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HPC Infrastructure Challenge Historical Data Analysis Reinforcement Learning Control
* Motivation: the growing complexity of computing systems, ranging from cell * Goal: predict the average power of a job given its submission information * Reinforcement learning (RL) is a machine learning paradigm
phones to supercomputers is becoming difficult for developers to manage, and * (Categorical/tabular information (e.g. username, job name, layout) makes feature where an agent makes actions given state observations from the
power utilization is expected to be a major component to regulate going forward space embedding necessary for standard ML algorithms environment; the environment emits rewards and new state
* By 2025, data centers are forecasted to be using 20% of all available * From power-time profiles, we expect similar jobs to consume similar energy observations, based on the agent’s actions

electricity in the world

* A cloud provider used the equivalent energy consumption of * Approach: regression analysis of historical job data to enable more accurate forecasts . .
. . . . d Sequential: control problem should d Sequential: power management state
~366,000 U.S. households in 2014 * Embedding spaces explored: uncorrelated (binary — 41D), contrast coding require sequential decision making (P-state) of each core
.. - - d Features: ob ti bout the state of W Features: perf t
* As the world moves towards Exascale, this is not a scalable trajectory (backward difference — 2341D), and neural-based (cat2vec — 142D) e Sl vatons about the state o r:g‘gii;&ifgfs‘;ﬁ?;g? e RS
. Algoﬁthms used: linear, random forest, and support vector regressjgn [ Rewards: system metrics which we care [ Rewards: job run time and power
_ . _ . . . S about and can collect during training consumption
* Goal: employ machine learning (ML) techniques to make more efficient use of * Contrasted with default settings (e.g. no power cap) . O Actions: parameters of the system which [ A 5
: - the agent can control codsusctlasuie
HPC infrastructure Power Regression r? score . o -
* More intelligent, automated mechanisms are needed to optimize use of Binary | Cat2Vec | BDE jleties exe”}p'atr p‘t""’etr F:crg_‘;]'ft'ont ) * Goal: learn dynamic P-state policy that balances power utilization
. comparisons 10r test set or altreren . . ] ]
available resources, from the subsystem level (e.g. memory management) to the lin 0700 0.806  0.773 il s e e 7 and runtime across the execution of applications
human-interaction level (e.g. job scheduling) SVR 0.657 0.787  N/A algorithms (left); measured vs -] . == * Although P-states for all cores set identically, running all cores

predicted correlation plot of best
performing model (below)

RF 1 0.813 0.816 0.814

at either lowest or highest P-state settings will be non-optimal

* Experiment: adjust relevant power management states (PP-states) and node-level * Scenario: serial phases of code will not make use ot all cores,

Power Regression RSME (W)

power caps such that compute time is not negatively impacted and power 1s saved Binary | Cat2vec | BDE ] so they should not be running at maximum P-state, but parallel
lin 4227 3552 3524 - phases should make use of high P-states
Figures: manually analyzed power-time profiles for example mini-apps demonstrating SVR | 47.22 | 37.02 N/A = Linpess o it ks -1/step (Negative reward for time spent running)
the potential for significant power savings with minimal run-time impact . S ’
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. . . £ \ and runtime tradeoffs FrOgram.-
b P v I (¥} Optimal P-states selec 1 . - m‘w
JO - OWG I" | S U a IZEItI O n o \, minimize runtime. Higher P-states depending on P-state HPC Architecture:
p | Nt ) - Trinity style clusters: Voltrino & Arbiter
E l policy (left). HPC RL - Running on 4 Nodes (code scales from 1 to N)
* Astra: large-scale prototype system under the Sandia Vanguard program 5 “environment” (right) = ZEPOSNGEE: (MGl ETSITIO)

* 2,592 compute nodes
* Dual 28-core Cavium ThunderX2 64-bit Arm-v8 processors per node
* 1.2 MW power consumption

Summary

Visualization: scheduled jobs (top row) and power consumption (bottom row) over a five month data collection

* Regularities in job-power profiles enables better power utilization
management strategies through machine learning approaches
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