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Abstract

Supercritical water oxidation (SCWO) is an emerging technology for the
treatment of wastes in the presence of a large concentration of water at condi-
tiens above water’s thermodynamic critical point. A high-pressure, optically ac-
cessible reaction cell was constructed to investigate the oxidation of methane and
methanol in this environment. Experiments were conducted to examine both
flame and non-flame oxidation regimes. Optical access enabled the use of nor-
mal and shadowgraphy video systems for visualization, and Raman spec-
troscopy for in situ measurement of species concentrations.

Flame experiments were performed by steadily injecting pure oxygen into
supercritical mixtures of water and methane or methanol at 270 bar and at tem-
peratures from 390 to 510 °C. The experiments mapped conditions leading to the
spontaneous ignition of diffusion flames in supercritical water. Above 470 °C,
flames spontaneously ignite in mixtures containing only 6 mole% methane or
methanol. This data is relevant to the design and operation of commercial
SCWO processes that may be susceptible to inadvertent flame formation.

Non-flame oxidation kinetics experiments measured rates of methane oxi-
dation in supercritical water at 270 bar and at temperatures from 390 to 442 °C.
The initial methane concentration was nominally 0.15 gmol/L, a level representa-
tive of commercial SCWO processes. The observed methane concentration his-
tories were fit to a one-step reaction rate expression indicating a reaction order
close to two for methane and zero for oxygen. Experiments were also conducted
with varying water concentrations (0 to 8 gmol/L) while temperature and initial
reactant concentrations were held constant. The rate of methane oxidation rises
steadily with water concentration up to about 5 gmol/L and then abruptly falls
off at higher concentrations. A current elementary reaction mechanism designed
for SCWO environments overpredicts rates observed in the kinetics experiments,
but reproduces the observed downturn in reaction rate with increasing water
concentration, albeit at too high a concentration.
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1. Introduction

Supercritical water oxidation (SCWO) is an emerging waste treatment
technology that has attracted interest from both industry and government
agencies. Development of the technology began 15 years ago (Modell, 1989), and
since that time, research efforts at universities, national labs, and in industry
have revealed numerous advantages offered by the technology. Dozens of
laboratory- and pilot-scale SCWO reactors have been built and operated in the
course of this research. However, economic risks associated with the design and
construction of full-scale equipment have delayed the commercialization of
supercritical water oxidation until recently. The first full-scale commercial
SCWO process has recently begun operation at a chemical research facility in
Texas.

1.1. Definition of Supercritical Water Oxidation

Supercritical water oxidation is defined as the oxidation of organics in the
presence of a large concentration of water at conditions above the critical
temperature and pressure of water (374 °C, 221 bar). Process conditions typically
entail temperatures ranging from 500 - 650 °C and pressures of 250 bar. Water at
these conditions has a density about one-tenth that of liquid water and behaves
for the most part as a dense gas. Combustion gases (Op, CO», N2y and many
organics are completely miscible in water at these densities. As a result, when an
oxidizer (Op, air, or HO») is added to the waste and water, oxidation reactions
proceed in a single-phase mixture.

Excellent destruction efficiencies at moderate temperatures and short
residence times have been demonstrated for a long list of compounds (Tester, et
al., 1993a). The list includes simple compounds such as Hp, CO, and CHy;
common industrial chemicals such as ammonia, methanol, and methylene
chloride; toxic compounds including chlorinated dioxins and furans; and
surrogate mixtures that model the radionuclide-containing wastes found at
several federal facilities (Bramlette, et al., 1990). Solids are treatable as well,
constrained only by the pumpability of the material. Feedstream organic
concentration is governed by heat generation considerations, and typically
ranges from 1 - 10 wt%. The oxidation products of simple hydrocarbons in
supercritical water comprise CO, and HO. If present in the waste, nitrogen is



primarily converted to N2, and other heteroatoms and halides appear in the
effluent as inorganic acid anions.

The advantages of SCWO are significant. In spite of moderate tempera-
tures, reaction rates are relatively fast due to high reactant concentrations in the
high-density environment. The high density also allows reduced reactor vol-
umes compared to atmospheric pressure equipment—an advantage for the de-
sign of compact, on-line processing equipment or transportable units. In addi-
tion, the process is totally contained, which is a strong safety advantage in the
handling of hazardous materials.

Limitations on the types and concentrations of wastes treatable by SCWO
mean that this technology complements rather than competes with other waste-
processing methods. At low organic loading, bioremediation or activated carbon
technologies are technically and economically viable. Above 1 wt% organic,
however, these technologies are not appropriate. At the other extreme of organic
concentration, incineration can be effectively applied. But because of its elevated
process temperature, incineration is not viable below about 25 wt% organic
(Model], 1989). The candidate materials for treatment with SCWO include
aqueous waste streams that contain 1 - 10 wt% combustibles, materials that are
pumpable when slurried with water (e.g. soil or coal wastes), and materials that
are best handled in water for safety reasons (e.g., energetic materials).

1.2. Properties of Supercritical Water

The supercritical region of water is shown in the phase diagram of Figure
1.1. The region contains no phase boundaries—it is a single phase region—and
properties vary continuously with pressure and temperature. At high pressures,
the supercritical region includes fluids at liquid-like densities; at high tempera-
tures, it includes superheated steam with ideal-gas-like densities. Close to the
critical point, the region’s boundary demarks a zone of dramatic changes in
physical properties with small changes in temperature and pressure.

Figure 1.2 illustrates the rapid drop in density that occurs as temperature
is increased near Teritical for a fluid at 270 bar (Haar, ef al., 1984). At conditions
typical of SCWO processes, the density is about one-tenth that of liquid water,
but still 100 times more dense than steam at ambient pressure. An even more
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dramatic change occurs in the ionic dissociation and dielectric constants along an
isobar in this range. From the familiar value of 10-14 at ambient temperature, the
ionic dissociation constant drops six orders of magnitude by 400 °C (Marshall
and Franck, 1981). The dielectric constant, a measure of molecular association,
steadily decreases from a value of 80 to a value near 2 by 400 °C (Uematsu and
Franck, 1980). As a result of these significant changes, the solvation properties of
water change dramatically as well. Many hydrocarbons, such as benzene, that
are normally insoluble in liquid water exhibit high solubility in supercritical
water, even at liquid-like densities (Franck, 1987). In addition, combustion gases
such as CO», Oy, and N3 are completely miscible in this environment (Connolly,
1966). On the other hand, solubilities of inorganic salts are often low
(Martynova, 1976), making the separation of such materials feasible in a SCWO
process.

The miscibility of organics and combustion gases in supercritical water
means that oxidation reactions can take place in a single-phase environment
without the limitations of interphase transport. Furthermore, transport
properties in the supercritical phase are favorable for chemical reaction as well.
Despite high densities, diffusivities remain high (Lamb, et al., 1981), and
viscosities low (Haar, et al., 1984).

1.3. Process Description

Many different configurations of the supercritical water oxidation process
have been designed and built, including tubular reactors, tank reactors, and
batch reactors. Most can be represented, however, by the simple schematic in
Figure 1.3. The components of the generic process in Figure 1.3 can be divided
into three sections: pump and preheater, reactor, and cooldown and separation.

In the pump and preheater section, two parallel lines handle the waste
and oxidizer streams separately. The waste stream is a mixture of water plus
combustible waste at an appropriate concentration. The oxidizer can be liquid
oxygen, air, or hydrogen peroxide, although the latter is seldom economically
viable. Each of the two streams is preheated sufficiently to assure initiation of
reaction upon mixing. The point of mixing of the two streams depends on the
nature of the waste stream. If the waste has a tendency to char upon heating, the
two streams can be mixed during, or even before, preheating. In other cases,
mixing takes place after both streams are at supercritical conditions to facilitate



complete mixing. The mixing strategy is important since chemical reactions that
are initiated in the mixing zone can range from controlled, distributed reactions
to diffusion flames, and even explosions.

Waste/Water
Feed Tank

B Pump

High - Pressure Pumps

Cooling

Preheater Reactor Heat Exchanger
Separator
Clean P
< —————
Gases
Clean

Water

Salts Solids

Figure 1.3. Schematic of a generic supercritical water oxidation
process.

The reactor section is typically made of a high-nickel superalloy such as
Inconel or Hastelloy which offers strength combined with corrosion resistance at
elevated temperatures. Tubular reactors are common, although the problem of
plugging by salt formation must be addressed (Armellini and Tester, 1991).
Alternatively, tank reactors with water-flushed walls have been built to address
both corrosion and plugging issues (Barner, et al., 1992). The reactor is sized to
provide adequate residence time for complete destruction of the hazardous
components; typical residence times are in the range of ten seconds.

Following reaction, the stream passes into the cooldown and separation
section. Depending on the contents of the waste stream, separators can be
located on either side of the heat exchanger. For salts that are insoluble in



supercritical water, a separator operating prior to cooldown is effective. For
wastes with sufficient heat content, the heat exchanger can be used to transfer
energy to the feed streams in the preheater section. Additionally, processes have
been designed to include steam generators and turbines to extract energy for use
in the compression of the oxidizer feedstream (Thomason and Modell, 1984). The-
separator following cool down separates gaseous and liquid products. The gases
are primarily COz and N», with possible inclusion of small amounts of carbon
monoxide and nitrous oxide. The liquid effluent is principally water but may
contain acids and some redissolved salts requiring an additional treatment step
as indicated in the schematic.

1.4. Supercritical Water Oxidation Research

A wide variety of research projects has supported the development of
supercritical water oxidation. Early experiments were mostly concerned with
establishing destruction efficiencies (percent of parent material destroyed in a
given residence time) to catalog compounds appropriate for treatment with
SCWO technology (Modell, 1989). Since then, the need to understand reaction
chemistry has motivated extensive research. Several research groups have
performed experiments to determine oxidation kinetics rates in supercritical
water. At MIT, researchers have published extensive plug flow reactor results
for a variety of simple organic compounds including carbon monoxide (Helling
and Tester, 1988; Holgate, et al., 1992; Holgate and Tester, 1994a; Holgate and
Tester, 1994b), hydrogen (Holgate and Tester, 1993; Holgate and Tester, 1994a;
Holgate and Tester, 1994b), methane (Webley and Tester, 1991), methanol
(Webley and Tester, 1989; Webley, et al., 1991; Tester, et al., 1993b), and ammonia
(Helling and Tester, 1988; Webley, et al., 1991). Thornton and Savage (1990, 1992)
at Michigan examined the kinetics of phenol at near-critical and supercritical
conditions in a flow reactor. Wightman (1979) performed flow reactor
experiments and extracted global rate expressions for acetic acid and phenol. A
group at the University of Texas at Austin also examined the kinetics of acetic
acid and phenol in a batch reactor (Lee, et al., 1990; Lee and Gloyna, 1990). At
Sandia, experiments in a SCWO flow reactor provided data on a number of
organics including methanol, phenol, and other industrial chemicals as well as
military munitions (Rice, et al., 1993; Rice, et al., 1994).



Commercial SCWO processes are designed to be flameless: wastes are
destroyed through oxidation reactions at temperatures typically less than 700 °C.
Most prior research has examined this oxidation regime. However, Franck and
colleagues at Karlsruhe, Germany demonstrated the existence of stable, high-
temperature flames (hydrothermal flames) in supercritical water-fuel-oxygen
mixtures (Schilling and Franck, 1988). In a mixture of 30 mole% methane in
supercritical water, for example, he found that flames spontaneously ignited
upon injection of oxygen. The flames were qualitatively described in this work,
but no attempt was made to determine the limits of ignition in the temperature,
pressure, and concentration range associated with SCWO processes. The possi-
bility of more than a single oxidation regime in SCWO processes is a potentially
important design consideration.

1.5. Research Objectives

The present research project has been motivated by several goals: to
understand the physics and chemistry controlling oxidation in supercritical
water; to contribute to combustion science by performing fundamental studies
in a unique environment; and to advance the development of new
environmental and energy technologies. The project comprises research in two
related areas: experimental investigations of diffusion flames in supercritical
water, and experimental measurements of chemical kinetics rates in supercritical
water. Specific objectives of this research are listed below.

1. Characterize the phenomenology of hydrothermal diffusion flames.

2. Map the limits of spontaneous ignition of such flames in the range of
conditions characteristic of SCWO processes.

3. Measure the oxidation kinetics of methane in supercritical water at
concentrations representative of commercial SCWO processes.

4. Evaluate the ability of existing reaction mechanisms to predict both the
hydrothermal flame ignition data and the kinetics data.






2. Experimental Apparatus and Procedure

2.1. High Pressure Reactor

2.1.1. Reaction Cell

An optically accessible high-pressure reaction cell (referred to as the SCW
reaction cell, or reactor) was used to conduct both flow and batch experiments.
In the flow configuration, used for the study of hydrothermal diffusion flames,
the reactor was held at constant pressure using a back-pressure regulator. In
batch configuration, used to measure oxidation rates, the reactor was sealed off
and measurements were made at constant volume.

Figure 2.1 is a cutaway schematic of the SCW reaction cell. It is
constructed of Inconel 718, an alloy offering strength and corrosion resistance at
elevated temperatures. The 718 alloy rather than the more commonly used
Inconel 625 was chosen for its hardenability. This property is used to advantage
in the design of the main seal as described below. Three cylindrical arms with
outside diameter of 7.6 cm protrude from the center of the reactor. Each houses a
window and main seal assembly that provides optical access to the 18-mL
reaction chamber. Five high-pressure ports (Autoclave type F-250-C) located
radially around the center of the reactor are used for adding and removing fluids
at pressures as high as 350 bar. In addition, the ports accommodate
1.6-mm-diameter, Inconel-sheathed thermocouples. Each arm is fitted with a
700-W electrical band heater and the whole reactor is wrapped in alumina
insulation allowing operation at temperatures as high as 550 °C.

Two types of seals, visible in Figure 2.1, are used in the reactor. The main
seal relies on a knife-edge, metal-to-metal design. Two slightly mismatched
bevels on the main seal and the reactor body intersect along a line (circle) to
generate the required contact pressure. Use of Inconel 718 allows hardening of
the reactor body so that contact deformation occurs primarily on the main seal.
Periodically the main seal is reconditioned by polishing it on a lathe. A large
preload by the threaded clamp is necessary to prevent leaks since reactor

pressure unloads this seal. Not shown in the figure are Belleville washers located
* between the main seals and the clamps that maintain uniform thrust on the seal
during unequal thermal expansion of the sapphire and metal parts. The second
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type of seal takes advantage of reactor pressure to press the sapphire windows
against an annular surface on the main seal. The mating surfaces are ground
optically flat and a 0.25-mm-thick gold washer is inserted between them. A
threaded cap preloads the assembly for initial sealing.

Scattered Light
Collection Port

Main Clamp
Seal —
. Gold
Sapphire /Gasket
Window ~_
—) ]
Transmitted Incident
Laser Port Laser Port
-
,__

Reaction 5 High-Pressure
Chamber Ports

Figure 2.1. Cutaway view of the supercritical water reaction cell
as seen from the top.

The three reactor windows are made of synthetic sapphire with a clear
aperture of 7.6 mm. They are mounted in a seal assembly that provides a
numerical aperture (sine of the half-angle) of 0.14. Normally, sapphire windows
used for laser transmission are fabricated with their optical axes oriented parallel
to the direction of propagation to eliminate birefringence effects. However, the
optical axes of the sapphires obtained for these experiments weren’t oriented
accurately enough: as sapphire thickness varied due to drift in reactor
temperature, the polarization of the transmitted laser beam changed
significantly, affecting diagnostic outputs. To remedy the problem, the sapphires
are carefully mounted in the seal assembly with their optical axes in the (vertical)
plane of laser polarization so that birefringence effects are rendered insignificant.

The SCW reactor is mounted on translating stages with the window axes
in the horizontal plane The stages allow vertical movement and horizontal
movement along the laser port axis. The whole assembly is isolated within a 1.9-



cm-thick steel barricade to protect operators in the case of window or tubing
failure.

2.1.2. Fluid Handling System

Figure 2.2 presents a simplified schematic of the high-pressure fluid
handling system. A high-pressure liquid chromatography (HPLC) pump (LDC
Analytical ConstaMetric 3200 or Rainin Rabbit HP) is the main pressure-
generating device. It delivers up to 10 mL/min of liquid water at pressures to
550 bar. Water from the pump can be directly injected into the reactor or it can
be used to pressurize gases for injection. For this purpose, two stainless steel
cylinders are fitted with pistons, with water on one side of the pistons and the
gas to be compressed on the other side. One piston-cylinder is reserved for fuel
gases and the other for oxygen. A 690-bar, manual piston-screw pressure
generator (HiP Company) is also installed as an alternative pressurizing device;
it is used to inject liquid fuels. During injection of fluids, a Tescom 690-bar back-
pressure regulator can be used to maintain constant pressure in the cell.

Pressure in the reaction cell is monitored with Teledyne Taber pressure
transducers—Model 2105 for pressures to 350 bar, and Model 2404 for pressures
below 70 bar. Repeatability for both transducers is given as 0.1% of full-scale
output, but resolution of the digitizing hardware is 3 bar for the high-pressure
transducer. Fluid temperature is monitored with a 1.6-mm-diameter, Inconel-
sheathed, type R thermocouple inserted 13 mm into the reaction chamber.
Additional thermocouples monitor cell skin temperature to prevent overheating.
A microcomputer continually records pressure and temperatures while
controlling reactor heating, monitoring laser power, and ensuring safe operation
of the experiment.

Stainless steel and Inconel 625 tubes connect the high-pressure
components, with Inconel used for the high-temperature locations close to the
reactor. High-temperature shut-off valves are used for the exhaust lines,
although these components stay cool during venting due to the relatively small
mass of the reactor contents. Tubing located between the reactor and the shut-off
valves is small diameter (3.2-mm outside diameter, 0.48-mm inside diameter) in
order to reduce unheated volume that is in communication with the reactor
during experiments. The volume of this unheated tubing and associated fittings
(including a burst disk assembly) is 3.0 mL.

11



12

argon and
HeNe lasers
back-pressure< ,f O pressure
regulator transducer
O thermocouple

Raman scattering

to spectrometer .

water
anl;c visible and shadow- & |2 |3
pump graph image to video % s

piston-cylinders

1
| -

manual pressure
generator
liquid fuel

gaseous fuel

oxidizer

Figure 2.2. Schematic diagram of the fluid handling system
connected to the supercritical water reactor.

2.1.3. Oxygen Safety

t

Extensive measures have been taken to reduce the risks associated with
high-pressure combustion experiments, especially those involving the use of
pure oxygen. The fluid handling system has been designed and assembled to
minimize these risks. All components wetted by oxygen are constructed of
compatible materials (ASTM, 1990; ASTM, 1987; ASTM, 1988a), and have been
cleaned following ASTM recommendations (ASTM, 1988b). The oxygen injector
assembly is a tube-within-a-tube design, with the inner capillary tube made of
monel to reduce the likelihood of ignition, and the outer tube made of Inconel for
strength. The reactor and all high-pressure oxygen tubing are enclosed within
secondary shields, and operational procedures restrict the volume of high-
pressure (340-bar) oxygen to 50 mL. Separate vent lines isolate the various gases
to prevent possible reaction during venting.



2.2. Optical Diagnostic System
2.2.1. Shadowgraphy

The three sapphire windows permit monitoring of the reaction chamber
with a variety of optical diagnostics. A video camera mounted at the transmitted
laser port records visible emission during the flame experiments.
Simultaneously, the camera records shadowgraph images created with a
collimated, low-power HeNe laser beam that backlights the reaction chamber. At
typical experimental densities, the shadowgraph images reveal details of
injection jets, phase separation, mixing processes, and buoyant plumes. With a
long-pass filter placed in front of the video camera to block the argon laser (used
for Raman spectroscopy), shadowgraph and Raman diagnostics can be run
simultaneously.

