
Subsurface Engineering Challenges Towards Tools and
Methods for Improved Understanding of Chemo-Mechanics
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Side Profile View of Cement Seal Borehole

Overall Borehole length: 8 ft (2.4 m)

Borehole diameter: 4.8 inches (-12 cm)

Cement Plug Length: -1 ft (-0.3 m) each
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Salt Concrete Sorel Cement

Thermocouple
Strain Gauges

in Cementitious Materials
Ed Matteo, Tom Dewers, Tim Fuller, Melissa Mills, and Carlos Jové-Colón
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Overview
Cementitious materials play important roles in subsurface engineering applications as structural support for
excavations, engineered barriers, and subsurface seal materials.

Challenges 
1) Complex and dynamic subsurface geochemistry and geomechanics

2) Multi-scale and coupled processes (i.e., combinations of thermal, chemical, mechanical, hydrologic processes)

I Background, Part I- Effect of Boundary Conditions on Leaching Rate

• Batch and flow-through tests to determine
effect of leachant accumulation of
leaching rate

• High flowrate
• Fastest leaching rate, diffusion

dominated
• Inverted batch (where leachant gravity-

settled away from acid-cement surface)
• Initially, fast rate of attack, but

deviated from diffusion dominated
rate after -3 hrs.

• Upright batch (where leachant gravity-
settled onto cement-acid interface) had
the slowest rate, presumably because the
leachant accumulation decreasing the
concentration driving -> Leaching rate.

• Definition of the degradation zone and
leaching front...
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1 PFLOTRAN Benchmark for Reactive Transport
Modeling of Cement-Geomaterial Interfaces

PFLOTRAN reactive transport simulations:
• Full saturation
• Diffusion only
• Isothermal
• Kinetic rate a equilibrium scenarios
Comparison with parameters Et results from multicomponenl
reactive transport between cement - clay rock (Marty et al.
2015)
• Comparison of species concentration with distance

profiles across 1-D domain
• Effective diffusivities defined for each medium
• Effects of cement/mineral phase kinetic rate law

parameters
• Phase volume fraction Et transport parameter sensithritie5
Preliminary Results
• Good agreement on pH predictions at 1000 years
• Still working on comparisons with other chemical

components

PFLOTRAN Benchmark Comparison
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Albotran - A Code to Couple Solid Mechanics and Reactive
Transport/Flow

• Coupling of two open-source
codes
• PFLOTRAN

• Reactive flow
• Albany

• Solid Mechanics
• Rigorous testing of coupling

algorithm
• Terzhagi consolidation

hff)1676i.iir7 as a test case
• Expanding into more relevant

cement leaching problems
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Background, Part 2 - Investigating the Controls/Mechanisms of Pore Clogging

• Reactive transport modelling showed
dramatic decrease in cement
reactivity - 10 mM CO2

• Hypothesis : pore-clogging
▪ Design experiments to verify
• By pushing solution conditions into

calcite region on activity phase
diagram, pore clogging was
experimentally achieved

• These tests showed:
• Activity phase diagram can help

understand pore-clogging regime
• Pore-clogging can be seen in

deviations from diffusion-
controlled degradation rates
(linear w.r.t. to square root of
time)

• Transport across the degradation
zone (heavily leached
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Triaxial deformation with reactive flow though cement-host aperture

• Leaching of cement-granite
interface under triaxial stress
conditions

▪ Confining pressure -13. Mpa
• Axial Load -16.8 Mpa
• pH 3 HU leachate flowed

through cement-granite
aperture

- Ultrasonics and microCT
used to characterize the
i nterface
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Field Test of Cementitious Seals:

Sorel Cement D4 (5-1-8 phase) 

Proportions similar to Popp et al. 2018

Density = 2240 kg/m3

Desired fast setting

Used 1V1g0 currently emplaced with waste at WIPP

• Crushed and sieved <75 urn

o reactivity = 272 s

Aggregate: Run of rnine WIPP salt <4 mm grain size

Sorel D4 Compositi
on (mass-
%)

5 M MgCl2 18.3

< 75 urn
MitiO

Salt
Aggregate

18.3

63.4
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Recipes for Emplaced Plugs

Salt Concrete 

• Followed recipe from Muller-Hoppe et al. 2010

(LAVA2)

• Ground Blast Furnace Slag

• Aggregate: Run of mine WIPP salt <4 mm grain size

• Impurities affected mixture

• Required to be mixed in glove box

Salt Concrete Composition
(mass-%)

Saturated
NaCI

14.7

Blast Furnace
Slag

Salt
Aggregate

28.4

56.9

Summary: 
• Subsurface engineering demands computational tools that can represent multi-scale and coupled phenomena, with accuracy

and efficiency
• These tools need to be integrated with and validated against bench-top and field-scale experimental tests
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