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HPC Infrastructure Challenge
• Motivation: the growing complexity of computing systems, ranging from cell

phones to supercomputers is becoming difficult for developers to manage, and
power utilization is expected to be a major component to regulate going forward
• By 2025, data centers are forecasted to be using 20% of all available

electricity in the world
• A cloud provider used the equivalent energy consumption of

-366,000 U.S. households in 2014
• As the world moves towards Exascale, this is not a scalable trajectory

• Goal: employ machine learning (ML) techniques to make more efficient use of

HPC infrastructure

• More intelligent, automated mechanisms are needed to optimize use of

available resources, from the subsystem level (e.g. memory management) to the
human-interaction level (e.g. job scheduling)

• Experiment: adjust relevant power management states -states) and node-level

power caps such that compute time is not negatively impacted and power is saved
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Figures: manually analyzed power-time profiles for example mini-apps demonstrating

the potential for significant power savings with minimal run-time impact
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Historical Data Analysis
• Goal: predict the average power of a job given its submission information

• Categorical/tabular information (e.g. username, job name, layout) makes feature

space embedding necessary for standard ML algorithms
• From power-time profiles, we expect similar jobs to consume similar energy

• Approach: regression analysis of historical job data to enable more accurate forecasts

• Embedding spaces explored: uncorrelated (binary - 41D), contrast coding

(backward difference - 2341D), and neural-based (cat2vec - 142D)
• Algorithms used: linear, random forest, and support vector regression

• Contrasted with default settings (e.g. no power cap)

Power Regression r2 score

Lin

SVR

RF

Binary

0.700

0.657

0.813

Cat2Vec

0.806

0.787

0.816

BDE

0.773

N/A

0.814

Power Regression RSME (W)

Lin

SVR

RF

Binary

42.27

47.22

34.87

Cat2Vec

35.52

37.02

34.65

BDE

35.24

N/A

34.78

Constant Predictor RSME (W)

None (450W)

127.5

Mean (-350W)

80.73

Figures: exemplar power prediction

comparisons for test set of different

embeddings and regression

algorithms (left); measured vs

predicted correlation plot of best

performing model (below)

.
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Job-Power Visualization
• Astra: large-scale prototype system under the Sandia Vanguard program

• 2,592 compute nodes
• Dual 28-core Cavium ThunderX2 64-bit Arm-v8 processors per node
• 1.2 MW power consumption

Visualization: scheduled jobs (top row) and power consumption (bottom row) over a five month data collection
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Reinforcement Learning Control
• Reinforcement learning (RL) is a machine learning paradigm

where an agent makes actions given state observations from the

environment; the environment emits rewards and new state

observations, based on the agent's actions

RL Prere• uisite
U Sequential: control problem should

require sequential decision making

U Features: observations about the state of
the environment

U Rewards: system metrics which we care
about and can collect during training

RL for HP
U Sequential: power management state

(P-state) of each core

U Features: performance counters
representing system state

U Rewards: job run time and power
consumption

❑ Actions: parameters of the system which ❑
the agent can control Actions: set P-state

• Goal: learn dynamic P-state policy that balances power utilization

and runtime across the execution of applications
• Although P-states for all cores set identically, running all cores

at either lowest or highest P-state settings will be non-optimal
• Scenario: serial phases of code will not make use of all cores,

so they should not be running at maximum P-state, but parallel

phases should make use of high P-states

Different policy behaviors

not improve runtime.

"nimize energy

-1/step (Negative reward for time spent running)

Agent

State

ONN value

Rewa rd

Take

Value Et Policy Networks

action
P-state

Observe state

Environment

Illustrations: energy

and runtime tradeoffs

depending on P-state

policy (left). HPC RL

"environment" (right)

Performance counters
- 64 bit

Sampling 4 counte
N Hz sampling

Program:
- miniMD
HPC Architecture:
- Trinity style clusters: Voltrino a Arbiter
- Running on 4 Nodes (code scales from 1 to N)
- 2 CPUs/Node (16 physical cores/CPU)

Summary
• Regularities in job-power profiles enables better power utilization

management strategies through machine learning approaches
• Power forecasts from job submission information supports

increased resource saturation within given power budget

• P-state regulation can further improve power utilization metrics
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