2.2.2. Raman Spectroscopy

Spontaneous Raman spectroscopy is a convenient diagnostic for
experiments in supercritical water. High fluid densities yield strong Raman
signals that can be used to determine concentrations as well as temperatures
(Brown and Steeper, 1991). For our flame experiments, this diagnostic was used
to establish initial and final mixture composition, while for our kinetics
experiments, concentrations as a function of time were determined for stable as
well as intermediate species. A diagram of the Raman system is shown in Figure
2.3.

The Raman system used in the flame experiments incorporated a Spectra
Physics Model 166 continuous wave argon ion laser producing 1.5 W at 514.5 nm.
To increase signal strength and allow shorter exposures, a Spectra Physics Model
171 tuned to 488 nm was used in the kinetics experiments. With the probe beam
focused to 230 pm, the maximum usable power was about 5 W. At higher fluxes,
localized heating caused formation of deposits on the inner window surfaces
during experiments, provoking increased heating and accelerated damage to the
window. In extreme cases, as during an abortive attempt to use a pulsed
Nd:YAG laser, high fluxes led to window failure.

Raman-scattered light is collected using an f/3 lens and directed into a
Spex 1404 0.85-m double monochromator with 1800-groove/mm holographic
gratings. A Spex CD2A controller is used to position the gratings. To record
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Figure 2.3. Schematic of Raman spectroscopy optics setup.

spectra, a Princeton Instruments IRY-1024 intensified diode array detector is
mounted on the spectrometer’s exit port. Spectrometer and detector settings for
the various species of interest are shown in Table 2.1. The linear array detector
with its 1024 diodes measures 25 mm, and the dispersion of the spectrometer is
such that the detector covers 6.2 nm of the dispersed spectrum. The slit width
settings chosen for the experiments correspond to spectral resolutions between
0.05 and 0.1 nm which are sufficient for the integral analysis technique used
(described in Section 2.4) A microcomputer controls the spectrometer drive,
reads the detector, and stores the Raman spectra for subsequent analysis.

2.2.3. Emission Spectroscopy

During certain flame experiments, a J-Y model CP 200, low-dispersion
spectrograph was substituted for the larger spectrometer to record visible flame
emission spectra. A 133-groove/mm grating mounted in this instrument
disperses wavelengths from 300 to 1200 nm over the 25.4-mm width of the
Princeton Instruments detector.



Raman Exposure
Species Shift (cm-1) Time (s)
CHy 2915 5-20
CH30H 2839 5-20
O2 1556 20
COy 1388 20
N3 2331 20
CO 2145 20-30
CH0O 2778 30
Hj 4160 30

Table 2.1. Typical spectrometer and detector settings for Raman
diagnostic measurements.

2.3. Operating Procedures

2.3.1. Flame Experiments

The initial step in the flame experiments is calibration of the Raman
system. The gas to be calibrated (CHy, O2-Ny mixture, CO5, or CO) is loaded into
the preheated reactor. Raman spectra are recorded at several pressures
corresponding to the range of densities encountered during the experiments
(from 2 - 50 bar). As discussed in Section 2.5.1, this data establishes the
calibration relationship between concentration and Raman signal.

The next step in the flame experiments involves loading water into the hot
reactor. Commercial distilled water is injected using the HPLC pump at a rate of
about 3 standard mL/min. A back-pressure regulator is connected to the reactor
vent line so that pressure rises and then is held at the preset pressure. Injection is
continued for several minutes to purge any residual gases. Once water injection
is complete, the reactor is closed and allowed to equilibrate for at least an hour.

When reactor temperature and pressure are stable, background Raman
spectra are recorded for each of the species to be monitored. These spectra,
recorded in pure water at the experimental density, are subsequently subtracted
from spectra of the monitored species recorded later in the experiment.
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The next step is to create a water-fuel mixture at the desired initial
concentration. (As described later, oxidizer is injected into a fuel mixture in these
experiments—rather than the other way around—to create an inverse diffusion
flame.) The reactor vent is opened to the back-pressure regulator and an
estimated amount of fuel is injected using the piston-cylinder or manual pressure
generator. Following fuel addition, continual monitoring of the Raman signal
indicates when mixing is complete: typically, this occurs in less than 5 minutes.
A spectrum recorded at this time determines the initial fuel concentration.

The oxidizer used in the flame experiments is pure oxygen. Once the
temperature, pressure, and fuel concentration are stable, oxygen pressﬁre in the
piston-cylinder is adjusted via the HPLC pump to match reactor pressure. At
this point, oxygen injection can begin. Room temperature, high-pressure oxygen
is injected at about 1 mL/min through a capillary tube located in the bottom port

Quantity Symbol Value Unit
mass flow m 0.0059 gm/s
diameter d 05 cm
inlet temperature Tin 303 K
exit temperature Tout 673 K
reactor temperature ~ O tube temp Treae 703 K
mean temperature = (Toys + Tin)/2 Tm 487 K
log mean temperature =

(Zo = T}/ 10(Te = )/ (T — To)] Tin-mean 144 K
specific heat @ Tyean Cp 3.73 J/g-K
thermal conductivity k 0.0492 W/m-K
average Nusselt number Nu 3.66

average convection coefficient h 0.0360 W/cm2-K
energy equation: ¢ =hmdLAT, _,,,, =rc,(T,, —T,)

Treac - Tout - 30 K
predicted heating length Lyred 10.1 cm
actual heating length L 10 cm

Table 2.2. Heat transfer calculation for an experiment at 430 °C.
The exit temperature for the Oy flow (T, is guessed and the
required heating length is predicted using the energy equation.



of the reactor. The oxygen is preheated as it enters the reactor: the sample heat
transfer calculation in Table 2.2 estimates an exit temperature within 30 °C of the
fluid inside the reactor. The exit Reynolds number is about 350, indicating the jet
is laminar. Depending on chosen initial conditions, a diffusion flame
spontaneously ignites and burns for up to 15 minutes. If conditions are such that
no ignition occurs, oxygen injection is halted after 30 seconds as a safety
precaution.

2.3.2. Kinetics Experiments

Calibration of the Raman system for kinetics experiments is the same as
described for the flame experiments. Loading the water and fuel is similar except
that the process is carried out with all reactor vent valves closed, i. e., at constant
volume. Filling and venting several times with water ensures that only water is
present. Final filling is stopped 40 - 50 bar below the target pressure; the
remainder of the total pressure comes from fuel and oxidizer added
subsequently. Following a suitable delay for composition and temperature
stabilization, background spectra are obtained.

Starting witha piston-cylinder loaded with fuel and compressed to reactor
pressure, the valve is opened and the HPLC pump pushes in an approximate
amount of fuel. Monitoring the Raman signal indicates when the water-fuel
mixture is at the desired composition (typically 0.15 gmol/L fuel), mixing is
complete, and temperature is stable. Pressure is adjusted as needed depending
on the amount of oxygen to be added subsequently. A final spectrum is recorded
to establish the initial water-fuel composition.

The oxidizer chosen for the kinetics experiments is a 49 - 51 mole% mix of
oxygen and nitrogen. This mix is less likely to cause auto ignition of flames, is
safer to work with, and provides an inert fiducial signal (N spectrum) to
monitor Raman system drift. To begin the experiment, the oxidizer is quickly
injected into the reactor (20 - 60 seconds) until the desired total pressure is
reached. Following injection, Raman spectra for each of the monitored species
are recorded in a continuous series until either the fuel or oxidizer are depleted—
from 5 minutes to several hours. Reactor temperature and pressure are recorded
simultaneously with the spectra.
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2.4. Data Reduction

Data reduction consists mainly of manipulating the experimental Raman
spectra to extract species concentrations. As described in Section 2.3.1, a species-
specific background spectrum is subtracted from each experimental spectrum.
Subtraction of this pre-recorded background can’t compensate for any
broadband radiation generated during the experiment. To eliminate this noise, a
baseline is determined by least squares fit to data on each side of the spectral
peak of interest. Then the integrated area between the baseline and the Raman
peak becomes the species’ integrated intensity. Figure 2.4 presents a typical
experimental Raman spectrum of methane along with the calculated baseline.

To determine the Raman calibration for a given experiment, the
calibration spectra are first integrated. For these spectra, the corresponding
concentrations are determined from temperature and pressure data using the
ideal-gas equation of state (EOS). At the conditions of the calibration runs, the
ideal-gas EOS is accurate within 1.5%. Then the concentrations and
corresponding integrated areas are fit with a straight line as shown in Figure 2.5.
These calibration fits can then be used to convert Raman measurements made
during the experiments to concentrations.

Integrated Raman intensities from the experiments are first corrected for
laser power variations (monitored at the laser head) and then converted to
concentrations using the calibration fits. Conversion of concentrations to mole
fractions is done with a hybrid technique based on the Christoforakos-Franck
equation of state (CF-EOS) (Christoforakos and Franck, 1986) designed to
accommodate supercritical fluid mixtures. Christoforakos and Franck present
data confirming the accuracy (within 10%) of the CF-EOS in predicting excess
volumes for mixtures of supercritical water and methane. On the other hand,
empirical equations of state are published for specific volumes of both pure
water (Haar, et al., 1984) and pure methane (Sychev, et al., 1987) that are more
accurate than can be predicted by the CE-EOS. In the hybrid technique used for
the flame data, the two empirical EOSs are used to calculate volumes of the pure
components. Then the sum of these two volumes is corrected using excess
volumes from the CF-EOS. This method can’t be used for methanol-water
mixtures since the literature does not contain an empirical EOS for methanol at
elevated pressures. For those mixtures, the CF-EOS is used as published.
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Figure 2.4 Raman spectrum of 0.04 gmol/L methane in a
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bar. A baseline has been fit for purposes of integration.
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Figure 2.5. Typical Raman data for pure calibration gases.
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5 exposures @4s; 02=2@10s; N, =2@10s; CO=1@
20 s. Symbols = experimental data; dashed lines = least
squares fits.
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2.5. Assumptions

2.5.1. Raman Calibrations

As described above, calibrations determined from pure gas spectra are
used to determine concentrations in fluid mixtures. This method assumes that
the Raman integrated intensities at a constant temperature are linearly
dependent on concentration and independent of mixture water density. To
verify this assumption, the following experiment was performed.

Pure methane was loaded into the reactor at 410 °C and 35.5 bar, and
Raman spectra were recorded. The corresponding methane concentration was
representative of values used in the flame experiments (~0.6 gmol/L). An
incremental amount of water was then added at constant temperature, and new
spectra were recorded. This procedure was repeated until total pressure
exceeded 280 bar. Figure 2.6 shows the first and last spectra recorded during the
experiment. There are obvious changes in the lineshape as pressure is increased:
the peak broadens and its amplitude drops. Despite these changes, the
integrated intensities remain constant. The integration results are shown in
Figure 2.7—they are constant within + 5% after an initial drop that is due to pure
methane being pushed out of the reactor into attached tubes. The data thus
justify the use of pure methane Raman spectra to calibrate measurements made
in mixtures of methane plus water. CH3OH, Oy, N, and CO; were not checked
independently—they are assumed to behave similarly.

Calibrations for CHy, CH30H, O3, N3, and CO, were performed as
necessary before each experiment. Carbon monoxide on the other hand was only
calibrated during two experiments. From those experiments, a ratio relating
carbon monoxide and nitrogen calibration constants (slopes) was established.
This ratio was then used to calculate carbon monoxide concentrations for all the
experiments that did not include carbon monoxide calibrations.

2.5.2, Settling Times For Kinetics

An important source of uncertainty in the kinetics experimental data
arises during system settling time following injection of the oxidizer. Since data
analysis assumes mixture homogeneity, it is important to quantify deviations
from this assumption. To isolate the temperature and composition deviations
due to injection rather than chemistry, experiments were conducted with inerts
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substituted for either oxygen or methane. Because the amount of oxidizer
injected was small and preheating occurred in the injection tube, the resulting
observed temperature fluctuations were less than 2 °C. Composition fluctuations
on the other hand were significant in some cases.

Figure 2.8 presents results from an experiment that typify behavior at 270
bar. In this experiment, nitrogen, replacing the usual O;-Np mixture, was
injected at constant volume into a mixture of methane and water. An initial
depression of methane concentration is visible: this is due to higher local
concentration of nitrogen along the injector axis. However, mixing is rapid, and
methane concentration quickly returns to its initial value. A series of such
experiments indicates that mixture composition is homogeneous within 3
minutes of the start of injection in experiments at T > 405 °C. At temperatures
around 390 °C, mixing time increases to 5 minutes.
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Figure 2.8.+ Nitrogen injected into a mixture of 0.15 gmol/L
methane in water at 409 °C. Initial pressure = 241 bar, final
pressure = 279 bar. Duration of injection = 22 s,

At lower pressures, the unheated volume of tubes and fittings attached to
the reactor (external volume) affects the settling period. The major effect is a
permanent loss of methane due to material being pushed out of the reactor
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during injection. Figure 2.9 shows such a fuel deficit at P = 138 bar: following
injection, methane concentration never recovers to its original value. The fuel
deficit pfoblem is worse at lower pressures since fuel fraction increases as water
density drops. Experiments were conducted at final pressures as low as 35 bar;
the resulting data shows the same trends as Figure 2.9, with deficits of methane
as high as 40% at the lowest pressure. Assessment of the magnitude of fuel
deficits during oxidation experiments can be obtained from carbon balances (see
Section 4.2.4).

The behavior of nitrogen concentration in Figure 2.9 suggests that there
are in fact two settling time scales. The initial rapid drop of Ny in this
experiment occurs at the same rate as the settling of CHy concentration. But
superimposed is a slower decline in N that persists throughout the experiment.
Our hypothesis is that mass exchange occurs during the first few minutes with
adjacent portions of the external volume (or even with crevice volume around
the windows within the reactor). This is termed the settling period. The longer
duration drift in injected gas concentrations is due to exchange with more distant
portions of the external volume. This drift is not evident for methane since there
is a much smaller concentration difference driving the exchange. (The fuel-water
mixture has a long time to equilibrate at the start of the experiment.) The long
time scale drift of N concentration is pronounced in Figure 2.9; typically the
drift was less than shown here. The variation is due to varying amounts of
condensed water in the tubing attached to the reactor. The liquid water affects
the amount of external volume available, which in turn affects mass transport.
Similar settling time experiments were conducted with oxygen (no fuel present)
and carbon dioxide. These gases all had similar settling times, indicating
dissolution in external condensed water is not a significant factor.

What is the impact of this settling time on the interpretation of kinetics
experiment data? Calculated concentrations of methane could be artificially low
and oxygen high during the settling period. At conditions that represent the
main thrust of this work, i.e., at pressures near 270 bar, the impact on
concentration histories is small. At these pressures, the first data point of each
methane concentration history is accurate since no fuel is permanently lost to the
external volume (i. e., no fuel deficit). The next 1 -3 data points that follow could
be low since they were recorded during the settling period. However, the 15 - 60
measurements made during the duration of the experiment should be accurate.
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Figure 2.9. Nitrogen injected into a mixture of 0.15 gmol/L
methane and water at 410 °C. Initial pressure = 101 bar, final
pressure = 138 bar. Duration of injection = 63 s.

At pressures around 135 bar, the first methane concentration point is likely to be
10 - 20% high due to the fuel deficit that occurs at these conditions. The apparent
initial oxygen concentration, taken as the first oxygen value following injection,
will be incorrect as well, since oxygen will be lost by mass transport during the
remainder of the experiment. To address the higher uncertainties of
measurements made during the settling period, the first few data points of each
experiment are discarded in the analyses performed in Chapter 4.

2.5.3. Isothermal Assumption

A constant temperature was assumed for each experiment in order to fit a
global reaction rate expression to the kinetics data (see Sections 4.2.5 and 4.3.4).
Actually, elevated temperatures were observed in the first few measurements
following injection of the oxidizer. In the worst case 270-bar experiment, a value
11 °C above the mean was recorded one minute after injection; within 5 minutes,
the temperature was stable at the value characterizing the remainder of the 3.5
hour experiment. Temperature fluctuations in the lower pressure experiments
were greater due to the reduced water density, although recovery to a stable



temperature still occurred as rapidly. Thus, at all pressures, deviations from
constant temperature occurred during the settling period causing an unknown,
temporary increase in reaction rate. As described above, this problem was
addressed in the global rate analyses by performing abridged fits in which
settling time data was discarded.

In order to determine the spatial uniformity of temperature in the reactor,
a second thermocouple was installed for several experiments. It was located in
the bottom quarter of the reactor, while the original was situated a third of the
way from the top. The second thermocouple consistently measured a 2.5 °C
lower temperature.

2.5.4. Isobaric Assumption

For the flame experiments, the reactor was connected to a back-pressure
regulator that was capable of holding pressure within 1 bar at 270 bar during
steady injection of oxygen. However, the start of injection and the spontaneous
ignition of flames were both unsteady processes that could cause 10-bar swings
in pressure.

The kinetics experiments were conducted in a closed reactor, i.e., at
constant volume rather than at constant pressure. Following oxidizer injection,
pressure in the reactor declined steadily. The drop was typically 5 - 10 bar in the
270-bar experiments, and 2 - 5 bar for runs at 135 bar. For purposes of the global
reaction rate analyses (see Sections 4.2.5 and 4.3.4), the variations of pressure
were ignored since pressure is not an input parameter for those calculations. The
cause of pressure variations is attributed to temperature fluctuations, non-ideal
mixing of reactants and products in water, and deviations from the equimolar
stoichiometric conversion of CHyg to CO2 and HpO (See Section 4.2.4).
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3. Hydrothermal Flame Experiments

3.1. Introduction
The supercritical water oxidation process is normally designed to be

flameless: wastes are destroyed through low-temperature oxidation reactions
(< 650 °C) occurring in flow reactors with residence times on the order of 30 s. In
contrast to these low-temperature reactions, it is possible to obtain stable, high-
temperature diffusion flames in supercritical water-fuel mixtures as first
demonstrated by Franck and coworkers (Schilling and Franck, 1988). Such
flames occurring inadvertently in a reactor designed for low-temperature
oxidation could upset process performance and threaten reactor integrity. Thus
the study of these hydrothermal flames is important to the development of
commercial SCWO processes. Further, it provides an opportunity to extend basic
scientific understanding of diffusion flames by examining the effects of high
density and an aqueous environment.

The literature on laminar diffusion flames at more conventional pressures
is extensive (Burke and Schumann, 1928; Roper, 1977; Roper, et al., 1977).
Following the usual notation, a normal diffusion flame is created by injecting a jet
of fuel into a co-flowing or quiescent background containing an oxidizer. Inverse
diffusion flames (IDF) are those in which the primary jet is a flow of oxidizer,
and the surroundings contain the fuel. In contrast with normal diffusion flames,
the literature on inverse diffusion flames is limited (Sidebotham, 1988;
Sidebotham and Glassman, 1992; Makel and Kennedy, 1994), due to the historical
lack of practical applications. However, hazardous wastes often contain a
mixture of oxidizable species (hydrocarbons) in water, and their treatment
logically involves the injection of an oxidizer into the aqueous wastes, as in an
inverse diffusion flame.

In non-reacting flows, the fluid mixing and material transport of normal
and inverse jets are similar. The analysis of transport of momentum, thermal
energy, and species between a nonreacting jet of fuel or oxidizer and the
appropriate surroundings proceeds identically. Whether the inner jet is fuel or
oxidizer is of no importance as long as the material identities of jet and
surroundings (density, molecular weight, viscosity, etc.) are properly maintained
in the analysis. When chemistry is added to the analysis, however, the resulting
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flames differ substantially due to differing temperature and composition
histories experienced by the reactants. In normal diffusion flames, the
temperature of fuel molecules rises from inlet conditions to the flame
temperature over a distance on the order of the flame height. This relatively
gradual temperature gradient allows time for pyrolysis of fuel molecules to occur
before they reach the flame. In inverse diffusion flames, however, the fuel
molecules are outside the flame envelope and see a much narrower preheat
region (higher temperature gradient) as they diffuse to the reaction zone. A well
documented consequence of this difference is reduced soot formation
(Sidebotham, 1988).

