
Multiscale modeling to study
effects of microstructure in
shocked hexanitrostilbene

TMS 2020 Annual Meeting and Exhibition

San Diego, CA

February 23-27, 2020

PRESENTED BY

Judith Brown, David Kittell, Mitchell Wood,
Aidan Thompson, Dan Bolintineanu

February 24, 2019 Sandia National Laboratories is a multirnission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2020-2374C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 Presentation Outline

❖Introduction

❖Synthetic Microstructure Generation

❖Continuum Hydrocode Simulations (CTH)

❖Temperature distribution statistics for many microstructures

Can we mine these for sensitivity metrics and correlate these to microstructure?

+Outlook & Perspective



Shock Initiation of Explosives at Sandia

+Generate a high
fidelity baselin

Quantum / MD Large
Scalable Codes

HNS crystal structure

LAMMPS + Kokkos 
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Role of Porosity in Shock Initiation

Some degree of porosity present in almost all energetic materials

Pore collapse can be key mechanism for hot spot formation

Many Single-Pore Collapse Studies
shock direc ion
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What about pore
interactions?

Eason and Sewell, J. Dynamic Behavior Mater. 1 (2015), 423-438

+Can we link particular porosity configurations/geometries with
some metric of likelihood for hot spot formation??
+Use Multiscale approach with both continuum hydrocode and MD simulations to explore this



5 Multiscale Approach
Both continuum hydrocode and MD simulations

Continuum Properties

Propagated Down:

• 'Critical' local

microstructure

features

• Evaluate measures

of sensitivity
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6 Microstructure of Pressed Hexanitrostilbene

•HNS-IV powder pressed to
72 — 92% TNID
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Lot 1

HNS-IV
Lot 2

HNS-I

10

Thresholded SEM
image of pressed
microstructure

•

•
'`x10-

.J

•
histugra® _
livnormal fit

100 200 300 400 500

Pore Diameter (nm)

4. - : .s"..- f• '-'4, .... -__.J.. e ........ .....;.,:. --. ,:, .• .....-...4„..,. • r. • t. " ''....i- .. y • , -. • ..• .., .......' - --:-; ''-' - -.- • ''' ..` • —*f.'s. - .:.-- t * • ' -..:.• ...... ,•••• ...-..-.... 4 ..1
...7. • • :,.:A.:,..•••••• • :-:-. . . _ ; . r .. : -.• . 7 f... _. ....* .  , f. -

• f . : . • ) .: ri. . • 1,  " -1/4. • .• ,„ *- '-', -'" . " ^ ., : *-- .1.-.7:-/_/..
' . . c -* ' I/• 

• . • • " ..k- '‘, .4"  - • . , = ;: t", ;.- •• - - ;."1•:'• ":. ,.. 1. 4 Yr..
...a... :. • ,.. s I .„ 'Si . • f• ;',..71.' ..' ..::.,.:, . - " • • i a-, .-

.1.1, ' -.'"•,:: . s' , •••••:- %. ' 4 - 1.. ' C: 
-,..';':;',: ''.:,. 1. ..7t,,

' ' :.. .. -'.; • ..te . . r" . - '.' -. ' ' t- 
•

•
s .

-
;* , • • . • • • • •- 6 " •:‘ .G.

••• • .);"*. • 

•

. - •:* -• • •:- ...I.. • s / 71, ;

• - . •••• $.• • -
• $ . 

•. • . 

" - • s 
•,` 

• • .
-

S
'

k

C.D. Yarrington, R.R. Wixom, D.L. Damm, J. App. Phys. 123 (2018) 105901



7 Synthetic Microstructure Generation
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2D Discrete Element Method (DEM) simulations used to generate
many microstructures with different porosity configurations

Initial state: spheres placed at random in 250 X 500 nm domain, no overlaps
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8 Example Synthetic Microstructures

180 different microstructures generated, 88% TMD
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Microstructure Geometry Metrics:
• Specific Surface Area
• Fraction of 2-body connected pores
• Fraction of 3-body connected pores
• Compact 3-body fraction



9 Continuum Hydrocode Simulations CTH

+Reverse ballistic impact calculation

+Evaluate many microstructures to elucidate geometries that show
higher propensity for hot spot formation

up = lkm/s
..4

Symmetric
impact

Material Models
• Pores filled with air
•.• HNS matrix:

Mie-Grüneisen equation of
state
Stienberg-Guinan-Lund
viscoplastic strength model
Arrhenius burn model

Single-pore collapse rate was used to
calibrate SGL model from MD simulations



10 Each Simulation Provides Rich Numerical Dataset
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Mine Temperature Field Data for Sensitivity
Indicators

+Temperature Field Data
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Temperature Distribution
+Mean
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+Kurtosis
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12
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Mine Temperature Field Data for Sensitivity
Indicators

+Temperature histograms provide fingerprint for each microstructure
and its hot-spot evolution---note these change over time and include
both ignition and growth information
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+Area fraction of reacted material, Fr provides information about
reaction growth



1 3 
Area Fraction of Reacted Material Across Many
Different Microstructures

+ Fr calculated at fixed time (150ps) when shock has traversed —450 nm
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14 
Temperature Field Statistics Across Many
Different Microstructures

+Statistics taken at fixed time (150ps) when shock has traversed
—450 nm
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15

Length Scales,Time History, and Appropriate
RVE size

Some run distance required to reach steady-state kurtosis in
temperature distribution

Larger pores, lower SSA,
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16 Temperature Metrics Over Time: Low SSA
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17 Temperature Metrics Over Time: High SSA
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18 Comparison of MD vs CTH

