This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Multiscale modeling to study
effects of microstructure in
shocked hexanitrostilbene

TMS 2020 Annual Meeting and Exhibition
San Diego, CA
February 23-27, 2020

Judith Brown, David Kittell, Mitchell Wood,
Aidan Thompson, Dan Bolintineanu

February 24, 201




. Presentation Outline

“*Introduction
“*Synthetic Microstructure Generation
“*Continuum Hydrocode Simulations (CTH)

+»Temperature distribution statistics for manyv microstructures
y

“*Can we mine these for sensitivity metrics and correlate these to microstructure?

“*Outlook & Perspective
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Quantum / MD Large New Continuum Codes Formation Modeling
Scalable Codes -poured
\ -pressed
. e . it
*“*Generate a high ~ deposited

fidelity basehni

i " ! Image stack,
HNS crystal structure ¢ ! or simulated
N t upstructure
Stochastic reactive shock wavés Graph of contact
network
H H . H I fi SAND2018-4593PE
LAMMPS + Kokkos Objective: Science-based L e e e e
engineering and design of
Tests and new explosive components Mesoscale
Experiments Simulations
. ~ Adapt/remove
Pararmance Microstructural Analysis Reactive shack Pt/ :
i SenSIthlty X S SR nI:)\(I:riitlrr;stilbene 5 apprOleathﬁS
_a) ,IEIEShOId and US) ’\ 5.‘5 ff '(HNS) explosive -
20— Embedded S a
200 gauge ‘ G ok o
e data : Sl - -

8
00

&
o.
r*

e o

X-section of HNS

pellet (top) and CT TN T T —
scan courtesy of - 5
Andres Chavez (left) - B :

Particle Velocity (km/s)
k

0.00
40.50 0.00 050 1.00 150 200 250 3.00 350 4.00 4.50

Burns et al. J. Appl. Phys.

26012y




+ Role of Porosity in Shock Initiation L

“*Some degree of porosity present in almost all energetic matetials

“*Pore collapse can be key mechanism for hot spot formation

Many Single-Pore Collapse Studies

shock direction —»
T %
K What about pore
R interactions?
%
z 0
02ns 05ns 12ns oc.ssssgg =‘8988§§
x (nm) x (nm)
Austin et. al, J. App. Phys. 117 (2015), 185902 Eason and Sewell, J. Dynamic Behavior Mater. 1 (2015), 423-438

“*Can we link particular porosity configurations/geometries with

some metric of likelihood for hot spot formation??
“*Use Multiscale approach with both continuum hydrocode and MD simulations to explore this



s Multiscale Approach

Continuum

Both continuum hydrocode and MD simulations
5 ’ Hydrocode
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Microstructure of Pressed Hexanitrostilbene |
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»  Synthetic Microstructure Generation

|

.

2D Discrete Element Method (DEM) simulations used to generate
many microstructures with different porosity configurations

Initial state: spheres placed at random in 250 X 500 nm domain, no overlaps

Langevin dynamics with range of contact cohesion values:

Low cohesion

High cohesion
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Example Synthetic Microstructures
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» Continuum Hydrocode Simulations—CTH

**Reverse ballistic impact calculation

*2*Evaluate many microstructures to elucidate geometries that show
higher propensity for hot spot formation

Material Models
u, = lkm/s 2 Pores filled with air
< < HNS matrix:
<+ Mie-Gruneisen equation of

Symmetric | state
impact 1 <+ Stienberg-Guinan-Lund
f viscoplastic strength model
< Arrhenius burn model

Single-pore collapse rate was used to
calibrate SGL model from MD simulations
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o Each Simulation Provides Rich Numerical Dataset

X Temperature
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+*Extent of Reaction

Rxn Extent at t = 100.51 ps
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Mine Temperature Field Data for Sensitivity
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Indicators

“*Temperature Field Data

Temperature att = 153.89 ps
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+*Statistical Moments of
Temperature Distribution

“*Mean
“**Variance
«*Skew

2 Kurtosis

** Area Fraction of Reacted
Material

P Yarea(A > 0)

totalarea



Frequency

Mine Temperature Field Data for Sensitivity
2 |ndicators [N

“*Temperature histograms provide fingerprint for each microstructure
and 1ts hot-spot evolution---note these change over time and include
both ignition and growth information
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“* Area fraction of reacted material, F, provides information about
reaction growth



Area Fraction of Reacted Material Across Many
Different Microstructures
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“* F_ calculated at fixed time (150ps) when shock has traversed ~450 nm
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Temperature Field Statistics Across Many

14
Different Microstructures
“*Statistics taken at fixed time (150ps) when shock has traversed
~450 nm
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Length Scales, Time History, and Appropriate e
* RVE size

“*Some run distance required to reach steady-state kurtosis in
temperature distribution

Larger pores, lower SSA, Smaller pores, lowgr SSA,
lower 2-body fractions higher 2-body fractions,
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Kurtosis of Temperature Distribution

Frxn

700+

600

500

400

300

200+

100

20

40

60 80 100 120 140

160

3.5

3.0

2.51

2.0

1.51

1.0

0.51

o000t

R et

0.0

20

40

60 80 100 120 140
Time (ps)

160

Y (nm)

Y (nm)

250

200

150

Y (nm)