This chapter discusses a series of experiments undertaken to study inverse
diffusion flames that spontaneously ignite when oxygen is injected into
supercritical mixtures of water and methane or methanol. Inverse rather than
normal diffusion flames were chosen since SCWO processes are often designed
to inject an oxidizer stream into supercritical water-waste mixtures. Methane,
being a relatively difficult compound to oxidize, was chosen to provide a
conservative measure of flame ignition in supercritical water. Both methane and
methanol offer the advantage of being well studied, with published elementary
reaction mechanisms available for elevated pressures (Webley and Tester, 1989;
Webley and Tester, 1991; Holgate, 1993). The goal of these tests is to provide a
qualitative description of the structure of the hydrothermal flames and to
quantify their spontaneous ignition limits.

3.2. Flame Phenomenology

3.2.1 Experimental Procedure

Aside from the difficulties of sealing our reactor at high-pressure,
producing a hydrothermal flame is relatively simple. To prepare for a flame
experiment, a mixture of fuel and water is loaded as described in Section 2.3.1.
Normally, the mixture is given about 10 minutes to stabilize, with Raman
measurements used to monitor the process. Over our experimental range, 390 -
510 °C, methane pyrolysis is not detectable; however, perceptible reaction of
methanol in water occurs above 470 °C, requiring an accelerated procedure in
those experiments.

Once the fuel-water mixture is homogeneous and initial concentrations
have been recorded, injection of oxygen begins. While the back-pressure



regulator holds pressure constant, the HPLC pump pushes oxygen into the
reactor at 0.5 - 1.0 mL/min. Given sufficient fuel and high enough temperature,
a diffusion flame ignites spontaneously. The visible and shadowgraph images of
the flame are recorded on video tape while internal temperature and pressure are
tracked by computer. Flame size and duration can be controlled by oxygen
injection rate, with flames typically lasting several minutes. Cutting off oxygen
flow of course terminates the flame immediately; alternatively, continuing the
oxygen flow eventually leads to extinction of the flame due to fuel depletion.

Figure 3.1 shows the temperature and pressure history of a typical
hydrothermal flame that is allowed to burn until extinction. Since the
thermocouple is located above the oxygen injector, the temperature trace clearly
indicates ignition and extinction. During burning, the video tape captures the
visible image of the flame, as well as a shadowgraph image revealing the
buoyant plume associated with the flame. As described in the next section, this
plume serves as an indicator, along with the temperature trace, of flames that are
otherwise invisible.
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Figure 3.1. Temperature and pressure histories of a hydrothermal
diffusion flame that spontaneously ignited upon injection of
oxygen into a mixture of water and 12 mole% methane.
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3.2.2. Flame Description

Figure 3.2 presents a sequence of photographs of a typical methane
hydrothermal flame during its lifetime. The photographs combine both visual
and shadowgraph images. Figure 3.2-a is representative of the flame early in its
lifetime. Fuel concentration in this example is high (~ 20 mole%), and under such
conditions, the flames appear white and intensely luminous. The slender, stable
flames have diameters of about 1 mm and heights that are controlled by oxygen
injection rate. The dark structure around and above the flame in Figure 3.2-a is a
shadowgraph image of the buoyant plume of lower density fluid created by the
flame. The dark object intercepting the plume at the top is the 1.6-mm sheathed
thermocouple. The circular field of view in this photograph is defined by the 7.6-
mm aperture of the sapphire windows; the actual ID of the reaction cell is about
three times larger.

Figure 3.2. (a) Photograph of a typical luminous hydrothermal
flame at high fuel concentration. (b) The same flame, but at
lower fuel concentration. (c) The same flame at the moment the

flame lifts off. (d) Nonreacting oxygen jet following flame
extinction.



In a typical experiment, fuel is added prior to oxygen injection, and it is
gradually consumed during flame combustion. Depending on initial fuel
concentration and oxygen injection rate, the flames can burn for more than
twenty minutes. Since chemical and transport time scales are short compared to
that of fuel depletion, fuel concentration can be treated as quasi-steady. The exit
port of the reactor is located directly above the oxygen injector and a steady fluid
flow leaves via this port and the back-pressure regulator. Because of the
orientation, a large portion of the exit flow is combustion products, but certainly
some fuel leaves by this route as well. In addition, combustion products build
up in the reactor as corroborated by post-flame Raman measurements. Velocity
measurements were not performed in the reactor, but recirculation flow is
assumed to develop in the initially quiescent water-fuel mixture.

As fuel is consumed during an experiment, flame luminosity continuously
decreases, and eventually becomes invisible to the unaided eye. At this stage,
shown in Figure 3.2-b, the continuing exothermic reaction is revealed by both the
dark thermal plume in the shadowgraph and the continuing elevated
temperatures recorded by the thermocouple probe. This stage of the combustion
can continue for several minutes. When fuel concentration drops below a certain
limit, the plume structure lifts off the injector as seen in Figure 3.2-c and rises out
of view in less than a second. All evidence of the combustion reaction
disappears—the thermocouple readings drop to the ambient temperature (which
typically has risen less than 15 °C), and the shadowgraph no longer shows a
buoyant plume. .The oxygen jet is still visible in the shadowgraph (Figure 3.2-d),
but is distinguished by a wavering that indicates a cooler stream (no longer
heated by reaction) injected into the hotter supercritical water mixture.

In an effort to compare the behavior of high-pressure flames to more
conventional flames, several experiments were performed at intermediate
pressures. Attempts at spontaneously igniting flames at pressures near 100 bar
ended with too-rapid reaction and a ruptured burst disk. To avoid this, flames
were first ignited at 275 bar, and then pressure was gradually lowered using the
back-pressure regulator. As reactor pressure fell, the oxygen injector valve was
adjusted to hold flame height constant. Loss of fuel due to depressurization was
compensated for by periodically adding fuel as needed to keep the flame visible.
In this way, a flame ignited at supercritical pressures was kept burning down to
pressures as low as 15 bar. The difficulties associated with this procedure
precluded any quantitative comparisons with high-pressure flames. Changes in
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appearance, however were obvious. As pressure dropped, the flames broadened
distinctly. The long slender form of the high-pressure flames was gradually
replaced with a much more circular shape at low pressure.

Several flames were also ignited in a mixture of fuel plus argon in place of
water. Due to reactor limitations, these experiments were performed at the same
270-bar maximum pressure. This means number densities in the argon
experiments were half that of the water experiments, due to differences in
compressibilities. Despite these differences, the argon flames behaved the same
as the hydrothermal flames in visual tests.

3.2.3. Flame Temperature

Temperatures of the hottest flames created were beyond the measurement
range of the thermocouple probe (1000 °C). Calculations using the chemical
equilibrium code STANJAN (Reynolds, 1986) with the high-pressure code,
Chemkin Real-Gas (Schmitt, et al., 1993) yield an adiabatic flame temperature of
2920 °C for a stoichiometric amount of oxygen added to 30 mole% methane in
water initially at 500 °C and 270 bar. Schilling and Franck (1988) used OH-
radical chemiluminescence to make a tentative flame

upper branch

middle branch

Maximum Temperature

| lower branch I

| |
D.
oxt Damkohler Number, D on

Figure 3.3. Diagram of the dependence of maximum temperature
on Damkéhler number for diffusion flames (Williams, 1985).
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temperature measurement of 3130 °C for a 30 mole% methane-water-oxygen
flame at 700 bar.

In our experiment, the thermocouple probe was located in the hot plume
just above the flame, so that it tracked trends in flame temperature below 1000
°C. Observed temperatures decreased steadily with visible flame luminosity,
even while flame height stayed constant; temperatures were recorded as low as
50 °C above ambient temperature at the time of flame extinction. These large
variations in flame temperature and luminosity suggest a wider range in flame
burning intensity than is observed for atmospheric methane flames. The familiar
S-shaped Damk&hler curve in Figure 3.3 describes the limited range of burning
temperatures observed for diffusion flames at atmospheric pressure. Relatively
minor decreases in flame temperature on the upper branch lead to extinction
under those conditions. In contrast, our experiments in supercritical water
indicate a continuous, extended range of possible flame temperatures.

A Raman spectroscopy method for measuring temperatures developed in
the SCW reaction cell (Brown and Steeper, 1991) was tested on the hydrothermal
flames. The method uses the Raman spectrum of CO, which, in our temperature
range, exhibits several hot bands distinct from the fundamental vibrational
feature, as shown in Figure 3.4. By integrating these peaks separately and taking
their ratio, a calibration-free measurement of temperature is obtained. During
development, the technique was successfully applied to homogeneous mixtures
of carbon dioxide and supercritical water; the experiment described below was
an attempt to make similar measurements in the presence of a hydrothermal
flame. .

During the experiment, the reactor was translated 6 mm along the laser
axis to provide spatial Raman measurements in and around the ~1-mm diameter
flame. Raman measurements of methane concentration were made prior to
oxygen injection, and values were constant within +3 % along the traverse. A
flame was ignited as in earlier experiments and allowed to burn until its
luminosity was low; Raman CO; spectra were then recorded at several locations.
Figure 3.4 is a typical COy spectrum recorded to one side of the flame.
Broadband emission from the flame is visible as an elevated baseline, but the
fundamental transition and two hot bands are evident and can be used to
calculate temperature. Using the correlation established in Brown and Steeper
(1991), temperatures from 390 to 460 °C were obtained for the six measurements
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made outside of the flame. This range of temperatures agrees with the bulk fluid
(thermocouple) temperature of 435 °C within the uncertainty reported for the
optical technique (Brown and Steeper, 1991).

On the other hand, spectra recorded in the flame are not as easily -

interpreted, as illustrated in Figure 3.5. Beam steering by the flame reduced the
carbon dioxide signal, and flame emission created a curved baseline. The
resulting deterioration of signal-to-noise ratio made in-flame temperature
measurement impossible, even in relatively dim flames. As a result of this test,
further efforts to apply the Raman temperature diagnostic to hydrothermal
flames were abandoned.

3.2.4. Flame Aspect Ratio

As fuel is consumed during an experiment, flame luminosity and plume
temperature decrease continuously. Despite these significant changes, observed
flame height and diameter do not change noticeably if the oxygen flow rate is
held constant. This observation agrees with the simplified Burke-Schumann
analysis of axisymmetric diffusion flames that predicts a height proportional to
Q/D, where Q is the volumetric flow rate and D is an appropriate diffusion
coefficient (Burke and Schumann, 1928). A more complete treatment, however,
must include the effects of buoyancy and dilution (Roper, 1977). Sidebotham
(1988) developed such an expression based on ideal-gas assumptions and valid
for both normal and inverse diffusion flames:

g1
27Z'Do

0.67

(/1) " a+9)0 3.1

where H is the flame height, D, is the fuel diffusivity at ambient conditions, T, is
the ambient temperature, Ty is an effective flame temperature, and Q; is the
volumetric flow rate of oxidizer (in the case of an IDF) plus any diluent. The
parameter S includes the dilution effect:

8

X
S=~—2%_ (for an IDF) 3.2
()X,

where X,, and Xf are mole fractions of oxygen and fuel in their respective
streams, and I’ is the molar stoichiometric ratio of oxygen to fuel. The above
expression for H predicts that diminishing fuel concentration and the associated
drop in flame temperature should cause an increase in flame height. The
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prediction disagrees with the observed insensitivity of flame height to fuel
concentration.

We have considered several possible explanations for the disagreement
between our observations and the above expression for flame height. First, as
Sidebotham’s experimental results for inverse diffusion flames indicate
(Sidebotham, 1988), the sensitivity of flame height to dilution is less important at
lower dilutions, i.e., at higher fuel concentrations. Thus, during the period that
our flames are most visible (fuel concentrations above 20 mole%), changes in
flame height due to consumption of fuel are less pronounced. Calculating the
effect of a typical change in Xfon 1+S (and therefore on flame height) using
Equation 3.1, however, indicates that flame growth should be detectable. For
example, as the fuel fraction drops from 0.4 to 0.2 for a methane flame, 1+S
increases by 50%; this should translate into a similar increase in flame height.
The associated drop in flame temperature should increase flame height further.

Another consideration is that our conditions represent a large
extrapolation from those used to generate Equation 3.1. As an example, diffusion
coefficients at our experimental conditions are two orders of magnitude smaller
than those for atmospheric flames (Reid, ef al., 1987). Additionally, suggested
correlations (Lamb, et al., 1981) for diffusion coefficients at supercritical densities
show a different (i.e., Arrhenius) dependence on temperature than is used to
derive Equation 3.1 (D ~ T167). Models that employ Arrhenius-type diffusion
coefficients predict significant changes in flame structure (Bechtold and Margolis,
1992).

A final consideration in the contrast between predictions and our
experimental results is the question of buoyancy-controlled flame heights.
Buoyancy is included in the derivation of Equation 3.1, but, as first pointed out
by Roper (1977), the effects of buoyancy on flame height theoretically cancel in an
axisymmetric geometry. Along with an increase in velocity due to buoyancy,
there is a simultaneous reduction in flame diameter which means a shorter
diffusion time. While one factor tends to increase flame height, the other
decreases it. In practice, though, the cancellation is not exact (Roper, 1977).

To measure the relative importance of buoyancy in our experiment, the
Froude number can be examined:

Fr = v2/dg 3.3



where v is the oxygen jet inlet velocity, d is the flame base diameter, and g is the
acceleration of gravity. If Fr is much smaller than a normalized density
difference (between the jet at flame temperature and the bulk supercritical
water), then the flame height is likely to be buoyancy controlled (Williams, 1985).
Table 3.1 presents buoyancy calculations at a reactor temperature of 400 °C and
at two different oxygen delivery rates. For the low flow rate case, the normalized
density difference is about 3 times larger than the Froude number, and buoyancy
indeed may dominate the flame geometry. However, using the more typical
oxygen delivery rate of 1.0 mL/min, the calculation indicates that buoyancy does
not dominate. For experiments at higher reactor temperatures or with lower
average flame temperatures, the density difference shrinks with respect to the
Froude number.

This analysis neglects fluid recirculation that likely occurs in the reactor
during the flame experiments. The driving force for such recirculation comes
from the jet’s momentum, resulting in a lower jet velocity. It is possible that the
Froude number is thereby reduced enough to create buoyancy-controlled
conditions in more experiments than implied by the arguments of the last
paragraph. The final conclusion is that buoyancy may indeed mask predicted
flame height trends in some, but probably not all of our experiments.

1.0 mL/min 0.5 mL/min

Quantity Symbol Oz delivery Oz delivery
jet inlet velocity v 19.cm/s 9.5m/s
flame base diameter d 0.1 cm 0.1cm
mean flame density @ 2000 °C’ p 0.053 g/cm3 0.053 g/cm3
water density @ 400 °C Pw 0.22 g/cm3 0.22 g/cm3
density difference Ap 0.17 g/cm3 0.17 g/cm3
normalized density difference (Ap)/p 3.2 3.2
Froude number Fr 3.7 0.92

Table 3.1. Froude number calculations for hydrothermal flames
at P = 275 bar. An flame temperature of 2000 °C is used as a
conservative (high) estimate.
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3.2.5. Flame Emission Spectra

At high methane and methanol concentrations, the hydrothermal flames
burn with intense luminosity that appears bluish white. At lower fuel
concentrations, the flames are less intense and appear more red-yellow. To
characterize the emission from hydrothermal flames as it evolves during an
experiment, the light was analyzed with a low-dispersion spectrograph.

Figure 3.6-a is a sample raw flame emission spectrum. To interpret the
spectrum, two corrections must be applied: a second-order dispersion correction
and a detector response correction. First-order peaks appearing at short
wavelengths reappear in second-order dispersion at double the wavelength and
at reduced intensity. The ratio of first- and second-order intensities was
determined using an Ar laser line, permitting correction for second-order
contributions. A correction curve for detector response as a function of
wavelength was determined using a tungsten calibration lamp. Figure 3.6-b is a
graph of the resulting intensity correction factor.

Figure 3.7 presents 6 corrected spectra taken from one methane-oxygen
flame over a period of ten minutes, as the flame evolved through the stages
presented earlier in Figure 3.2 The sequence in Figure 3.7 illustrates several
characteristics representative of all the emission experiments conducted. One
obvious characterization is that the white emission of the early, hot flame is not
simple blackbody radiation. Figure 3.7-a indicates that over most of the visible
range (400 - 700 nm), the emission intensity is flat, with broad peaks appearing at
both ends of this range. The strong peak at 400 nm is responsible for the bluish
tint of the early flame, but has not been identified. Franck’s team has reported
(Schilling and Franck, 1988) a peak appearing in a hydrothermal flame emission
spectrum between 300 and 330 nm attributed to OH radicals. This feature was
not detected in our experiments due to bandpass limits of our optics.

There is a characteristic evolution of the emission spectra during a flame’s
lifetime represented in Figure 3.7-a through f. The 400-nm peak steadily
diminishes and disappears as several near-IR features grow. There is an
associated small inctease in visible light above 600 nm that explains the reddish
cast late in the flame’s lifetime. A small peak appearing at 590 nm is likely due to
sodium contamination. An experiment at lower pressure (70 bar), and an
experiment in which argon was substituted for water both produced spectra with
the same characteristic features and evolution.
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Figure 3.6. (a) Uncorrected methane-oxygen hydrothermal flame
emission spectrum. (Shown corrected in Figure 3.7-d.) (b)
Correction factor for diode array detector on J-Y spectrograph.

3000

T T
a. b. H c. H
2500 - 3 3 HE. 3 I
22000 - - - 4 - E b
g 1500 |- -1 - B - 4
e
= joo0f 3 5 3 3
soof. " ] \ - i [”V
[} f i Fan?
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Wavelength (nm) Wavelength (nm) Wavelength (nm})
3000 .
d. H e. f.
2500 - - - E - 4
2000 3 - 4 - 3
=z
2 1500 - o 4 - p
]
£ 1000} [N\., 3 L [\/ 3 3 ﬂ\‘ 3
500 J . 3 L /’\/ J
W )—/ I _,/"'”j N

0 i
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 $00 1000 300 400 500 600 700 800 900 1000
Wavelength (nm) Wavelength (nm) Wavelength (nm)

Figure 3.7. Series of corrected flame emission spectra taken
during the lifetime of a methane-oxygen hydrothermal flame at
278 bar. Intensities are normalized to account for varying
exposure times from 0.033 to 0.33 s. (a) Flame time = 2 min,
bright flame. (b) Time =3 min. (c) Time = 5 min, dim flame. (d)
Time = 6 min, flame barely visible. (¢) Time = 8 min, flame no
longer visible. (f) Time = 10 min; extinction occurs at time = 12
min.
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3.3. Spontaneous Ignition Limits

3.3.1. Experimental Procedure

In order to better understand the spontaneous ignition of hydrothermal
flames, a series of experiments was performed to map the minimum fuel
concentrations and temperatures required for auto ignition of methane and
methanol flames in the HER. Five parameters affecting the ignition of these
flames were controlled: choice of fuel and oxidizer, concentration of fuel and
oxidizer, pressure, temperature, and oxidizer injection rate. The chosen fuels
were methane and methanol with pure oxygen as the oxidizer. Pressure was set
at a value of approximately 275 bar for each experiment and a temperature
between 380 and 510 °C was chosen.

The experiment consisted of loading and testing decreasing fuel
concentrations to find the minimum ignitable concentration. While testing for
auto ignition in a given fuel-water mixture, the oxygen delivery rate was
adjusted in the range of 0.5 to 1.0 mL/min (at reactor pressure and room
temperature). Ignition was indicated by an abrupt and sustained temperature
rise accompanied by the appearance of a buoyant plume structure in the
shadowgraph video.

