillation observed

Taiwan
University

NTUEE QEL

10



Effective mass extraction
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Effective mass simulation
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Effective mass simulation
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Conclusions______________

• Demonstration of enhancement-mode FETs
in Ge/GeSn QW structures

• Clear SdH oscillation and Integer Quantum Hall
effect observed at high magnetic fields and low
temperatures

• Effective mass extraction from temperature-
dependent SdH oscillations and the simulation of
strain effect on m*
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Fabrication Process flow
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Hall measurement at T 1.2K
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Dingle-ratio

T trans 
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• Remote charge scattering (small angle scattering)
4Dingle ratiot
Background charge scattering (large angle scattering)
4Dingle ratio close to unity
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Electrical characterization

D VG at 4 K
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Effective mass extraction
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