100

250

200

150

100

50

250

200

150

100

50

100

100

100

Temperature Metrics Over Time: Low SSA

800

Temperature att= 50.27 ps

200 300
X (nm)

Temperature att = 100.50 ps

200 300
X (nm)

Temperature att = 153.90 ps

200 300
X (nm)

400

400

400

500

¢ 2 L 1 R O R V] )

o
o
(=1

2000
1800
= 1600
= 1400
1200
1000
800

400

2000
1800
~ 1600
= 1400
1200
1400
ann
600
400



» Temperature Metrics Over Time: High SSA
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+ Comparison of MD vs CTH

*Good qualitative agreement in spatial temperature fields
q g p p

**Shock wave front well resolved in both codes
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» Outlook & Perspective

“*Sensitivity metrics for hot spot formation are distinct and unique
from growth metrics

“*shock propagation & chemical reactions introduce different length and time
scales

“*How to define RVE?
“*Physical and chemical response should define RVE

*2*Evolution of temperature distribution with time and shock run
distance 1s a complex function of chemistry and microstructure
features

“»Kurtosis initially peaks and evolves to steady-state value over time
“*Run distance required for steady-state kurtosis related to spatial features of porosity
“*Magnitude of initial kurtosis peak provides indicator for number of reaction sites

“*specific surface area and 2-body fraction are leading geometric
indicators of sensitivity
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»  Molecular Dynamics Simulations

“*Use MD simulation to gain more physical insight into highly

clustered microstructure Conﬁgurations
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Temperature Field Statistics Across Many
Different Microstructures
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“*Statistics taken at fixed time (150ps) when shock has traversed
~450 nm
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Area Fraction of Reacted Material Across Many
Different Microstructures

**Is kurtosis of temperature distribution a good indicator for
sensitivity to reaction?
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»  MD Simulation of Clustered Porosity

“*Geometry 2:
“*Large pore cluster between 100-200 nm

“»Temperature distribution with high skew and kurtosis
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» CTH Conservation Equations

“*Real material behavior comes from an accurate equation-of-state
(EOS) plus a constitutive model with parameters fit to the
appropriate, dynamic regime.

“*spherical part is the equation of state P = f(p,F)

“*deviatoric patt is the constitutive model 0 = f(strain, ...)

“*numerical patt is the artificial viscous stress Q = f( velocity and ¢ )

dp .
Mass A j pveV
Momentum pcji—I; =—VP-Velo+Q(7.c,)
Energy pcfl—ljz—PVOV—[G+Q(I7,cs)]o A%
—S =PI +0c+Q(V,cs)
Stress Tensor Spherical Deviatoric Artificial

Part Part Viscosity



» Continuum Hydrocode Simulations—CTH

“*CTH—3D, large deformation, multi-material shock physics
hydrocode developed at Sandia National Laboratories

dp >
—=—pVeJ
Mass - P
dv .
Momentum  p-=-VP-Ve o+Q(7.c, )
dE - - -
Energy Pl =PV - 6+Q(7,c. lov7
t
Lagrangian and remap solution Density-temperature equilibrium
steps as they appear in CTH for reactive burn models
i ti + At
AV, AE, AX UR
UWR /
RP
RP
Vi, By By, 15, X4 density-temperature
equilibrium

Problem Start Lagrangian Step Remap Step

McGlaun, J. M., Thompson, S. L., and Elrick, M. G., Int. J. Impact Engng:., 10 (1990) 351-360.



27 What is LAMMPS?

¢ Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov
*  Open source, highly portable C++, free under GPL license

* Well documented with many examples, easily extendable for user specific needs Ve

* Variety of boundary conditions, constraints, ensemble sampling methods etc. o

¢ Parallelism through spatial decomposition of simulation domain

*  Short and long ranged interactions allowed/included o %
* CPU cost is (D) apg communication is (N/ P)?/3

A~
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s Useful, Co-dependent Models [

*  Predictions at the mesoscale
now share approximations of
either model

¢ Sacrificed some ability to
extrapolate, but have built a
sandbox reality where much
can be learned

¢ Actively looking for

experimental integration as
validation

Length

Electronic Atomic Continuum




» SGL Strength Model Calibrated from MD
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* Training data of collapsing pores from MD sent

to CTH for strength model parameterization
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Metrics Passed from MD to CTH

Training Metric Comparison Metrics
» Collapse rate is used to calibrate « Radial distribution of plastic strain
strength models in CTH « Temperature histograms
« Etc.
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Quantitative post-processing was
done using the OVITO code [10]

{010] Shock Dir



CTH Strain Rate Dependent Model — Steinbersg,
" Guinan and Lund (1988)

*  We believe that only a strain rate-dependent model can match MD results for
viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.
* Assume a constant shear modulus
* Neglect work hardening

* Assume linear variation of the Griineisen parameter

Yield Strength: Y ={¥r(¢,T) +Yaf (ep)}
Shear Modulus: G(P,T) = Gy

: ; -1
Thermal Activation: . {i 2Uk(, YT 2] +&} Y. <Y,
(Implicit Equation) & = oo 0w |+ e
Melting Curve: T, = Toexp{2a(l — 1/n)n20o—a-1/3)

(Y=0whenT >T,)

Grlneisen parameter: Y =vo/(1+ 1)