The main source of error in the concentration measurements originates
from irreproducibilities in the Raman scattering integrated intensities.
Fluctuations in the laser beam image dimensions within the HFR due to thermal
lensing resulted in a concentration measurement error of + 6%. This value is
estimated from the magnitude of fluctuations in repeated Raman measurements
made in water at fixed fuel density. The equation of state method used to
convert concentrations to mole fractions (see Section 2.4) introduces only a small
additional error since the species being measured in most cases constitute only a
small fraction of the mixture. An exception is the low temperature methanol
results (see next section) for which the minimum fuel fraction for auto ignition is
about 35 mole%. The resulting accuracy in reported minimum ignition
concentrations remains + 6% (95% confidence) for all but the methanol data
below 400 °C.

3.3.2. Experimental Results

Over seventy ignition trials were performed to map the minimum fuel
fractions required for spontaneous ignition of methane and methanol flames as a



function of reactor temperature. The ignition experiments are listed in Section
7.2 and presented graphically in Figure 3.8 (methane) and Figure 3.9 (methanol).
In the figures, solid symbols represent experiments in which flames
spontaneously ignited. The interpolated dashed lines on the graphs indicate the
lowest fuel concentrations at which hydrothermal flames ignited. At conditions
below these lines, flames did not ignite, although fluid agitation was observed in
the shadowgraphs during some of these experiments—caused by abortive
reactions not leading to ignition. Note that there are a few non-ignition points
above the dashed lines—these data indicate that ignition is sensitive to variation
in oxygen injection rates. As a final clarification, note that the methanol data at
510 °C are incomplete. Difficulties caused by pyrolysis made it impossible to
complete experiments at the lowest fuel concentrations. Raman measurements
made at temperatures above 470 °C showed that the concentration of methanol in
water dropped significantly in the few minutes prior to oxygen injection.
Simultaneously, concentrations of CHy, CO;, CO, and H» appeared.
STANJAN/Chemkin Real-Gas (Reynolds, 1986; Schmitt, ef al., 1993) equilibrium
calculations confirm that a mixture of methanol and water is driven toward the
products detected. Because of these difficulties, the interpolated line in Figure
3.9 is stopped short of the data at this temperature.

Following each ignition test, Raman measurements revealed the
combustion products and any remaining reactants. For both methane and
methanol, significant amounts of CO; were formed whether a flame ignited or
not. When flames were allowed to proceed to extinction (i.e., injection of oxygen
was halted at extinction), residual fuel concentrations measured from 1 to
5 mole% depending on temperature. Following methanol flames, we detected
measurable quantities of CO and Hp. Additionally, methane was detected
following methanol experiments in which flames never ignited. Some chemical
reaction models of methanol oxidation in supercritical water (Webley and Tester,
1989) predict formation of formaldehyde in small amounts; no formaldehyde
was detected following our flame experiments, although it was detected during
the kinetics experiments reported in the next chapter.
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3.3.3. Conclusions

Diffusion flames spontaneously ignite and burn steadily in mixtures of
supercritical water and methane or methanol. The intensity of these flames
measured both by visible emission and temperature varies widely with fuel
concentration. Flame aspect ratios are little affected by decreasing fuel
concentration.

The flame ignition trials indicate that, at temperatures above 470 °C,
diffusion flames readily ignite in supercritical mixtures with only 6 mole%
methane or methanol in water. At these temperatures, the flames ignite
immediately upon injection of oxygen (i.e., hypergolic ignition), even in the case
where fuel concentration is so low that the ignited flame produces no visible
light. In such cases, flame presence is confirmed by thermometric and
shadowgraphic evidence. Since this range of fuel concentration, temperature,
and pressure is typical of operating conditions in SCWO reactors, designers and
operators must be aware of the possibility of flame formation. The data suggest
that reactors in which an oxygen stream is injected into a supercritical mixture of
fuel and water are susceptible to flame auto ignition—an event that could upset
reactor performance and even threaten reactor integrity.

At lower temperatures, the data indicate that methanol is more difficult to
ignite than methane, a trend indicated also in the global kinetics studies of
Webley and Tester (1989, 1991). At the highest temperatures, pyrolysis of
methanol made ignition studies difficult.
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4. Methane Kinetics Experiments

4.1. Introduction

The development of supercritical water oxidation technology depends on
understanding the reaction kinetics of a wide variety of compounds at SCWO
conditions. Predictive chemistry models, as they become available, will play an
important role in finding answers to design problems including: (1) predicting
reaction rate dependency on temperature, pressure, and species concentrations;
(2) calculating heat release rates and temperature histories during reaction; (3)
predicting reaction completeness and byproduct profiles; (4) estimating catalysis
effects; and (5) scaling laboratory- and bench-scale experimental results to com-
mercial scale reactors. A long-term goal of SCWO kinetics research is establish-
ing detailed elementary mechanisms for the oxidation of rate-limiting com-
pounds such as carbon monoxide and methane. For the nearer term, simplified
global reaction expressions are needed as engineering tools for the current design
of commercial SCWO processes. The pursuit of these goals requires experimen-
tal measurements of the destruction rates of principal components, as well as
production and consumption rates of key intermediates.

This chapter describes methane oxidation experiments designed to
complement previously published studies. By conducting batch experiments in
our optically accessible reaction cell, some limitations of earlier experiments were
overcome. One such limitation has been low initial fuel concentrations. A
common experiment design uses saturators to prepare initial oxidizer and fuel
solutions. In this technique, the gaseous oxidizer or fuel is pressurized over
room-temperature water for sufficient time to create an equilibrium aqueous
solution. Advantages of this technique include accurate determination of fuel
and oxidizer feed stream concentrations. An associated disadvantage is that
concentrations are limited by room-temperature solubility behavior. Even for
water-soluble fuels, low fuel concentrations are dictated by the limitations on
available oxygen concentrations. _

In the current study, a gaseous oxidizer is injected directly into the super-
critical water-fuel mixtures, removing the restriction on reactant concentrations.
As a result, fuel concentrations representative of commercial SCWO processes,
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on the order of 1 gmol/L, are possible. Of course, higher fuel concentrations
mean greater heat release, making isothermal operation more difficult.

The use of an in situ optical diagnostic for concentration measurements in
the current study offers several advantages. The data rate is high: each experi-
ment produces an entire concentration-versus-residence-time history rather than
a single concentration value produced by other techniques. In addition, the
method avoids potential problems associated with extracting, quenching, and
analyzing samples off line. Finally, the in situ technique permits the measure-
ment of some intermediate species that may not be measurable in a sample-and-
analyze procedure.

Optical methods have been previously applied in supercritical water envi-
ronments. Franck et al. made tentative temperature measurements based on hy-
drothermal flame chemiluminescence in their optical cell (Schilling and Franck,
1988). Raman spectroscopy has been used at the University of Delaware to mea-
sure concentrations of aqueous solutions at supercritical conditions (Spohn and
Brill, 1989). At Sandia, measurements of both concentrations and temperatures
have been made using Raman spectroscopy (Brown and Steeper, 1991; Steeper, et
al., 1992a; Steeper, et al., 1992b; Steeper and Rice, 1994). At Los Alamos Raman
spectroscopy was used in an optically accessible flow reactor to follow the de-
composition of hydrazine in supercritical water (Masten, et al., 1993).

Methane was the chosen fuel for our kinetics experiments. It is a well-
studied, simple organic that serves as a model compound both because it is rela-
tively difficult to destroy, and because its reaction mechanism includes pathways
shared by many complex organics. The following sections describe experiments
that were conducted in supercritical water at pressures around 270 bar, experi-
ments in subcritical water (pressures as low as 35 bar), and experiments in which
argon was substituted for water. The latter two types of experiments were in-
cluded to clarify the role of water density on reaction rates in supercritical water.

4.2. Kinetics Measurements In Supercritical Water

4.2.1. Experimental Conditions

Table 4.1 lists the 15 methane kinetics experiments performed at a nominal
pressure of 270 bar. The temperature range of these experiments, 390 - 442 °C,
was limited by mixture critical temperatures at the lower end. Below its critical
temperature, a mixture can support multiple phases, a condition that makes



interpretation of rate measurements intractable. Critical curves of many
mixtures of common combustion gases and water have been experimentally
measured, some of which are reproduced in Figure 4.1. The critical curves for
nitrogen, carbon dioxide, oxygen, methane, and hydrogen at pressures up to a
kilobar or more do not exceed water’s critical temperature of 374 °C. This means
_ that binary mixtures of any of these molecules with water at temperatures above
390 °C (our minimum experimental temperature) are guaranteed to be single
phase. Experiments examining ternary and quaternary mixtures, and the
predictions of phase equilibria models (Heilig and Franck, 1990), indicate that
multiple component mixtures of these compounds in water are single phase
above 390 °C as well. For our kinetics experiments, single phase operation is
assumed, and our shadowgraph observations support this assumption.

The upper temperature limit of the experiments was dictated by the need
for reaction time to be long in comparison with settling time (see Section 2.5.2).
In experiments conducted at 442 °C, 95% of the initial methane was destroyed in

Avg. Avg. Temp. Press. Initial Initial Initial Run # of
Exper. Temp Press Range Range [O2] [CH4] Equiv. Time CHgy
# (°C)  (bar) (°C) (bar) (gmol/L)} (gmol/l}) Ratio (min) Points

06284 403 270 403-404 267-277 0.30 0.171 1.14 360 47
06294 403 273  402-404 271-277 0.44 0.151 0.69 200 60
07014 419 267 419-420 266-276 0.38 0.131 0.69 150 50
07084 421 266  421-424  265-276 0.34 0.141 0.83 150 45
07124 397 276  395-397 275-282 0.41 0.117 0.57 200 56
07214 391 268  388-392 265-276 0.38 0.187 0.99 180 46
07224 392 276 390-392 273-283 0.40 0.153 0.77 230 59
07294 442 268  441-448 269-276 0.35 0.171 0.98 45 17

08024 442 268  442-452  269-279 0.36 0.175 0.97 40 17
08044 402 270 401-403 269-279 0.40 0.163 0.82 130 35
08244 412 268  412-415  267-278 0.31 0.165 1.06 75 17
08254 411 266 411-412  265-276 0.31 0.172 1.11 80 18
08264 410 271 410411  271-277 0.42 0.113 0.54 20 28
08314 412 265 411-419  265-279 0.39 0.176 0.90 60 15

09014 413 265 412-418 265-277 0.38 0.146 0.77 170 42

Table 4.1. Summary of 270-bar methane kinetics experiments in
supercritical water.
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about 13 minutes; settling time was less than 3 minutes at this temperature. Asa
result, no experiments were attempted at any higher temperatures.

The target initial methane concentration in the experiments was 0.15
gmol/L. A high initial fuel concentration extends the range over which rates are
measurable. On the other hand, low concentrations of fuel and oxidizer com-
pared to water means that simplifying assumptions made during analysis are
more accurate. At the highest temperature examined in the 270-bar experiments,

- le. at the lowest water density, the target initial fuel concentration represents a

maximum mole fraction of 2%. Our choice of initial fuel concentration is high
enough to measure two orders of magnitude of fuel destruction, yet low enough
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Figure 4.1. Critical curves for binary aqueous mixtures taken
from Franck (1979). Each curve is the locus of mixture critical
points for the various mixture compositions. Operating to the
right of the curves (i.e., at higher temperatures) avoids the
possibility of multiple phases. Oxygen’s curve is similar to
nitrogen’s (Franck, 1987). '



that composition changes do not affect water concentration significantly. Note
that initial methane concentrations vary from the target value since the loading
process involved trial and error.. An estimate of concentration (based on peak
height rather than integrated area) was used to guide methane addition, and a
final, accurate calculation of initial concentration was not made until after each
experiment.

A variety of equivalence ratios were ‘desired to provide information
concerning the global reaction’ order with respect to oxygen. The oxidizer

injection process was such that it was difficult to predetermine the equivalence .

ratio. First, the amount of oxygen to be injected was estimated based on an
approximate methane concentration. Second, the oxygen injection line had an
uncertain amount of water in it prior to injection, so that gauging oxygen
quantities by pressure rise was inaccurate. However, these difficulties only
affected our ability to preselect an equivalence ratio accurately. They did not
affect the accuracy of our concentration measurements.

4.2.2. Experimental Procedure

Procedures for the supercritical water, subcritical water, and argon
kinetics experiments were similar. Preparation included measuring Raman
calibration curves and loading the heated reaction cell with water or argon (see
Section 2.3.2). At least an hour delay preceded methane addition in the water
experiments since the reactor temperature required about 30 minutes to recover
following the addition of a full load of water. An approximate amount of
methane was then added, gauged by pressure rise. Estimates of concentration
based on the Raman signal guided the further addition of methane to produce an
approximate 0.15 gmol/L mixture at the appropriate pressure.

The amount of oxidizer (49 mole% Oy, 51 mole% Np») to be added was
regulated by adjusting the pre-injection reactor pressure a calculated amount
below the target experimental pressure. When temperature, pressure, and
concentration of the water-methane mixture were stable, the oxidizer was
injected rapidly (20 - 60 s), bringing pressure to the target value. The start of
oxidizer injection marked the experimént’s time zero, and Raman measurements
were begun as soon as the oxidizer valve was closed.

Early in the experiment, Raman measurements were made as quickly as
possible for the species being monitored (methane, oxygen, carbon dioxide,
carbon monoxide, and nitrogen). With exposure times of 20 - 30 seconds plus the
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time required to scan the spectrometer, one species was measured every 45 - 60 s.
Later in the experiment as the reaction rate decreased, the sampling rate was
lowered as well. The experiment was normally terminated when either fuel or
oxidizer was depleted.

4.2.3. Data Reduction

Data from each experiment comprise a binary file for each spectrum and
one text file with a complete history of times, spectrum labels, temperatures,
pressures, and laser power measurements. The spectrum files are read by a
FORTRAN program which calculates and subtracts a baseline, and then
integrates the Raman peak using the proper algorithm for each species (see
Section 2.4). The program produces a text file with integrated intensities for the
entire experiment, including the calibrations. A spreadsheet consolidates the
integrated intensities and the temperature-pressure data, and is used to reduce
the data as described in Section 2.4.

Data reduction performed by the spreadsheet includes the following
operations. (1) Temperatures are corrected for laser heating of the thermocouple.
When using high laser power (5W), the thermocouple temperature abruptly rises
from 1 to 4 °C whenever the laser beam is propagated through the reactor.
Although the beam doesn't directly hit the thermocouple, there is enough
reflected light to raise its temperature by a few degrees; the temperature returns
to its previous level within 5 seconds of shuttering the laser. Several times
during each experiment, the difference between laser-on and laser-off
temperatures is noted and used for the spreadsheet correction. (2) Integrated
intensities are normalized based on laser output power. (3) Calibration
concentrations are calculated based on measured temperatures and pressures
using the ideal gas equation of state. Since calibrations are conducted at elevated
temperatures (~400 °C) and relatively low pressures (< 60 bar), the ideal gas
equation of state is accurate within 1.5% (compressibilities are within 1.5% of 1).
(4) The slope of the concentration vs. integrated intensity calibration data is
calculated for each gas; these values are used in turn to calculate concentrations
from spectra recorded during the kinetics experiments. (5) Finally, clock times
are shifted so that the experiment time zero coincides with the start of oxidizer
injection. In addition, the Raman measurement of initial methane concentration
is shifted to time zero although it is abtually recorded earlier and assumed to
remain constant until oxygen is injected.



4.2.4. Experimental Results

The final form of the data included in the spreadsheet is a list of concen-
trations versus time for each of the monitored species (see Appendix, Section
7.3). Figure 4.2 presents this data in graphical form for a typical 270-bar
experiment. The steady consumption of CHy and O; is evident along with the
production of COz. The minor species CO has a much weaker signal-to-noise
ratio due to its lower concentration, but its production and depletion can still be
monitored early in the experiment. A long time scale decline of nitrogen
concentration is visible as discussed in Section 2.5.2. If no reaction occurred, the
first oxygen and nitrogen points would nearly coincide on the graph since the
oxidizer is composed of a 49:51 mix of oxygen and nitrogen. The difference seen
in the actual data represents both the early consumption of oxygen as well as
increased concentration fluctuations in the earliest data points due to the mixing
process. For purposes of the global fit analysis (see Section 4.2.5), initial Op
concentration is established by extrapolating the Ny concentration backwards to
time zero (ignoring the data during the short settling time).
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Figure 4.2. Results from the constant volume reaction of methane
with oxygen in supercritical water at T = 413 °C and P = 265 bar.
Experiment #09014. (Zero is offset on the vertical axis.)
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Carbon monoxide data are not as complete as the other species. Not all of
the experiments included CO measurements. In addition, CO was the last
species in the sequence of Raman measurements for a given experiment,
meaning that the first CO data point occurred relatively late. As a result, the
initial rise of CO concentration, and its true maximum value, were captured in
only some of the experiments. The CO concentration history in Figure 4.2 is
typical of the 270-bar experiments. An initial rapid rise of CO to a concentration
about 10% of the initial methane concentration in the first minutes is immediately
followed by a decline of CO that parallels the disappearance of methane. In
experiments with excess oxygen, the observed drop in concentration continues to
the CO detection limit, about 0.001 gmol/L.

With the current apparatus, the possibility exists to measure other species
as well. In the tests reported here, only occasional attempts to identify reaction
intermediates were made. During one methane experiment, formaldehyde was
included in the list of Raman spectra recorded. Figure 4.3 shows a formaldehyde
spectrum recorded 200 seconds into a methane run at 403 °C, 138 bar, and fuel-
lean conditions. No calibration is available to determine an accurate
concentration, but if a Raman response no stronger than methane is assumed, a
lower limit of 0.002 gmol/L is obtained for formaldehyde concentration.

Various balances can be used to test the consistency of our experimental
data. For example, Figure 4.4 presents carbon and oxygen balances for the
experiment of Figure 4.2. To perform the balances, the discrete concentration
measurements for each species are fit with a smoothed approximating curve that
permits concentrations to be summed at all times. The line marked C balance
represents the sum of CHy, COp, and CO smoothed concentrations. Theoretically
this line should equal the initial methane concentration—indicated on the graph
as a dashed line. The balance agrees with the theoretical value within 5%. The
early time excess of carbon is due to uncertainty in the carbon monoxide
concentrations: CO concentrations are based on calibrations performed a
different day from the experiments (see Section 2.5.1).

The oxygen balance in Figure 4.4 is calculated by summing O and CO;
concentrations, half the CO concentration, plus the change in CHy concentration
(to account for HO formed). Based on the 49:51 number ratio of O, to Np, this
balance should theoretically lie 4% below the observed N concentrations. In this
example, it falls about 6% below, putting it within 2% of the theoretical value.
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Mass transport of CO; and CO out of the reactor into the external volume could
contribute to this discrepancy. Transport of Oy and Ny is not the likely cause
since diffusion of the two should occur at similar rates. Nor is CHy transport
responsible: methane’s concentration gradient would cause it to enter the reactor,
increasing the value of the oxygen balance. Thus, only diffusion of CO; and CO
contributes to the oxygen deficit in Figure 4.4.

The pressure and temperature histories for the experiment of Figure 4.2
are shown in Figure 4.5. Note that the data points for both pressure and
temperature at time zero are low because they are actually recorded prior to
oxidizer injection, i.e., at the time initial fuel concentration is measured. In this
experiment, there is a temperature rise associated with oxygen injection of about
7 °C. In general, this early temperature rise ranged from 2 - 10 °C for the 270-bar
experiments (see Table 4.1) and was of short duration (see Section 2.5.3). In some
of the least-squares fits of the next section, the first few data points of each
experiment are discarded to eliminate the effects of temperature excursions.