•:•Good qualitative agreement in spatial temperature fields

+Shock wave front well resolved in both codes

LAMMPS
(a)

250

CU
u

0

Time = 40 ps

•

• 1
CTH

(b,
250

(a)
u

V)

00

100 200 300 400
Distance (nm)

Time = 40 ps

100 200 300 400
Distance (nm)

500

250

CU
u

(CS

o
0

250

u

500 
0 
0

Time = 60 ps

100 200 300 400
Distance (nm)

Time = 60 ps

500

100 200 300 400
Distance (nm)

500

250

cu
u

v,
o

250

"f
C

CU 

4 1, viitj 
• 2000

u T (K)
..,ro

_ 4 I

c

E M 200

00 100 200 300 400 500
Distance (nm)

Time = 80 ps

100 200 300 400
Distance (nm)

2000

T (K)

200
500

Time = 80 ps



19 Outlook & Perspective

•:•Sensitivity metrics for hot spot formation are distinct and unique
from growth metrics
+shock propagation & chemical reactions introduce different length and time
scales

+How to define RVE?
+Physical and chemical response should define RVE

" Evolution of temperature distribution with time and shock run
distance is a complex function of chemistry and microstructure
features

+Kurtosis initially peaks and evolves to steady-state value over time

+Run distance required for steady-state kurtosis related to spatial features of porosity

+Magnitude of initial kurtosis peak provides indicator for number of reaction sites

' specific surface area and 2-body fraction are leading geometric
indicators of sensitivity
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Molecular Dynamics Simulations

+Use MD simulation to gain more physical insight into highly
clustered microstructure configurations

Detailed chemistry is incorporated in these MD
ReaxFF Interatomic Potential potentials, hot spot evolution is captured naturally

—Bond order (uncorrected)
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22 
Temperature Field Statistics Across Many
Different Microstructures

+Statistics taken at fixed time (150ps) when shock has traversed
—450 nm
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23 
Area Fraction of Reacted Material Across Many
Different Microstructures

+Is kurtosis of temperature distribution a good indicator for
sensitivity to reaction?
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24 MD Simulation of Clustered Porosity

+Geometry 2
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25 CTH Conservation Equations

+Real material behavior comes from an accurate equation-of-state
(EOS) plus a constitutive model with parameters fit to the
appropriate, dynamic regime.

+spherical part is the equation of state P = f(p,E)

+deviatoric part is the constitutive model cr = f(strain, ...)

+numerical part is the artificial viscous stress Q = f( velocity and cs )

dp
=—pV • fjMass

dt

clI7 
Momentum p = —VP—V• [cv + Q(F, cs )]

dt

Energy p
dE 

=—PV•T7—[6+QV,c,)]•VT7
dt

S PI + a + C2(171 cs)
Stress Tensor Spherical Deviatoric Artificial

Part Part Viscosity



26 Continuum Hydrocode Simulations CTH

•CTH-3D, large deformation, multi-material shock physics
hydrocode developed at Sandia National Laboratories

Mass —
dp

=—pV•P
dt

Momentum pc/17 = —VP — • [a + cs)]
dt

Energy 
P

dE 
PV•P—[ a+Q (P,c,)]•V

dt

Lagrangian and remap solution

steps as they appear in CTH

Problem Start La ran ian Ste Rema . Ste

Density-temperature equilibrium

for reactive burn models

t, t, + At
AV, AE,

UR

RP

Ei, Pi, Tz, Ai

UR

RP

density-temperature
equilibrium

McGlaun, J. M., Thompson, S. L., and Elrick, M. G., Int. J. Impact Engng., 10 (1990) 351-360.



27 What is LAMMPS?

• Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov
• Open source, highly portable C++, free under GPL license
• Well documented with many examples, easily extendable for user specific needs
• Variety of boundary conditions, constraints, ensemble sampling methods etc.

Parallelism through spatial decomposition of simulation domain

Short and long ranged interactions allowed/included
CPU cost is (VIgiall communication is (N/P)2/3u

Proteins and Biophysics

IVO

M._

-
Ts i...„ r.

..114440,11110, ,^

Dislocations in Materials

Atoms-to-Continuum



28 Useful, Co-dependent Models

Time
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•

• Predictions at the mesoscale
now share approximations of
either model

• Sacrificed some ability to
extrapolate, but have built a
sandbox reality where much
can be learned

• Actively looking for
experimental integration as
validation
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• Training data of collapsing pores from MD sent

to CTH for strength model parameterization
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Metrics Passed from MD to CTH
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Training Metric

• Collapse rate is used to calibrate
strength models in CTH
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Quantitative post-processing was
done using the OVITO code [10]

4

Comparison Metrics

• Radial distribution of plastic strain
• Temperature histograms
• Etc.

U = 1 25 km/s
PT me 14.8ps

50%

Time 16 3ps Time 17 2ps

=ECM2= MalTa2=

75%

U = 0.50 km/s
Time 36.2ps
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CTH Strain Rate Dependent Model — Steinberg,
31 Guinan and Lund (1988)

• We believe that only a strain rate-dependent model can match MD results for
viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.

• Assume a constant shear modulus

• Neglect work hardening

• Assume linear variation of the Griineisen parameter

Yield Strength: Y = t177-(‘,T) + YA f (EP))

YP

Shear Modulus: G (P ,T) = Go

Thermal Activation:
(Implicit Equation)

E = 1-1 exp2UKP Ci
YT)21+ c21 

YT

—1 YT
kT 

(1 
Yp I

Melting Curve:
(Y = 0 when T Tm)

Tm = Tmoexp{2a(1 — 1/77)}772010-a-1/3)

Grüneisen parameter: Y = Yo/(1 + 1,)