During each 270-bar experiment, the pressure fell 2 - 5%. In the example
of Figure 4.5, the decrease is 12 bar. Part of the pressure drop is due to falling
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Figure 4.5. Pressure and temperature history for the experiment
of Figure 4.2. (Zero is offset on the time axis.)



temperature after the initial increase. In the current example, there is a
temperature drop of about 5 °C that would cause a pressure drop of 7 bar in pure
water at these conditions. An unknown amount of pressure drop is due to
equilibration processes in the unheated external volume, e.g., condensation of
water. The remainder of the observed pressure variation is attributed to non-
ideal behavior of the combustion gases in aqueous solution, combined with
deviations from one-step (equimolar) methane stoichiometry. Pressure leaks
were assumed negligible since non-reacting experiments (e.g., the settling time
experiments in Section 2.5.2) showed less than 1 bar pressure variations.

4.2.5. Global Fit

The data from the 15 high-pressure experiments represent over 550
separate rate measurements covering a range of temperatures, methane
concentrations, and equivalence ratios. To facilitate comparison of these data
with other rate measurements—e. g., the low pressure data from the same
reactor, as well as data from other studies—we fit our data using a one-step, or
global, reaction mechanism:

CH, +20, - CO, +2H,0
The corresponding reaction rate expression is:
d[CH,]/dt =—-k[CH,]'[O,T° 4.1

where the rate coefficient k = A exp(E;/RT), A is the preexponential factor, E, is
the activation energy, R is the gas constant, 4 is the reaction order with respect to
methane, and b is the reaction order with respect to oxygen. Units are in terms of
kcal, gmol, L, s, and K.

To perform the fit, a non-linear, least-squares routine (Marquardt, 1963)
was used with time as the independent variable and methane concentration as
the predicted variable. The four fit parameters were A, E,, 4, and b. Within each
experiment, initial methane concentration, initial oxygen concentration, and
temperature were fixed parameters. For simplicity, instantaneous oxygen
concentration was approximated in Equation 4.1 using one-step stoichiometry,
ie., each mole of reacted methane was assumed to consume two moles of
oxygen. Using our experimental oxygen concentrations would have required
fitting each experiment’s Oy measurements as a function of time and including
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them all in the fitting routine. This approach was rejected as unwarranted in the
simplified global rate analysis, especially since reaction orders with respect to
oxygen were expected to be small (Webley and Tester, 1991).

Substituting for the oxygen concentration, Equation 4.1 becomes:

Lobserved

[CH. L predicrea = [CH i — J -[CH, ]))b dt 42

0

KICH,1°([0, }jisos — 2(ICH, ]

initial initial

The fitting program called an ordinary differential equation solver to numerically
integrate Equation 4.2 once for each observed data point, resulting in a set of
predicted methane concentrations. The quality of the fit was measured by its
variance, calculated using the predicted and observed data. The variance was
calculated using different algorithms in the several fits performed. For the first
fit, Fit 1, variance was based on a simple difference of methane concentrations:

std. deviation
num. data pts. — num. fit params.

z ( [CH4 ] predicted [CH4 ]ob:erved )2
43

variance =

where the input standard deviations were all set to 1. However, since methane
concentration decreases by more than an order of magnitude, this method
produces errors in predictions at long times (low concentrations) that are
proportionately much larger than those at short times (high concentrations). If
the fit parameters 4 and b obtained from Fit 1 (listed in Table 4.2) are
approximated as @ =2 and b = 0, the rate equation (Equation 4.1) becomes

d[CH,)/dt =-k[CH,T*,
or, when integrated,
YICH,1=V/[CH, ]y + k2.

Since this equation is linear in inverse methane concentration, a corrected
variance can be written to weight the data evenly for the case of =2 and b = 0:

z 1/ I:(::[-14 ] predicted ]'/ [CH4 ]ob:erved ‘
1/std. deviation
num. data pts. — num. fit params.

variance = 4.4



Using Equation 4.4 in Fit 2 resulted in a set of parameters that agree with the
assumed values of a ~2 and b ~ 0, as seen in Table 4.2.

Table 4.2 presents the results of several fits. Comparing the first two fits,
note that the variance of Fit 2 is worse than that of Fit 1. (For purposes of
comparison, all variances reported in Table 4.2 are recalculated using Equation
4.3.) Thus the price of correctly weighting the data is an increase in variance.
The improvement in the fit gained by using a corrected variance can be seen in a
graphical comparison of Fits 1 and 2. Figure 4.6 shows that the asymmetric offset
of low concentration points in Fit 1 is corrected in Fit 2. The Fit 2 variance
translates into an average error of 0.011 gmol/L in predicted methane
concentrations. With the exception perhaps of 3 runs out of 15, the fit closely
predicts the observed data: this is most easily visualized by examining the
graphs of observed and predicted concentration histories which are reproduced
in Figure 4.7.

One final fit, Fit 3, was performed for the 270-bar data. It uses the same
variance algorithm as Fit 2, but the first 2 or 3 concentration measurements of
each experiment were discarded to eliminate data taken during the settling
period. Using an abridged data set removes any possible effects due to fuel

Webley
Parameter Fit1 Fit2 Fit3 Fit
Preexponential Factor, log A 27.1 21.3 17.1 114
(units of gmol, L, and s) (£0.99) (£0.60) (£0.49) (#1.1)
Activation Energy, E, 86.9 71.8 60. 42.8
(kcal/gmol) (£3.1) (£1.8) (#1.4) (£4.3)
Reaction Order w.r.t. CHy, a 2.44 2.17 1.8 0.99
(#0.10) (£0.088) (£0.084) (£0.08)
Reaction Order w.r.t. Oy, b 0.68 -0.061 -0.06 0.66

(#0.10)  (#0.062) (£0.065)  (20.14)

Variance 6.5x105  1.1x104 54x105  1.8x109

Table 4.2. Least-squares fit parameters for high-pressure
methane kinetics experiments. For Fits 1,2, & 3, P ~ 270 bar, T =
390 - 442 °C. For the Webley Fit, P = 245.8 bar, T = 560 - 652 °C
(Webley and Tester, 1991). Uncertainties are at the 95% con-
fidence level.
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deficit, temperature excursions, incorrectly estimated initial oxygen concentra-
tions, and incomplete mixing. The first methane measurement retained in each
experiment becomes the initial fuel concentration at time zero, and the initial
oxygen concentration is obtained for the same moment in time by interpolating
the measured data. Of course, this abridged fit discards any information from
the reaction’s induction period. For several reasons, this was deemed acceptable.
First, the simple reaction rate expression being used, Equation 4.1, is not
appropriate for modeling the induction period. Second, the fit is to be used in
the comparison of overall reaction rates at varying pressures and temperatures—
a function not requiring such details. Finally, information on reaction rates for
the extended period that follows induction is valuable for use in engineering
models of SCWO.

Table 4.2 includes the results of Fit 3. Not surprisingly, it has the best
variance of the three fits. Comparing the two fits performed using a corrected
variance expression (Fits 2 and 3), the abridged data set is seen to reduce all fit
parameters 10 to 20% but reinforce a conclusion that reaction order with respect
to methane is significantly higher than unity, and reaction order with respect to
oxygen is effectively zero. To put these results in perspective, the published fit
parameters from Webley’s methane oxidation experiments (Webley and Tester,
1991) are included in Table 4.2. Webley’s experimental apparatus dictated initial
methane concentrations in the range 0.001 - 0.004 gmol/L, about 2 orders of
magnitude lower than our initial concentrations, and about equal to our lowest
measured values. They chose a temperature range (560 - 652 °C) well above ours
since their residence times (~ 10 s) were several orders of magnitude shorter.
Their higher temperature range means that their water densities were 2 - 5 times
lower than in the current experiments.

Table 4.2 reveals that our Fit-3 parameters differ significantly from those
of Webley. First, our activation energy is significantly higher than their value,
indicating a much stronger temperature dependence. Second, at our elevated
concentrations, reaction order with respect to methane concentration is nearly
double their number. This means that estimates of reaction rates based on low-
concentration experiments would severely underpredict rates at higher
concentrations, e.g., at concentrations typical of commercial SCWO processes.
Previous SCWO kinetic studies of several fuels mostly report (or assume) a first-
order rate dependence on fuel concentration. Values of fuel reaction order close
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to unity have been determined for methane, carbon monoxide, methanol, and
hydrogen (Webley and Tester, 1991; Holgate and Tester, 1994a; Tester, et al.,
1993b; Holgate and Tester, 1993). The same was found for phenol (Thornton and
Savage, 1990), acetamide, and acetic acid (Lee and Gloyna, 1990). In light of our
results, it is interesting to note that Yang and Eckert (1988) found a reaction order
for p-chlorophenol that increased from 1 to 2 as concentration was increased.

A third difference seen in comparing parameters of Table 4.2 involves
reaction order with respect to oxygen. The oxygen order is the same in Fit 1 as in
Webley’s fit, but when the low-concentration bias is removed in Fit 2 and Fit 3,
the oxygen order becomes effectively zero for our experiments. Zero-order
oxygen dependence in SCWO chemistry has been observed in prior studies of
methanol and carbon monoxide (Tester, et al., 1993b; Helling and Tester, 1987).
Finally, the variances of the fits in Table 4.2 can be compared. Since the variances
are a measure of average squared errors, the square roots of these numbers
represent average errors in the predicted concentrations. Dividing the square
roots of the variances by average initial fuel concentrations produces a relative
average error of 9% in Fit 3 and 1% in the Webley Fit.

There are several uncertainties inherent in the global fits. First, empirical
fits to global reaction mechanisms cannot be safely extrapolated beyond their
range of experimental conditions. Second, the preexponential factor and
activation energy are highly correlated (correlation coefficient = 0.98) in each of
these fits, meaning that a change in A can be compensated by a change in E,.
Thus similar variances can result in two fits with significantly different fit
parameters. Finally, it should be emphasized that empirically derived
parameters are not strongly tied to actual physical parameters since the actual
chemistry is far more complex than the one-step mechanism used in the fits.

Because of these uncertainties, the differences between Webley’s and the
current fit's parameters in Table 4.2 do not necessarily mean that the data sets are
inconsistent. In fact, the data from both experiments can be fit simultaneously
without a large increase in variance over Fit 3. Table 4.3 shows the results of
such a combined fit. In order to give the data sets equal weighting, the Webley
set was duplicated as necessary to yield the same number of points as in our set.
To compensate for the difference in concentration range, the input standard
deviations were set to 1 for our data, and 0.01 for the Webley data. Since the
Webley data doesn't follow a second-order methane dependence, variance for all
data was calculated using Equation 4.3. The resulting variance of the
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combination fit, listed in Table 4.3, does not increase greatly over Fit 3, indicating
a comparable overall fit. The error on the Webley points increases so that the
average relative error on that set (based on initial concentrations) is about 10%—
the same as on the Sandia set. The increase in reaction order with respect to
oxygen is an unfortunate artifact of the fit since it implies a sensitivity to oxygen
higher than in either the current or Webley fits.

Parameter Combined Fit
Preexponential Factor, log A 24.67
(units of gmol, L and s) (%0.088)
Activation Energy, E, 80.9
(kcal/gmol) (0.20)
Reaction Order w.r.t. CHy, a 1.74

(0.048)
Reaction Order w.r.t. Oy, b 1.24

(20.040)
Variance 8.8x105

Table 4.3 One-step reaction mechanism parameters for the
combined fit.

The relative success of the combined fit in matching the current data can
be seen in Figure 4.7 which includes concentration profile predictions of the fit
for each of the current experiments. The combined fit also matches the Webley
data well, as indicated in Figure 4.8. Thus in spite of significant differences in
operating conditions of the two experimental studies, the combined fit provides
an estimate of methane oxidation rates in supercritical water for the full range of
temperatures from 390 - 630 °C and concentrations from 104 to 10-1 gmol/L.
This fit is appropriate for use in engineering models of SCWO. The results
underline the danger of using models based on experiments conducted at
concentrations well below the intended application. A model based on such data
alone would significantly underpredict reaction rates at typical SCWO initial
concentrations, leading to designs with overly long residence times or
unnecessarily high operating temperatures.
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4.3. Kinetics Measurements In Subcritical Water

An important variable in the design of SCWO processes is the choice of
operating pressure; existing commercial processes cover a wide range of
pressures from sub- to supercritical. However, few experiments have been
performed to reveal the effect of pressure on oxidation kinetics in this
environment. Holgate and Tester (1994a) studied the effects of operating
pressure on the kinetics of Hz and CO. Their experiments were performed at
constant initial fuel concentrations of 106 gmol/L while pressure was varied
between 120 and 260 bar by adjusting the water fraction. Their results showed a
several-fold increase in apparent first-order rate constant (k”, from the expression,
rate = k"[CH4] ) with increasing pressure over this range. This section describes
current experiments conducted to measure the effects of water density on the
rate of methane oxidation. These experiments comprise the first two groups
listed in Table 4.4. The third group of experiments listed in Table 4.4,
experiments performed in argon, is discussed in Section 4.4.
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4.3.1. Experimental Conditions

The first two categories in Table 4.4 contain all the experiments conducted
in subcritical water. The first group was performed at a constant pressure of 135
bar over a range of temperatures. The second group covers a wide range of
subcritical pressures at a constant temperature of about 412 °C. For all these
experiments, initial methane concentrations were held approximately constant,
while pressure was controlled by adjusting the initial fraction of water.

Avg. Avg. Temp. Press. Initial Initial  Initial Run # of
Exper. Temp Press Range Range [Oo] [CH4] Equiv. Time  CHg
# (°C)  (bar) (°C) (bar) (gmol/L) (gmol/l) Ratio (min) Points
Experiments in H20 at 135 bar:
06174 404 139  404-405 139 0.40 0.016 0.08 40 15

06274 404 144  404-406 143-146 0.43 0.111 0.52 115 33
07064 415 136 414-424  135-137 0.32 0.128 0.80 65 25
07074 419 138 419-426  137-140 0.38 0.133 0.70 45 18
07134 398 137 396-398 136-138 0.42 0.109  0.52 150 42
07144  3AH 136  388-392 135-139 0.34 0.103  0.61 180 56
08054 402 135 401-407  134-139 0.38 0.143 0.75 175 44
09164 412 136 411-439  136-139 0.33 0.160 0.97 60 15
09284 411 134 410-417  134-138 0.26 0.119 0.92 125 29
10034 410 134  410-418 133-138 0.24 0.142  1.18 120 26
10074a 412 136 410-417  135-139 0.18 0.121 1.35 40 6
10074b 412 139  411-413  138-142 0.22 0.102  0.92 50 11
Experiments in H20 at other pressures:
10114 411 69 410-414 68-70 0.22 0.115 1.05 120 27
10124 410 35 410-411 35 0.28 0.114 0.82 170 36
10134 412 50 411-414 49-50 0.25 0.102 0.82 140 29
10144 412 62 410-414 62-63 0.25 0.104 0.83 150 32
10184 412 202 411-412  201-209 0.27 0.106 0.78 115 25
Experiments in argor::
08174 412 277  411-424 276-280 0.47 0.146  0.62 90 25
08184 412 138 411-414  138-139 0.38 0.139 0.73 120 32
08234 411 171 409-415  171-172 0.40 0.129 0.64 140 36

Table 4.4. Summary of kinetics experiments in subcritical water
and in argon.



Temperatures for all the experiments in Table 4.4 are above the assumed
mixture critical temperatures as discussed in Section 4.2.1. As pressure drops
below the critical pressure (Pcrit = 221 bar for pure water), the mixtures are no
longer considered supercritical. The temperatures are high enough, however,
that the mixtures are still single phase, existing as mixtures of dense gas and
superheated steam.

The first group of experiments were performed at a constant pressure to
permit the same global fit analysis as in Section 4.2.5. The temperature range, 391
- 419 °C, was similar to the 270-bar experiments, although the range was reduced
at the high end: reaction rates were faster at these pressures, making
experiments at temperatures as high as 440 °C impossible in our apparatus. At
these conditions, water density varies from 0.051 - 0.058 gm/cc. Fuel equivalence
ratios covered a comparable range to the earlier experiments.

In the second group of experiments in Table 4.4, initial water fraction was
varied extensively while initial methane concentration was held approximately
constant at 0.1 - 0.15 gmol/L. Pressures ranged from 35 - 200 bar. At the lowest
pressure, the water fraction was 0, so that the initial load was entirely methane.
Temperatures for these experiments were held constant at ~410 °C to facilitate a
comparison of rates. Controlling fuel equivalence ratios was difficult, and
constant equivalence ratios were not achieved. However, the small oxygen
reaction orders determined in both the 135-bar (see below) and the 270-bar global
fits suggest an insensitivity to initial oxidizer concentration.

4.3.2. Experimental Procedure and Data Reduction

The procedure and data reduction for the subcritical experiments is the
same as detailed in Section 4.2.2 and 4.2.3.

4.3.3. Experimental Results

Experiments at 135 bar

Figure 4.9 shows the concentration histories for an experiment at 139 bar
and 412 °C. Other than the lower water density, conditions for this experiment
are similar to those of experiment 09014 of Figure 4.2. Comparing the fuel
disappearance rate in the two figures is complicated by the lower initial methane
concentration in the 139-bar experiment. However, by looking at the time
required for fuel concentration to drop from a value of 0.1 gmol/L down to zero,
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it is clear that rates are faster in the lower pressure experiment. This surprising
result, which is not anticipated by detailed kinetics models nor by previous
experiments, is examined further in Section 4.5.
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Figure 4.9. Concentration histories from the constant volume
N oxidation of methane in water at T = 412 °C and P = 139 bar.
Experiment #10074b.

Carbon and oxygen balances (performed as in Section 4.2.4) for the
experiment in Figure 4.9 are displayed in Figure 4.10. The carbon balance reveals
a fuel deficit developed during the oxidizer injection. Following a settling time
of 3 minutes, the balance remains constant. Fuel deficits, not significant in the
high-pressure experiments, show up at lower pressures both because initial fuel
mole fractions are higher, and because the quantity of oxidizer injected
constitutes a larger fraction of the final reacting mixture. The early deficit of
carbon in the balance, and its relative stability thereafter, led to our decision to
discard early data points in the global fit analysis of the 135-bar data.

The oxygen balance in Figure 4.10 is several percent high, due in part to
the carbon deficit. Missing carbon and reacted carbon are indistinguishable in
this balance, and both are counted as having consumed oxygen, leading to a
surplus in the balance.
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Figure 4.10. Carbon and oxygen balances performed on the
experiment of Figure 4.9.

As in the 270-bar experiments, total pressure in the 135-bar experiments
drops steadily following oxidizer injection. At the lower densities, however, the
decline is slower—about half the rate of the high-pressure runs. Temperature
rises occur during oxidizer injection as in the high-pressure runs (Section 4.2.4),
with similar settling times. The observed carbon monoxide concentration
profiles appear as in the earlier experiments.

Experiments at other pressures

The second group of experiments listed in Table 4.4 covers a range of
subcritical pressures from 35 - 200 bar at an approximately constant temperature
and initial fuel concentration. Concentration histories of three of the experiments
are plotted in Figure 4.11 to illustrate differences in the settling period with
changing pressure. The drop and subsequent rebound of methane concentration
is conspicuous in Figure 4.11-a, which shows results of the lowest pressure
experiment. This experiment started with an initial load of 100% methane (no
water) at 6.8 bar, with pressure settling at 35 bar following oxidizer injection. In
this experiment, the ratio of the moles of oxidizer injected to the moles initially
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Figure 4.11. Concentration histories from the constant volume
oxidation of methane in water at T ~ 411°C. (a) P = 35 bar,
experiment #10124; (b) P = 50 bar, experiment #10134; (c) P =62
bar, experiment #10144. (Zero is offset on the vertical axes.)



loaded in the reactor was at a maximum. As a result, the fuel deficit provoked by
oxygen injection is the highest of all experiments. A carbon balance similar to
Figure 4.10, but at the conditions of Figure 4.11-a, indicates a constant fuel deficit
of about 40% following the settling period. These same conditions also maximize
the driving potential for back-diffusion of methane into the reactor following
injection. The observed rebound of methane concentration can be attributed to
both mixing and the back-diffusion. To quantify the settling time at 35 bar, a
non-reacting, settling time experiment was performed (see Section 2.5.2); the
results show that fuel concentration stabilizes to within 5% of its final value (40%
below the initial concentration) in 14 minutes.

The experiments plotted in Figure 4.11-b and 4.11-c were performed at in-
creasing pressures, i.e., at increasing initial water fractions. Inspection of the
concentration histories shows that fuel-concentration rebound diminishes with
pressure. The steady-state fuel deficits as measured by carbon balances decrease
as well.

The settling time effects described above complicate the comparison of
experimental data at the different pressures. The strategy adopted is to discard
data points during the settling period. The next section discusses using this
strategy in a global fit of the 135-bar experiments, and Section 4.5 returns to this
topic in a comparison of rates at pressures from 35 - 270 bar.

4.3.4. Global Fit

The data from the 135-bar experiments represent 320 separate rate
measurements covering a range of temperatures, methane concentrations, and
equivalence ratios. To facilitate comparison with the 270-bar experiments, the
data were fit to the same one-step reaction rate expression, Equation 4.1. Several
algorithms were used in separate fits, with results as shown in Figure 4.12.

As for the 270-bar experiments, a bias at low concentrations occurs when
using a varijance based on simple methane concentrations (Figure 4.12-a). As
previously discussed, this artifact is corrected by computing variances based on
inverse concentrations (Figure 4.12-b). This procedure doesn’t eliminate several
conspicuous outlier points, however. Some of these are simply artificially low
data points recorded early, during the settling period. In contrast, the horizontal
alignment of several outlier points conspicuous in Figure 4.12-b is caused by the
fuel deficit in the following way. When methane concentration drops due to
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oxidizer injection (not oxidation), the fitting model assumes that the fuel has re-
acted with oxygen. This leads to over-consumption, and in some cases, depletion
of oxygen in the model predictions. Premature depletion of O leads to a model
prediction of constant fuel concentration, i. e., a horizontal alignment of some of
the data in Figure 4.12-b. The final fit, labeled Fit 4 and shown in Figure 4.12-c,
was performed after discarding the first 2 data points of each experiment. This
strategy removes a few of the data points from the graph, but also brings many
others in better agreement by correcting the oxygen over-consumption problem.

Parameters derived from Fit 4 are presented in Table 4.5. Using these 4
parameters in the one-step reaction mechanism yields the predictions of methane
concentration histories shown in Figure 4.13. The empirical rate expression does
a good job representing the observed data over most of the range of operating
conditions. Data from one experiment stands out as containing most of the error
of the fit. This is the lowest temperature experiment of the 135-bar data set, and
Fit 4 is unable to accommodate these data well. A more even distribution of
experimental temperatures would provide a better estimate of the reaction rate’s
temperature dependence.

Comparing the 135-bar fit parameters in Table 4.5 with the high-pressure
fits in Table 4.2 indicates much higher values for preexponential factor and acti-
vation energy at lower pressure. As with the high-pressure fits however, the

Parameter Fit4
Preexponential Factor, log A 35.
(units of gmol, L and s) (£3.6)
Activation Energy, Ej 115.
(kcal/gmol) (£11.6)
Reaction Order w.r.t. CHy, a 1.8

(#0.14)
Reaction Order w.r.t. Oy, b 0.15

(0.075)
Variance 3x105

Table 4.5 One-step reaction mechanism fit parameters for the
abridged set of 135-bar data. The variance used in Fit 4 is based
on Equation 4.3, but the reported value for variance is based on
Equation 4.4 for comparison purposes.
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correlation coefficient for these two parameters is high: when one parameter is
varied, the other can compensate. (Compensation in this case means that the
preexponential factor and activation energy move in the same direction.) Thus,
the simultaneous increase in the two parameters may not be as significant as the
numbers imply. The reaction orders with respect to methane and oxygen are
close to those of Fits 2 and 3 in Table 4.2.
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Figure 4.13. Comparison of the Fit 4 predictions and observed
methane concentration histories for the abridged, 135-bar
experiments.



4.4. Kinetics Measurements In Argon

In order to complement the experimental examination of the effect of water
density on oxidation kinetics, argon was substituted for water in three
experiments listed in Table 4.4. Temperatures, initial fuel concentrations, and
initial equivalence ratios were held approximately constant at values matching
the earlier sequence of subcritical water experiments. Three pressures (argon
densities) were selected: 138,171, and 277 bar. The maximum pressure of these
experiments matches the highest pressure of the water experiments.
Experiments to match argon number density to the highest water number density
would be desirable, but would require argon pressures over 500 bar. Such
experiments were not possible due to reactor pressure limits.

Figure 4.14 shows results of the argon experiment performed at 138 bar
and 412 °C. The results are qualitatively similar to the water experiments. A
settling time experiment using nitrogen in place of oxygen-nitrogen showed that
the fuel deficit was 7% at these conditions, with a settling time of 1 minute—an
improvement over the water experiments. Reaction rates differ from the water
experiments as well, and are discussed in Section 4.5. Concentration profiles of
carbon monoxide are similar in shape and magnitude to the water experiments.
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Figure 4.14. Concentration histories from the constant volume
oxidation of methane in argon at T = 412 °C and P = 138 bar.
Experiment #08184. (Zero is offset on the vertical axis.)
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4.5. Density Dependence of Kinetics

There are several ways that varying water density can affect reaction rates
in supercritical water oxidation experiments. First, varying water density by
changing pressure (alone) affects reactant concentrations. That is, if the
feedstream composition is held constant, then varying pressure results in
changes in both water and reactant number densities. It is difficult to separate
the effects of each on the observed reaction rates. The current experiments were
performed at approximately constant initial fuel concentration to eliminate this
difficulty. A second effect of water on reaction rates derives from its role as the
most important collision partner in unimolecular reactions. Rates for such
reactions, as long as they are not at their high-pressure limits, depend on water
concentration. Third, water can be a direct participant in elementary reactions:
an important example is the chain-branching step, HoO + HOp — HpO3 + OH
(Holgate and Tester, 1994b). Finally, there is the thermodynamic effect of
pressure on reaction rate coefficients. Transition state theory indicates that the
change in rate coefficient with pressure is proportional to the activation volume,
i.e., the difference between partial molar volumes of reactants and the transition
state complex. In supercritical water, this effect can be significant since activation
volumes can be large (Brennecke, 1993).

Experimental comparisons of rates at varying pressures are facilitated in
the case of overall reactions that follow first order kinetics. In that case, the time
required to destroy a certain fraction of fuel (i. e., the first-order time constant) is
the same regardless of the starting fuel concentration. The first-order time
constants or their inverses, rate constants, are used to compare experiments
performed at varying concentrations, pressures, and temperatures. The results of
our global fits indicate that methane reaction orders are well above unity at our
experimental conditions, making such comparisons more difficult. To eliminate
this difficulty, comparisons in this section are performed at constant initial fuel
concentrations.

Figure 415 compares one experiment from the 270-bar group and one
from the 135-bar group with approximately the same initial equivalence ratio (&)
and temperature. Time zero has been shifted to an initial fuel concentration of
0.05 gmol/L for each experiment. The graph shows that methane is consumed
noticeably faster in the lower pressure experiment. The same result is observed
for every pair of experiments from the two groups that is similar enough in



operating conditions to compare. An even clearer comparison can be obtained
by approximating the experimental concentration profiles using the global fits of
Sections 4.2.5 and 4.3.4. With this strategy, exactly the same initial methane
concentration, fuel equivalence ratio, and temperature can be specified at both
pressures. Figure 4.15 includes predicted profiles of Fits 3 and 4 with initial
conditions chosen to match the experimental conditions. Once again, the results
indicate that consumption of methane proceeds far more rapidly at the lower
pressure.
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Figure 4.15. Comparison of observed and predicted methane
concentrations at two pressures and similar initial conditions.
Experiments #09014 and #09284.

The second group of experiments listed in Table 4.4 extends the pressure
range of measurements made at T ~ 412 °C and permits the comparison of
reaction rates over a wide range of water densities. To compare all the
experimental data at this temperature, a characteristic time is defined as the time
required for an initial concentration of 0.05 gmol/L of methane to be reduced to
1/e of the original amount. All data at concentrations greater than 0.05 gmol/L
are ignored, eliminating all points from the settling period of each experiment.
The remaining points are fit with an interpolating curve, and the 1/e time is
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determined for each experiment. Inverting the characteristic times yields
apparent first-order rate constants, plotted in Figure 4.16 as a function of water
number density. Density of the buffer (water or argon) is calculated using the
NBS/NRC empirical equation of state for water (Haar, ef al., 1984), with the
Peng-Robinson equation of state (Peng and Robinson, 1976) used for the
combustion gases; mixing is assumed to be ideal.
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Figure 4.16. Comparison of methane oxidation rate constants as a
function of buffer number density. Results are shown for both
water and argon as buffer. Initial [CHy4] = 0.05 gmol/L, T ~ 412 °C,
lean mixtures.

The circles in Figure 4.16 indicate the trend of rate constants as water
density is increased from zero to values typical of SCWO. Initially, rates rise
with pressure as water content is increased. However, at a pressure over 200 bar
([H20] ~ 4.5 gmol/ L), the trend is reversed and the rate drops significantly as
pressure is increased to 270 bar ( [H0] ~ 7.5 gmol/L). In future work, this graph
will be filled in with additional experimental data. However, it should be
emphasized that the trends indicated in Figure 4.16 are supported by the
ensemble of all the experiments performed at 135 and 270 bar. The two solid
symbols in Figure 4.16 represent apparent first order rate constants predicted



uéing Fit 4 for the low density point, and Fit 3 for the high density point. These
fits represent more than 800 concentration versus time measurements, each of
which constitutes a separate rate measurement. The two are thus potent data
points, and they agree with the trend of the rest of the data in Figure 4.16.

Also included in Figure 4.16 are rates for the argon experiments. At zero
water density, the argon and water points coincide since the reacting mixture at
these conditions contains fuel and oxidizer only, with no buffer present. Note
that the highest density point for argon and the highest density point for water
represent the same experimental pressure; densities are higher in water due to
its low compressibility (at 200 bar and 410 °C, Zyater ~ 0.67 while Zargon ~ 1.06).
The graph shows that argon rate constants rise steadily with density over the
range examined. Examining the data below 2 gmol/L, the increase in rates with
density appears similar for water and argon. At densities of 4 gmol/L, however,
the increase in water’s rate is significantly greater than argon’s. Future argon
experiments in a reactor with a higher pressure rating are required to determine
if there is an eventual density-dependent downturn in rates.

The downturn in rates with increasing water density was unexpected,
based on the few previous studies of pressure dependence in supercritical water
that have been published. Although no previous variable pressure studies of
methane exist, the rate of conversion of phenol was found to increase steadily
over a wide range of water densities from 6 to 28.6 gmol/L (Thornton and
Savage, 1992). To correlate their data, they included a concentration term and
reaction order for water ( [H20]%7) in their global reaction expression. Including
such a term in the global fit of our data is not feasible since it would be unable to
correlate our non-monotonic results. In another study, constant fuel
concentration experiments were conducted using hydrogen and carbon
monoxide (Holgate and Tester, 1994a). Rate constants for both fuels steadily
increased over the density range of 1.8 - 4.6 gmol/L. Note however that this
range does not include densities where our rate constants reverse in trend.

In addition, the literature contains studies of the effect of pressure on rates
in non-aqueous supercritical fluids that offer some insights. Brennecke (1993)
reviews such studies, outlining the factors that affect reaction rates in
supercritical fluids, including pressure, diffusion, and local concentration. In the
discussion of pressure effects, the influence of potentially large activation
volumes is emphasized. From transition state theory, activation volumes
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determine the pressure dependence of reaction rate coefficients through the
expression:

T&mk

RaP

=—AV® - RTk,

where k is the concentration-based rate coefficient, AV* is the activation volume,
and kr is the isothermal compressibility. Calculation of the activation volume
requires knowledge of the partial molar volume of the transition state, a quantity
seldom known. Brennecke notes that activation volumes for supercritical fluids
are often negative, which implies increasing rates with pressure. Of course, an
elementary reaction could accelerate by this mechanism and still contribute to
our observed drop in global rate if it were a back-reaction that slowed the
consumption of fuel.

The many influences of supercritical water on oxidation reactions suggest
explanations for our pressure-dependent rates. However, such theories are best
discussed in terms of detailed reaction mechanisms rather than global
mechanisms, as presented in the next chapter.

4.6. Conclusions

Our kinetics experiments produced data that characterize the oxidation
rate of methane in water at conditions close to those of commercially designed
SCWO processes. The experiments performed in an optically accessible reaction
cell demonstrated the utility of Raman spectroscopic methods of determining in
situ concentrations of major combustion gases in supercritical water
environments. These experiments at relatively high fuel concentrations and long
residence times complement prior measurements made in flow reactors with low
concentrations and short residence times. Our measurements were subject to
uncertainties due to reactor communication with external, unheated volume and
due to finite mixing times.

The fit of our 270-bar data to a global reaction rate expression indicates
significant deviation from prior published results. At our conditions, the derived
activation energy is nearly twice the previously published value for low-
concentration data. The reaction order with respect to methane for our data is
close to 2, while earlier results have mostly found values of unity for methane



and other simple fuels. These differences are attributed to the higher range of
fuel and water concentrations examined in the present experiments.

Experiments conducted over a wide range of water densities at constant
initial fuel concentration, equivalence ratio, and temperature revealed an
unexpected reversal in the influence of pressure on reaction rate. At pressures
above the water’s critical pressure, the reaction rate constant for methane
decreased with increasing pressure. Experiments with argon substituted for
water showed no such trend although results covered a reduced range of
densities.

79



80



5. Model Assessments

This chapter compares our experimental data with predictions from mod-
els of supercritical water oxidation chemistry. Several computational tools are
currently under development that have been specifically designed to handle the
high-density, aqueous environment of SCWO. Coming from various research in-
stitutions, these tools include elementary reaction mechanisms, equations of
state, and computer subroutine packages. In this chapter, a current selection of
tools are used to model both our kinetics and flame ignition data. The objective
is to report on the predictive capabilities of existing models. The modification of
these tools to improve their performance is beyond the scope of this study, al-
though information is highlighted that will guide the further development of
SCWO models.

5.1. Kinetics Models

Several elementary reaction mechanisms designed for SCWO have been
published. The starting point chosen for these efforts has been the validated
mechanisms that exist for gas-phase oxidation of simple hydrocarbons (Warnatz,
1984; Norton and Dryer, 1989; Wilk, et al., 1989; Yetter and Dryer, 1991). In ap-
plying these mechanisms to supercritical water environments, a hypothesis is
made that reactions are dominated by gas-phase, free radical chemistry rather
than the ionic chemistry of liquids (Holgate and Tester, 1993). This hypothesis is
supported by examining several properties of supercritical water at typical pro-
cess conditions: the ionic dissociation constant of water is about 10-20, or six or-
ders of magnitude lower than liquid water (Marshall and Franck, 1981); the di-
electric constant, a measure of molecular association, is an order of magnitude
lower than liquid water (Uematsu and Franck, 1980); and SCWO transport coef-
ficients resemble gas-phase more than liquid-phase properties (Lamb, et al.,
1981). Further support of the hypothesis comes from experimental evidence of
free-radical reactions in SCWO reactions (Antal, ef al., 1987), as well as from past
successes in applying models based on the hypothesis (Holgate, 1993).

Efforts to adapt elementary reaction models to SCWO were begun by
researchers at MIT. They began by testing an atmospheric-pressure Hy-CO
mechanism, using non-unity compressibilities to modify rates via the
equilibrium constants (Helling and Tester, 1987). This was followed with a
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model for methane and methanol in which rate coefficients of some unimolecular
reactions were adjusted to their high-pressure limits and the collisional efficiency
of water was included (Webley, 1989). This model predicted their experimental
oxidation data well in the case of methanol, but underpredicted conversion of
methane by a factor of four. Butler and colleagues (Butler, et al., 1991; Schmitt, ef
al., 1991) performed a similar analysis using data from experiments performed at
Sandia (Bramlette, et al., 1990). More recently, Holgate has reformulated
Helling’s carbon monoxide and hydrogen mechanism and demonstrated success
in predicting experimental data (Holgate and Tester, 1994a; Holgate and Tester,
1994b). This work has been recently incorporated into a new mechanism for
methane and methanol oxidation developed by Pitz and collaborators (Alkam, et
al., 1995).

The Pitz mechanism is tested in this chapter against our experimental
results. Most experimental data available to date for comparison with reaction
models are based on hydrocarbon concentrations well below typical SCWO feed
concentrations. As a result, comparison to our data provides a first opportunity
to assess the models at elevated, process-like fuel concentrations.

5.2. Methane Model

The Pitz mechanism combines Holgate’s H-CO mechanism (Holgate and
Tester, 1994b) with the Norton-Dryer ethanol mechanism (Norton and Dryer,
1992) and the Pitz-Westbrook Cy mechanism (Pitz, et al., 1991). Pitz made minor
changes when assembling these sub-mechanisms (Alkam, et al,, 1995). In his
kinetics study, Holgate chose a low value of heat of formation for HOy (within
the range of published values) in order to best match his experimental data
(Holgate, 1993). Pitz specified a higher value for the HO, heat of formation, but
then altered the rates of two reactions in Holgate’s mechanism within their
uncertainties (Reactions 12 and 13 in Section 7.1) in order to maintain good
agreement with the Holgate experimental data (Pitz, 1995) . In addition, the rates
of several decomposition reactions from the Norton-Dryer and Pitz-Westbrook
mechanisms were modified to their high-pressure limits (Alkam, ef al., 1995).
The authors chose to write explicitly, as forward and reverse pairs, all reactions
not in the Hp-CO sub-mechanism. To determine reverse rate parameters, they
used the Chemkin thermodynamic data base (Kee, et al., 1990) with a single
exception noted in their report (Alkam, et al, 1995). The Pitz mechanism



predicted reasonably well the data from Webley’s methanol and Holgate's
hydrogen experiments, although in extrapolations to longer times, the Pitz model
deviated strongly from Holgate’s global rate expression for hydrogen.

For the current modeling effort, the Pitz mechanism with all Cy species
removed has been adopted (referred to below as the Pitz-C1 mechanism). Our
initial tests showed that inclusion of Cs chemistry has no noticeable effect on
major species profiles—evidence that a low concentration of methyl radicals and
an abundance of water molecules in our environment inhibits formation of Cs
species. The 21 species and 147 reactions used in the Pitz-C1 mechanism are
listed in the Appendix, Section 7.1.

To simulate our kinetics experiments, an isobaric, isothermal, plug-flow
reactor model was chosen. Although the experiments were actually performed
in a constant volume reactor, this model approximates the experimental
conditions and is more convenient. The experimental data indicate that pressure
and temperature varied over only a small range, especially in the case of the
abridged data sets discussed in Chapter 4. The driver program for our model
uses Chemkin (Kee, ef al., 1991) and Chemkin Real Gas (Schmitt, et al., 1993)
subroutine packages to solve the single (mass) conservation equation.
Thermodynamic information is taken from the data bases associated with both
packages. Because of our interest in the effects of water density, subroutines
have been added to the driver program to more accurately calculate water
concentration. The Peng-Robinson equation of state (Peng and Robinson, 1976)
available in Chemkin Real Gas does a poor job of estimating water concentration
at the lowest experimental temperatures, so it is used only for non-aqueous
species. Water densities are handled with the empirical NBS/NRC equation of
state (Haar, et al., 1984).

The principle of mass action for the reaction aA +bB — cC +dD,

rate = k,[A)[BY, 5.1

is often applied in non-ideal systems, but several difficulties must be addressed.
The proper form of the equation derived from transition state theory for reactions
in solution is (Levine, 1995):

an,b
rate =k __7;73 [A][BY, 5.2

#
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where k7 is the rate coefficient at infinite dilution, y,andy, are the
concentration-scale activity coefficients of the reactants, and ¥, is the activity
coefficient of the transition state complex. Thus the correct apparent rate
coefficient k, for Equation 5.1,

k=k7 ?’_ﬁ?’_f;_ 5.3
’Y$
is a function of temperature as well as composition and pressure (through the
activity coefficients). In practice, particularly in dilute systems, the effect of
changing composition on rates is minor, and the quotient in Equation 5.3 is
approximated as a constant. The term &7 is the rate coefficient that applies in the
limit as [A] and [B] go to zero, and is dependent on the identity of the solvent as
well as temperature. This derivation for liquid solutions is also valid for
nonideal-gas reactions, with fugacity coefficients replacing activity coefficients.
Prior SCWO modeling efforts have addressed some of these issues. For
example, the Chemkin Real Gas package (Schmitt, et al., 1993) provides
subroutines to calculate equilibrium constants for real-gas mixtures. In these
subroutines, the equation describing chemical equilibrium contains both fugacity
coefficients and compressibilities:

K, =K.K,(ZRT/R)" 5.4

where Kgq is the equilibrium constant, K; is the product of concentrations raised
to the power v, Ky is the product of fugacity coefficients raised to the power v, Z
is the mixture compressibility, and v are the stoichiometric coefficients (a, b, -c,
and -d). If the forward rate coefficients, kf, provided by the elementary reaction
mechanism are correct, reverse rate coefficients can be calculated using the
corrected equilibrium constant:

k=—L, 55

Unfortunately, the k¢ available to use in Equation 5.5 normally don’t
include the corrections of Equation 5.3 which could become significant in dense
supercritical water. In the past, forward rate coefficients used in SCWO models
have been gas-phase values. Select unimolecular reaction rate coefficients have
been adjusted to their high-pressure limits, but they have not been adjusted to



account for any water-reactant interactions (i. e., they are not k}"), nor do they
account for non-unity fugacity coefficients. As a simplification in previous
studies, fugacity coefficients have been assumed equal to 1, justified by the
relatively high temperatures and low densities involved (Webley and Tester,
1991; Holgate and Tester, 1993; Alkam, et al., 1995). This assumption
conveniently eliminates all of the real-gas correction factors except for & in
Equation 5.2 and Z in Equation 5.4. Although our kinetics experiments were
conducted at higher densities than previous work, fugacity coefficients are
assumed equal to 1 for the current modeling as well. The decision is based on (1)
a current inability to accurately calculate fugacity coefficients, particularly for
radical species and transition state complexes; (2) relatively large uncertainties
that exist in forward rate coefficient data for SCWO; and (3) the fact that this
assumption has already been incorporated in all the reverse reactions that are
written in explicit form in the Pitz mechanism.

5.3. Rate Prediction

The performance of the current model at conditions of one of the methane
experiments is assessed in Figures 5.1 and 5.2. Comparing the time scales of the
two figures, it is evident that the elementary mechanism dramatically
overpredicts reaction rates at these conditions. The time required to consume the
methane in the experiment is approximately six times longer than in the model.
Comparing concentration profiles is of limited value given the disparity in rates,
but if time were non-dimensionalized by a characteristic destruction time, the
profiles of CHy, Oy, and-€0; would be similar. In contrast, the profiles of CO
concentration appear different. The difference can be seen if one compares the
CO profiles at the time that CH4 concentration is equal to CO; concentration on
the two graphs. At this time in Figure 5.2, predicted CO concentration is at its
maximum of 0.5 gmol/L. At this time in Figure 5.1, however, either the
maximum CO concentration is smaller than the predicted value, or the
concentration is already falling and the maximum occurred earlier in time.

Figure 5.3 presents a second comparison of model predictions with meth-
ane oxidation data from the Webley experiments (Webley and Tester, 1991) and
from the current experiments. In the upper left of Figure 5.3, the solid symbols
are Webley’s data reduced assuming first-order kinetics (the term first-order here
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implies first-order in methane concentration and zeroth-order in oxygen). The
line through the data is their reported best-fit, first-order rate equation. The cross
symbols?located above their data are predictions of the Pitz-C1 model obtained
by integration to the experimental final methane concentrations. The model
overpredicts the observed rates by a factor of e, but accurately captures the
activation energy (slope) of the data. It should be pointed out that the Pitz-C1
model shows significant improvement over the original attempt to model this
data (Webley and Tester, 1991).

The current methane data is represented by solid symbols in the lower
right of Figure 5.3. Manipulating the data to extract a first-order rate coefficient
is difficult since the observed methane reaction order deviates significantly from
unity (see Section 4.2.5). One way to proceed is to remove initial methane and
oxygen concentrations as variables in the comparison. This is done by
approximating the observed data using Fit 3 of Section 4.2.5, while holding initial
concentrations constant. Accuracy of the fit is sufficient for the purposes of this
comparison. Apparent first-order rate coefficients are obtained by integrating
the Fit 3 rate expression to a time at which methane concentration has dropped to
1/e of its original value. Note that the choice of integration time and initial
concentrations affects the calculated rate coefficients due to the non-first-order
kinetics of the data. However, these factors do not shift the model and fit values
relative to each other, only relative to the Webley data.

In our 270-bar methane experiments, initial concentrations were
significantly higher, and temperatures were significantly lower than in the
Webley experiments. At our conditions, Figure 5.3 shows that the Pitz-C1 model
overpredicts rates by a factor of 20 and exhibits a reduced temperature
dependence. In contrast, the model performs better at 137 bar, as shown in
Figure 54. In this figure, points representing the experimental data (solid
symbols) are approximated by integrating Fit 4 of Section 4.3.4. At this pressure,
the model predictions (crosses) are much closer to the experimental data,
especially at higher temperatures. The fact that model predictions worsen with
increasing density is tied to the observed downturn in overall rates over the same
density range (see Section 4.5). Identifying the reactions responsible for the
downturn will enable the model to better predict both the trend and actual
values of the observed rate coefficients. Section 5.4 addresses further the issue of
density-dependent rates.
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Some of the disagreement between the Pitz-C1 model and current data in
Figures 5.3 and 5.4 may be attributable to the fact that the developers of the
various mechanisms were guided by the goal of fitting Webley and Holgate’s
low-concentration data. For example, in the Hy-CO sub-mechanism,
uncertainties in the rate coefficient for the primary oxidizing reaction, CO + OH
— COz + H, lead to predicted rates that vary by a factor of two (Holgate, 1993).
The faster rate giving better agreement with experimental data was incorporated
by Holgate. Again in the case of heat of formation of the hydroperoxyl radical,
published data encompass a range of values from 0.5 to 3.0 kcal/gmol. Holgate
chose the minimum value, dropping hydrogen consumption rates by a factor of
eight over the maximum value (Holgate, 1993). Pitz used a possibly more
acceptable value of AHf = 2.9 kcal/gmol (Alkam, et al., 1995), and then achieved
agreement with observed data by shifting two elementary reaction rates (Pitz,
1995). This legitimate tuning of the mechanism, if performed for our data, could
reduce model disagreement, but likely at the cost of disagreement with Webley
and Holgate data.

Transport properties have not been included in the current model, and the
issue of diffusion-limited reaction rates should be considered as a possible
explanation for its poor performance. The most likely reactions to be affected by
diffusion control are fast recombinations. To test this possibility, the
recombination reaction of H + Oy to form HO, was selected since it is an
important forward path in the Holgate (and Pitz-C1) mechanism (Holgate, 1993).
This reaction (Reaction 7 in Section 7.1) proceeds with a negligibly small
activation energy. The high-pressure limit, appropriate for our conditions, has a
preexponential factor of 4.79x1013 gmol cm-3 s-1. This value can be used as the
reaction rate coefficient, krxy in the following comparison. Following the method
outlined by Schroeder and Troe (1987), a diffusion rate constant, kaiff, can be
calculated to compare with the reaction rate coefficient:

Kz =47N,RD,

where N4 is Avogadro’s number, D is a diffusion coefficient, and R is an
encounter distance estimated using Lennard-Jones diameters 64 and op:

R=~2(0, +0,)/2.
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For the reactants diffusing toward each other, D is estimated as twice the
experimentally measured self-diffusion coefficient of water (2x1.5x10-3 cm? s'1)
(Lamb, et al., 1981). The Leonard-Jones diameters of hydrogen and oxygen are
approximated as 2.92 and 3.54 A. The resulting estimate for kgif is 11015 cm3
gmollsl. Since kgif is more than an order of magnitude faster than kyxy, this
recombination is not likely to be diffusion-limited at our conditions. The faster
recombination, H + OH + M — Hy0 + M, may become diffusion-controlled—
however, it is not among the dominant reactions identified in the Holgate study
(Holgate, 1993). No other important forward reaction was identified as a
potentially diffusion-limited step.

A final explanation for model discrepancies at our conditions is that
chemical pathways may actually shift with changes in temperature and
concentration. The maximum water density in our experiments is a factor of
three higher than in Webley and Holgate’s experiments. Chemical pathways that
are not important at moderate densities and that may be missing from the Pitz
mechanism could be necessary to predict rates at elevated densities. The current
results point to the need for further modifications of elementary mechanisms in
order to achieve better agreement over the full range of available experimental
observations.

5.4. Density Dependence

Previous modeling work has identified dominant pathways in methane
oxidation. At the temperatures of SCWO, attack on CHy is dominated by OH
radicals through the reaction (Webley and Tester, 1991):

CHy + OH — CH3 + H0. 5.2
Webley noted that the reverse of Reaction 5.2 is important as well:
CHsz + HyO —- CHg + OH, 5.3

since 90% of the methyl radicals formed in his model were consumed in back-

reaction with water. The dominant chain branching path consists of the reaction
(Holgate, 1993):

HO;z + Ho O - H,05 + OH 5.4



coupled with
'H,Op +M — OH + OH + M. 55

Holgate determined that the hydrogen peroxide dissociation, Reaction 5.5, is near
its high-pressure limit at 246 bar, and in its fall-off regime below that pressure.

Through the explicit participation of water in Reactions 5.3 and 5.4, and
through its participation as a collision partner in the unimolecular Reaction 5.5,
changing water number density can be expected to affect the overall
consumption of methane. Based on Reactions 5.3, 5.4, and 5.5, one can construct
a trial hypothesis to explain the observed decline in reaction rates with water
density. For this discussion, the observed variation of rate coefficient with water
number density (Figure 4.16) is reproduced as Figure 5.5.
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Figure 5.5. The variation of observed first-order rate coefficients
with water number density at T = 412 °C and [CH4linitial = 0.05
gmol/L (from Figure 4.16).

The hypothesis explains the data of Figure 5.5 in the following way. At
water densities below 4 gmol/L, rate coefficients for Reactions 5.3,54,and 5.5
increase with density. The rate increase in Reactions 5.4 and 5.5 increases
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methane consumption through the production of hydroxyl radicals. The rate
increase in Reaction 5.3 retards methane consumption. At low densities,
Reactions 5.4 and 5.5 dominate, and the overall methane consumption rate
climbs with density. Since the rates of Reactions 5.3, 5.4, and 5.5 all increase
linearly with water density, the domination of 5.4 and 5.5 is unchanged as
density rises.

If, however, as Holgate suggests, the decomposition of hydrogen peroxide
reaches its high-pressure limit in the vicinity of 4 gmol/L, the rate coefficient of
Reaction 5.5 freezes at that point. Then (depending on the relative rates of the
pair of Reactions 5.4 and 5.5) the chain-branching path could become insensitive
to further increases in water density. Reaction 5.3 on the other hand hits no such
high-pressure limit since water’s role in the reaction is as a reactant, not as an
inert collision partner. As concentration rises above 4 gmol/L, the rate
coefficient of Reaction 5.3 continues to rise. As it increases relative to the chain-
branching pair, the effect is to slow the increase in overall methane consumption
rate. Given a large enough change in water concentration, the overall rate could
drop as in Figure 5.5.

To test the hypothesis, rates of methane consumption predicted by the
Pitz-C1 mechanism can be compared as a function of water number density.
Since the model was shown to overpredict rates in Section 5.3, the goal here is to
examine rate trends rather than actual values. As in Chapter 4, the time required
to destroy 1/e of the initial methane is used to determine an apparent first order
rate coefficient for each simulation. The solid symbols in Figure 5.6 represent
predictions of the Pitz-C1 mechanism at conditions matching those of Figure 5.5.
At water densities matching our experimental data, 0 - 8 gmol/L, the model
predicts a constant increase in rates. At higher densities however, the model
shows the same downturn observed in the experiments. The model misses the
characteristic density at which the rate reaches a maximum, but produces the
same abrupt reversal as in our experimental observations.

Taking this yesult as support of our hypothesis and taking the next logical
step, rates of key elementary reaction steps in the Pitz-C1 mechanism were
modified in an attempt improve predictions. Of the elementary Reactions 5.3 -
5.5, the density dependence of the overall rates proved most sensitive to Reaction
5.3. The open symbols in Figure 5.6 were produced by increasing the rate of
Reaction 5.3 by a factor of 600. (The rate of Reaction 5.2 was unchanged.) The
effect is to lower the density at which the maximum rate occurs. With this



modification, the model is able to predict a downturn in overall rates near the
characteristic density observed in our experiments.

The results presented in Figure 5.6 suggest that current detailed
mechanisms may already contain the reactions necessary to explain the pressure
dependence of overall reaction rates at high water densities. Future work will
include a sensitivity and flux analysis of the Pitz-C1 mechanism. The simplified
hypothesis presented above was based on reported sensitivity results for
conditions significantly different from the current work. A sensitivity analysis
will uncover all elementary reactions that play an enhanced role at high water
densities, and is necessary for a complete understanding of reaction rates at
supercritical water conditions.
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Figure 5.6. Model predictions of apparent first order rate
coefficients for methane consumption as a function of water
number density. T =412 °C, [CHylinitia1 = 0.05 gmol/L, [Os]initial =
0.30 gmol/L. The preexponential factor for Reaction 5.3 was
multiplied by 600 in the modified model.



94

5.5. Flame Ignition Prediction

The flame ignition data of Chapter 3 provide another opportunity to
compare experimental observations with model predictions. The model as
described above is inappropriate for this task for at least two reasons: first, it
includes no energy equation, and second, the poor performance of the Pitz-C1 in
predicting rates at high densities suggests it would fail, as well, in predicting
ignition at these same conditions. This section describes modifications made to
the model in an attempt to predict the ignition of flames in our supercritical
water reactor.

To specify reaction rates in the ignition model, the one-step mechanism
determined by Fit 3 replaced the Pitz-C1 elementary reaction mechanism.
Mulholland et al. (1992) have demonstrated that global chemistry mechanisms
can successfully be used to model auto-ignition of simple hydrocarbons. They
were able to derive single- and multi-step global mechanisms that adequately
represented the weakly reacting regime leading up to ignition of methane in air
at atmospheric pressure. The global fit to our 270-bar data should perform a
similar function for current experimental conditions.

Furthermore, Mulholland determined that prediction of ignition was, to a
first approximation, independent of reactor environment (Mulholland, et al.,
1992b; Mulholland, et al., 1992a). Their models of a perfectly stirred reactor and a
plug-flow reactor both matched trends in published ignition data for a series of
hydrocarbons, in spite of entirely different fluid mechanics. For our flame
experiments, an isobaric, adiabatic, plug-flow reactor model has been chosen
based on the following heuristic scenario. To simplify the flow, one can imagine
a jet of oxygen vertically traversing the reactor and exiting the top port. The
water-fuel mixture is entrained by the oxygen jet until separating from the jet at
the exit port and recirculating. In this simplification, ignition is determined by
comparing the flow time to traverse the reactor with the chemical kinetics time
specified by the global reaction mechanism. Radial mixing by diffusion is
assumed fast enough to be ignored, and heat transfer losses from the central flow
of fluid are neglected.

For our ignition model, the energy equation has been added to the model
of Section 5.4, and temperature is tracked along with methane and oxygen
concentrations as a function of time. As discussed by Mulholland (1992b),
ignition can be estimated by the inflection point in the temperature versus time



curve. Figure 5.7 shows the temperature history predicted by the current model
for a given initial temperature and initial reactant concentrations. The maximum
slope of the temperature curve defines a critical time that is taken as the
predicted time of ignition.
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Figure 5.7. Predicted temperature history for the adiabatic,
isobaric oxidation of methane using the reaction rate expression
of Fit 3 of Section 4.2.5.

The methane flame experiment results presented in Chapter 3 (Figure 3.8)
are in the form of minimum fuel fractions plotted as a function of temperature.
To put the current model results in the same form, initial methane concentrations
are varied at a fixed temperature until the predicted critical time matches an
appropriate experimental flow time. The flow time in our reactor, based on
injection velocity and reactor height, is about 0.25 seconds at conditions of the
flame experiments. Since an initial fuel fraction of 9.1% produces the correct
critical time of 0.25 s (see Figure 5.7), it is the predicted minimum fuel fraction for
spontaneous ignition at 460 °C.

Figure 5.8 compares predicted and observed methane fractions required
for spontaneous ignition in supercritical water. At low temperatures, the model
predicts that flames should only ignite at very high fuel fractions. At higher
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temperatures, model predictions approach the experimental observations. It
should be pointed out that ignition model performance is not as poor as the
figure at first suggests. The reaction rate expression used in the model was
derived from isothermal kinetics experiments conducted on a time scale on the
order of hours. It is encouraging that the model can approximate (at high
temperatures) the ignition event that takes place over a much shorter time scale.

100 F—— LB B S M S0 B LR R R N A

: ] Press =275 bar

< i [Os)init =0.3gmollL | |

% 80F Time,; =0.25s -

[ i R e Predicted 7

E l Observed | |

c 60+ 4

2 - -

S - o .
® i

I 40} -

QC) L P E

S A .

.._E - g

2 20r . ]

S — ® b

- —. -

O PR TR Y DU ST S S NN SRR T NN TSN ST SV SN SUNT SN N S SR |

360 380 400 420 440 460 480 500
Temperature (°C)

Figure 5.8. Predicted and observed minimum ignition fuel
fractions for methane in supercritical water at P = 275 bar. The
observed line is extracted from Figure 3.8.

The deviation of predictions at low temperatures in Figure 5.8 is an
indication that the ignition scenario used in the model is not the only means of
ignition in the experiments. It is unavoidable that premixed parcels of fuel and
oxygen actually recirculate within the reactor at time scales much longer than the
0.25 seconds specified for the model. The ignition process in our reactor at low
temperatures thus would be better characterized by a model with longer
residence times. The experimental data support this explanation in that ignition
at lower temperatures often involved delays longer than a second.



5.6. Conclusions

While the current modeling results for supercritical water oxidation of
methane capture several important trends observed in the experiments, further
work will be required for quantitative predictions. The Pitz-C1 elementary
reaction mechanism shows moderate success at predicting overall methane
consumption rates at 135 bar, but overpredicts rates at 270 bar. The model does
predict the observed downturn in overall rate with increasing water density,
albeit at a higher density. The attempt to predict flame ignition by adding a one-
step reaction rate expression to an adiabatic, plug-flow model met with limited
success. These efforts indicate that current tools for modeling SCWO require
further modification. Previously available experimental observations covered a
limited range of conditions. The current data widen the range of fuel
concentrations and mixture densities available as input in the development of
future models.
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6. Summary and Conclusions

Experiments have been conducted to study the oxidation of methane and
methanol in supercritical water. The research included two groups of
experiments: (1) auto-ignition of methane and methanol diffusion flames, and (2)
measurements of methane chemical kinetics. Both were performed in an
optically accessible, high-pressure reactor using Raman spectroscopy to measure
in situ concentrations of major species. Experimental pressures were varied from
35 to 275 bar to determine the effect of water density on the oxidation process.
Initial fuel concentrations ranged as high as 3 gmol/L in the flame experiments
and 0.2 gmol/L in the kinetics experiments. Initial temperatures varied from 380
to 510 °C. A current SCWO kinetic mechanism from the literature was
incorporated into a real-gas model and predictions were compared with
experimental observations. The following conclusions were drawn:

Flame Experiments:

L. Slender flames ignite and burn steadily upon injection of oxygen into a
mixture of supercritical water and fuel. Intensities of the flames vary
dramatically with fuel concentration, while the flame aspect ratio appears
insensitive to this parameter.

2. At temperatures above 470 °C, flames spontaneously ignite in mixtures
containing only 6 mole% methane or methanol. This information is relevant
to the design and operation of SCWO processes that may be susceptible to
inadvertent flame formation.

3. Atlower temperatures, methanol is less likely to ignite than methane.

Kinetics Experiments:

1. Raman spectroscopy is well adapted to the in situ measurement of
concentrations of multiple species during SCWO kinetics experiments.

2. Methane data from the constant volume reactor complements previous
measurements primarily made in flow reactors. Advantages of our apparatus
include: SCWO-process-like fuel concentrations, high data rates, long
residence times, and in situ measurements. Disadvantages include: limited
temperature range and non-negligible settling times.
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3.

Observed reaction rates at 270 bar can be approximated by a one-step rate
expression that has a reaction order close to two for methane and
approximately zero for oxygen. These values match earlier measurements of
oxygen reaction orders, but not previous values of methane reaction order,
which were close to unity. This new information is important since it charac-
terizes destruction rates at concentrations typical of actual SCWO processes.
At a constant temperature of 412 °C, the rate of methane consumption in our
apparatus rises steadily with water density up to ~ 5 gmol/L (P ~ 200 bar).
At higher densities, however, the influence of pressure is reversed and the
rate decreases. No such reversal was observed for argon, although the
maximum attainable argon density was only 4 gmol /L.

Model Assessments:

1.

A current elementary reaction mechanism adapted to supercritical water
environments strongly overpredicts rates observed in the methane kinetics
experiments at 270 bar; however, agreement at 135 bar is much better. 4

An analysis of the mechanism suggests that it contains the necessary
elementary reactions to explain our observed downturn in overall reaction
rate with increasing water density. However, the model predicts the reversal
at a higher density than was experimentally observed. Adjustment of the rate
of methyl recombination with water moves the point of reversal toward the
observed density.

The derived global rate expression from our kinetics experiments predicts
spontaneous flame ignition at the injection time scale of our reactor.
However, the minimum fuel fractions for ignition are overpredicted, except at
the highest temperatures.

Recommendations for future research:

1.

2.

Perform further experiments to identify the water density at which rates are a
maximum. Extend argon measurements to higher densities.

Perform sensitivity and flux analyses on the Pitz-C1 mechanism to determine
the key reactions for the conditions that were studied. Use the tuned
mechanism to refine our understanding of the density dependence of overall
oxidation rates in supercritical water.

Extend kinetics measurements to other fuels, including CO, and compare
with previous observations.
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7. Appendices

Included as appendices are three sections: (7.1) the elementary reaction
mechanism used in the modeling; (7.2) a list of the flame ignition experimental
data; and (7.3) a list of the methane kinetics experimental data.

7.1. Elementary Reaction Mechanism

Listed on the following pages is the Pitz-Cl elementary reaction
mechanism used to model the oxidation of methane in supercritical water. It
consists of the Pitz mechanism (Alkam, et al., 1995) with all Cp species removed.
The original reaction numbers from the complete mechanism are retained. Units
of the preexponential factor, A, are gmol, cm, s, and K; units of activation energy
are cal/gmol.
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Rxn# Elementary Reaction A b Ea_
1 H+02=0H+O 1.91E+ 14 0 16440
2 H2+O=H+ OH 5.13E + 04 2.7 6286
3 OH+H2=H+H20 2.14E + 08 1.5 3430
4 OH+0OH=0+H20 5.63E + 11 0.3 1425
5 H2+M=H+H+M 851E+19 -1.1 104370
6 H+OH+M=H20+M 1.38E + 23 -2 0
7 H+02=HQO2 4.79E + 13 0 -384.8
8 H+HO2=0H+OH 1.70E + 14 0 870
9 H+HO2=H2 + 02 6.61E + 13 0 2129

10 HO2 + O =02 + OH 1.74E + 13 0 -399.1
11 OH+ HO2 =H20 + 02 1.45E + 16 -1 0
12 H202 + OH =H20 + HO2 1.75E + 12 0 318
18 HO2 + HO2 = H202 + 02 1.70E + 13 0 4211.3
14 OH + OH =H202 759E+13 -04 0
15 H202 + H=HO2 + H2 4,79E + 13 0 7949
16 H202 + H = H20 + OH 1.00E + 13 0 3590
17 O+H+M=0OH+M 4.68E + 18 -1 0
18 O+0+M=02+M 3.98E + 14 0 -1790
19 H202 + O = OH + HO2 9.55E + 06 2 3970
20 CH3OH + 02 => CH20H + HO2 2.00E + 13 0 44910
21 CH20H + HO2 => CH30H + 02 1.06E+13 -0.5 -1500
22 CH4=CH3 +H 3.71E + 15 0 103810
23 CH4 + H=>CH3 + H2 2.24E + 04 3 8750
24 CH3+H2=>CH4 +H 2.89E + 02 3.1 8711
25 CH4 + OH => CH3 + H20 1.93E + 05 2.4 2106
26 CH3 + H20 => CH4 + OH 4.82E + 02 2.9 14860
27 CH4 + O =>CH3 + OH 2.13E + 06 2.2 6480
28 CH3+OH=>CH4 +0 3.56E + 04 2.2 3920
31 HCO +OH =CO + H20 3.02E + 13 0 0
32 OH+CO=H+ CO2 2.85E + 07 1.3 -765
33 HCO+M=H+CO+M 3.47E + 18 -1 17000
35 CH3O0OH => CH3 + OH 1.90E + 16 0 91780
36 CH3 + OH => CH30H 1.98E + 12 0.4 -708
37 CH3OH => CH20H +H 1.60E + 16 0 96790
38 CH20H + H => CH30H 1.28E + 14 0 381
41 CH30OH + HO2 => CH20H + H202 5.40E + 11 0 17800
42 CH20H + H202 => CH30H + HO2 3.19E + 10 0 8150
47 CH3 + HO2 => CH30 + OH 3.20E + 13 0 0
48 CH30 + OH => CH3 + HO2 3.33E + 14 0 25380
49 CO +HO2 =C02 + OH 6.03E + 13 0 22950
51 CO+0=C02 1.82E + 10 0 2431
52 CO+02=C02+0 251E + 12 0 47690
58 HCO+H=CO +H2 7.24E + 13 0 0
54 O+HCO=CO +OH 3.02E + 13 0 0




Rxn# Elementary Reaction A b E;
55 CH20 + M=>HCO +H + M 3.30E + 16 0 81000
56 HCO +H+M=>CH20 +M 1.40E + 11 1 -11770
57 CH20 + OH => HCO + H20 3.43E + 09 1.2 -447
58 HCO + H20 => CH20 + OH 2.35E + 08 1.4 26120
59 CH20 +H =>HCO + H2 3.30E + 14 0 10500
60 HCO +H2=>CH20 +H 2.64E + 13 0 25170
61 CH20 + O => HCO + OH 5.00E + 13 0 4600
62 HCO +OH=>CH20 +0O 1.75E + 12 0 17170
63 CH20 + CH20H => HCO + CH30OH 5.54E + 03 2.8 5862
64 HCO + CH30OH => CH20 + CH20H 2.82E + 02 3.3 11510
65 CH3 + OH => CH20 + H2 4.00E + 12 0 0
66 CH20 + H2 => CH3 + OH 1.20E + 14 0 71720
67 CH3+0O=>CH20 +H 1.30E + 14 0 2000
68 CH20 +H=>CH3 +0 1.70E + 15 0 71630
69 CH3+02=>CH30+0 4.80E + 13 0 29000
70 CH30 +0=>CH3 + 02 3.04E + 14 0 733
71 CH20 + CH3 => HCO + CH4 5.54E + 03 2.8 5860
72 HCO + CH4 => CH20 + CH3 7.29E + 03 2.9 22510
73 HCO + CH3 =>CH4 + CO 3.00E + 11 0.5 0
74 CH4 + CO => HCO + CH3 5.14E + 13 0.5 90470
75 CH30 =CH20 +H 1.84E + 14 0 29110
76 CH30 + M =CH30 + M 0.00E + 00 0 0
79 HCO + HO2 => CH20 + 02 1.00E + 14 0 3000
80 CH20 + 02 => HCO + HO2 3.66E + 15 0 46040
81 CHB30 + 02 => CH20 + HO2 7.60E + 10 0 2700
82 CH20 +HO2 => CH30 + 02 1.28E + 11 0 32170
83 CH3 + HO2 => CH4 + 02 1.00E + 12 0 400
84 CH4 + 02 => CH3 + HO2 7.63E + 13 0 58590
85 HCO + 02 =CO + HO2 7.59E + 12 0 4111
86 CH4 + HO2 => CH3 + H202 1.12E + 13 0 24640
87 CH3 + H202 => CH4 + HO2 7.43E + 11 0 5500
88 CH20 + HO2 => HCO + H202 5.60E + 12 0 13600
89 HCO + H202 => CH20 + HO2 7.79E + 11 0 10230

116 CH2 + 02 => HCO + OH 1.00E + 14 0 3700

117 HCO + OH => CH2 + 02 4.12E + 13 0 76580

118 CH2 + O => CH + OH 1.90E + 11 0.7 25000

119 CH+OH=>CH2+0 5.86E + 10 0.7 25930

120 CH2 + H=>CH + H2 2.70E + 11 0.7 25700

121 CH+H2=>CH2 +H 1.90E + 11 0.7 28730

122 CH2 + OH => CH + H20 2.70E + 11 0.7 25700

123 CH + H20 => CH2 + OH 8.21E + 11 0.7 43880

124 CH+ 02 =>CO +OH 1.35E + 11 0.7 25700

125 CO+OH=>CH+ 02 5.19E + 11 0.7 185600

126 CH+02=>HCO +0 1.00E + 13 0 0
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Rxn# Elementary Reaction A b Ea_
127 HCO+0O=>CH+ 02 1.33E + 13 0 71950
128 CH30OH + OH => CH20H + H20 1.77E + 04 2.7 -883
129 CH20H + H20 => CH30OH + OH 2.38E + 03 2.7 21860
130 CH30H + H => CH20H + H2 3.20E + 13 0 6095
131 CH20H + H2 => CH30OH + H 9.12E + 12 0 13650
132 CH30H + H => CH30 + H2 8.00E + 12 0 6095
133 CH30 + H2 => CH30OH +H 1.32E + 12 0.2 6018
134 CH30OH + CH3 => CH20H + CH4 3.19E + 01 3.2 7170
135 CH20H + CH4 => CH30H + CH3 1.87E + 02 2.9 16100
136 CH3OH + CH3 => CH30 + CH4 1.45E + 02 3.1 6935
137 CH30 + CH4 => CH30H + CH3 2.65E + 02 3.1 8115
138 CH30OH + O => CH20H + OH 3.88E + 05 2.5 3080
139 CH20H + OH => CH3OH + O 4.96E + 03 2.5 8781

140 CH20H + 02 => CH20 + HO2 2.14E + 14 0 5000
141 CH20 + HO2 => CH20H + 02 7.85E + 12 0.6 25860
142 CH20H + M =>CH20 +H+ M 1.85E+24 -25 34190
143 CH20+H + M => CH20H + M 1.06E + 23 -2 5901

144 CH20H + OH => CH20 + H20 2.40E + 13 0 0
145 CH20 + H20 => CH20H + OH 1.18E + 12 0.9 90340
146 CH20H + H => CH20 + H2 3.00E + 13 0 0
147 CH20 + H2 => CH20H + H 3.27E + 11 0.9 75160
184 CH3OH + CH20 => CH30 + CH30 1.563E + 12 0 79570
185 CH30 + CH30 => CH30H + CH20 3.00E + 13 0 0
186 CH20 + CH30 => CH30H + HCO 1.15E + 11 0 1280
187 CH3OH + HCO => CH20 + CH30 3.02E + 11 0 18160
192 CH30 + CH30H => CH20H + CH30H 1.51E+12 0 7000
193 CH20H + CH30H => CH30 + CH30H 2.19E + 05 1.7 10850
194 CH3OH + OH => CH30 + H20 1.77E + 04 2.7 -883
195 CH30 + H20 => CH30H + OH 1.33E + 04 2.8 14220
206 CH302 + M=>CH3+02+M 4.03E + 19 -1 29800
207 CH3 +02 + M =>CH302 + M 1.41E + 15 0 -1100
208 CH302H => CH30 + OH 6.46E + 14 0 43000
209 CH30 + OH => CH302H 1.00E + 11 0 0
214 CH302 + CH20 => CH302H + HCO 5.60E + 12 0 13600
215 CH302H + HCO => CH302 + CH20 8.00E + 11 0. 10000
222 CH4 + CH302 => CH3 + CH302H 1.12E + 13 0 24640
223 CH3 + CH3G32H => CH4 + CH302 7.43E + 11 0 5500
226 CH3OH + CH302 => CH20H + CH302H 6.30E + 12 0 19360
227 CH20H + CH302H => CH30H + CH302 1.00E + 09 0 10000
232 CH302 + CH3 => CH30 + CH30 1.90E + 12 0 -1200
233 CHS30 + CH30 => CH302 + CH3 2.00E + 10 0 0
236 CH302 + HO2 => CH302H + 02 4.60E + 10 0 -2600
237 CH302H + 02 => CH302 + HO2 3.00E + 12 0 39000
238 CH302 + HO2 => CH30 + OH + 02 1.00E + 11 0 0




Rxn# Elementary Reaction A b E,
239 CHB30 + OH + 02 => CH302 + HO2 0.00E + 00 0 0
- 242 CH302 + CH302 => CH20 + CH30H + 02 7.60E + 10 0 -500
243 CH20 + CH30H + 02 => CH302 + CH302 0.00E + 00 0 0
244 CH302 + CH302 => 02 + CH30 + CH30  3.70E + 11 0 2200
245 02 + CH30 + CH30 => CH302 + CH302  0.00E + 00 0 0
284 HCO+0O=>C0O2+H 1.00E + 13 0 0
285 CO2 +H=>HCO+O 3.23E + 15 0 110200
286 CH3+M=>CH2 +H+M 4.68E + 16 0 93800
287 CH2+H+M=>CH3+M 5.01E + 11 1 -18340
288 CH3 +H=>CH2 + H2 7.24E + 14 0 15200
289 CH2 + H2=>CH3 +H 1.46E + 14 0 10500
290 CHS3 + OH => CH2 + H20 1.50E + 13 0 5000
291 CH2 + H20 => CH3 + OH 1.31E + 13 0 15450
294 CH4 + CH2 => CH3 + CH3 1.00E + 13 0 0
295 CH3 + CH3 => CH4 + CH2 1.90E + 12 0 4225
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7.2. Flame Ignition Experiments

Listed in Section 7.2.1 are all the hydrothermal flame ignition trials per-
formed at 275 bar. Section 7.2.2 lists the methanol trials.
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7.2.1. Methane Hydrothermal Flame Ignition Trials

Initial Initial
Methane Temp. Pressure [CH4] XcH4 Auto
Exper. # (°C) (bar) (gmol/L)  (mole%) Ignites?
11290 401 274 0.395 4.4 no
11290 402 274 0.584 7.4 yes
11290 406 275 0.863 12.4 yes
11290 408 271 0.690 9.8 yes
11290 409 276 0.741 10.4 yes
11290 409 274 0.609 8.3 yes
12050 405 275 0.820 11.6 yes
12050 407 277 0.520 6.6 no
12050 407 275 0.720 9.9 no
12050 406 280 0.920 13.0 yes
02061 403 278 0.926 13.0 yes
02061 401 275 1.277 19.9 yes
02061 405 276 1.522 25.6 yes
02061 405 275 0.939 13.8 yes
02061 408 280 0.801 1.1 yes
02061 409 277 0.545 7.1 yes
02071 404 280 0.333 35 no
02071 398 281 0.458 4.6 no
02071 396 278 0.648 7.2 no
02071 404 276 1.069 16.0 yes
02071 407 276 1.005 15.2 yes
02071 409 281 0.635 8.3 yes
02111 405 278 0.671 8.8 no
02111 402 . 277 0.802 10.7 yes
02111 410 276 0.851 12.4 yes
02111 407 276 0.814 11.6 yes
02111 402 280 0.737 9.4 no
02141 471 275 1.172 23.2 yes
02141 480 276 0.894 17.4 yes
02141 481 281 0.360 6.2 yes
02141 473 280 0.373 6.3 no
02141 474 279 0.203 3.3 no
02141 476 280 0.248 4.1 no
02141 478 276 0.271 47 yes
02141 478 278 0.438 7.7 yes
02181 383 279 0.705 5.1 no
02181 380 276 0.960 9.0 no
02181 377 275 1.502 18.7 yes
02181 380 274 1.304 15.9 yes
02181 380 277 1.066 10.7 yes

02181 382 275 0.945 9.9 no
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7.2.2. Methanol Hydrothermal Flame Ignition Trials

: Initial Initial
Temp.  Pressure [CH30H] XcHszoH Auto
Exper. # (°C) (bar) (gmol/lL)  (mole%) Ignites?
02191 405 278 2.821 41.9 yes
02191 410 274 2.194 32.9 yes
02191 410 279 2.257 32.3 yes
02191 411 270 1.005 13.7 yes
02191 401 278 0.729 7.9 no
02201 404 279 1.228 15.4 yes
02201 408 277 1.364 18.4 yes
02201 407 274 2.041 29.9 yes
02281 470 264 2.945 58.2 yes
02281 475 277 2.568 48.7 yes
02281 474 270 1.123 20.6 yes
02281 472 272 0.757 13.3 yes
02281 473 273 0.346 5.8 yes
02281 476 274 0.286 4.8 no
03011 402 277 1.142 14.0 no
03011 404 278 2.188 31.2 yes
03011 400 280 0.860 9.3 no
03011 402 272 1.602 22.0 yes
03011 404 279 1.709 23.0 yes
03011 408 272 1.019 13.4 no
03131 402 280 1.183 14.3 no
03131 402 280 1.977 26.7 yes
03131 402 280 2.263 31.4 yes
03131 402 280 1.704 22.4 yes
03131 403 281 1.061 12.6 no
03141 382 278 2.143 227 no
03141 381 279 2.622 29.3 no
03141 380 278 3.640 44,2 yes
03141 381 279 3.088 36.1 yes
03191 501 276 1.731 34.5 yes
03191 508 273 1.163 23.3 yes
03191 509 278 0.752 14.4 yes

03191 511 271 0.455 8.9 yes
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7.3. Methane Kinetics Experiments

The following pages list experimental data from the methane oxidation
kinetics experiments. Included are the 270-bar experiments, the 135-bar
experiments, the experiments at 412 °C over a wide range of pressures, and the
experiments in argon. The data for each experiment comprise a series of Raman
measurements of CHy, O, N3, CO3, and CO concentrations. Listed with each
concentration measurement are the corresponding time, temperature, and
pressure measurements. The full (as opposed to abridged) data sets for each
experiment are listed.
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