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Abstract

This paper presents a nonlocal analysis of the dynamic damage accumulation
processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage
model is developed and implemented into a transient dynamic finite element computer code.
The code is then applied to the study of the damage accumulation process ina concrete plate
with a central hole and subjected to the action of a step tensile pulse applied at opposite edges
of the plate. Several finite element discretizations are used to examine the mesh size effect.
Comparisons between calculated results based on local and nonlocal formulations are made
and nonlocal effects are discussed.
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1.0 INTRODUCTION

Continuous demands on safety and efficient design have placed increasing emphases on
fracture and failure analyses of engineering materials and structures. Continuum damage mechan-
ics have been applied to study the phenomenon of brittle fracture in solids under dynamic loads
with varying degrees of success [1-6]. Because of the complex geometries and loading conditions
involved, numerical simulation techniques have become the tools of choice. Two common prob-
lems associated with damage analyses by classical continuum damage mechanics are softening
and localization. The consequences of failing to take into account these two problems properly
usually manifested in solutions which are dependent on the discretization size. A potential rem-
edy is to cast the field equations in a nonlocal setting such that the high gradients associated with
the field parameters in these problems can be captured. The nonlocality is usually represented by
an internal length scale which can be introduced in formulations ranging from the Cosserat and
micropolar theories [7,8], the gradient theory [9,10], fully nonlocal [11,12] and partially nonlocal
[13] representations.

The purpose of this research is to investigate the appropriateness of applying nonlocal
damage models to analyze dynamic brittle fracture. The study is based on the comparisons
between numerical results obtained from the same damage model with both a nonlocal and a local
formulation. The damage model selected is the one developed by the author and his coworkers [1-
6] to simulate brittle rock fracturing. A nonlocal version is developed here by utilizing the nonlo-
cal formulation suggested in [13] in which nonlocality is only applied to those internal state vari-
ables involved with material damage. The model has been implemented into the transient finite
element code PRONTO 2D [14] for numerical analysis. An example problem has been defined
and results have been obtained from both local and nonlocal calculations. To examine mesh size
effect, several discretizations are used in the numerical computations. Comparisons between these
results have been made. Based on these findings, it is clear that mesh size dependence can be alle-
viated by adopting a nonlocal damage model formulation. However, the determination of the
internal length scale associate with the nonlocal formulation is certainly nontrivial. Moreover,
nonlocality tends to smear out localized deformations and thus may suppress truly local failure
modes. This may render the nonlocal models inappropriate for predicting localized failure mecha-
nisms.

2.0 CONTINUUM DAMAGE MODEL DESCRIPTION

The basic assumption of the damage model is that the material is permeated by an array of
randomly distributed cracks which grow and interact with one another under tensile loading. The
model does not attempt to treat each individual crack, but rather treats the growth and interaction
of cracks as internal state variables which represent damage accumulation in the material. The
damage is reflected in the degradation of the material stiffness following the equations derived by
Budiansky and O’Connell [15] for a random array of penny-shaped cracks in an isotropic elastic
medium
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where K, G, E and v are material bulk modl_l_lus, shear modulus, Young modulus and Poisson’s
ratio, respectively. Barred quantities such as K represent degraded properties and Cj is the crack

density parameter. Additionally, the crack density parameter is related to the virgin and damaged
Poisson’s ratio through:

45__ (v-9)(2-7)

C,= 4)
d
161 _9%)110v - %(1 +3v)]
The damage variable is defined as
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such that K = K (1 - D). The crack density parameter is assumed to be proportional to the product

of N, the number of cracks per unit volume, and a3, the cube of the average crack dimension in a
representative volume. Following Grady and Kipp [16], N is expressed as a Weibull statistical dis-
tribution function activated by the bulk strain measure &, = (g, + &, +&,) / 3, according to

N = k(ev)m (6)

in which k and m are material constants to be determined from strain rate dependent tensile frac-
ture stress data. The average crack dimension a, is estimated from the nominal fragment diameter
for dynamic fragmentation in a brittle material [17] as
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where p is the mass density, C is the uniaxial wave speed (E / p)*'“, and Ky is the fracture tough-

ness of the material. Also, évm ax is the maximum volumetric strain rate experienced by the rep-

resentative volume element. Equations (1) through (5) can also be cast into rate form to relate
stress and strain rates. When bulk tension occurs in the material, it is possible to calculate, at each
time step, the crack density parameter C4 by making use of Equations (6) and (7) and then dam-



age parameter D through Equation (5). The material stiffness is then degraded according to Equa-
tions (1) through (5). In compression, the material behaves as an elastic/perfectly plastic solid.
Details of the model development are given in Taylor, Chen and Kuszmaul [1] and will not be
repeated here.

Modifications have been made to the above model to render it a more versatile tool.
Because the equations derived by Budiansky and O’Connell [15] are limited to dilute crack con-
centrations, the crack density parameter has a limiting value of 9/16. To extend the range of crack
densities, an expression [18]

J=ve’® 0<B<1 ®)

was used to approximate Equation (4). Equation (8) recovers Budiansky and O’Connell’s expres-

sion for dilute crack concentrations at small crack density C, and attains the correct limit of zero

stiffness for large C,; values. In comparison with the expression in [1], the crack density parameter
Zhe,

16C,4/9 is effectively replaced by 1 —e " The value of B controls the unloading and reloading

behavior and relaxes the restriction of elastic unloading in the original model.

For many brittle solids, pressure-dependent inelastic response under compressive loads is
observed. An improvement is made by extending the elastic/perfectly plastic compressive
response to one that employs a Drucker-Prager yield surface [19]:

F = E')'Z—(c1+c2P)2 =0 ©

with G the effective stress, P the mean stress and c¢; and c, material constants determined from
experimental data. To avoid too much dilation, a von Mises flow rule of the type

S..
el = 1Y (10)

is adopted. In Equation (10), 85 is the plastic strain rate tensor, A is the plastic loading rate

parameter, and Sij is the deviatoric stress tensor.

3.0 CHARACTERISTICS OF THE DAMAGE MODEL

Characteristics of the continuum damage model described are examined here for the
same oil shale as in [1]. Nominal material properties such as the mass density, the Young’s

modulus, the Poisson’s ratio and the fracture toughness are taken to be 2270 kg/m>, 10.8 GPa,



0.2 and 1.0 MPa-m!’2, respectively. Shear strength T was approximated by a linear relationship
of T = 200.0 + 0. 5 P (MPa). Strain-rate dependent tensile fracture stress data are required to
determine the constants k and m in Equation (6). In lieu of measured data, it is possible to
estimate this data using an expression derived in Kipp, Grady and Chen [20] for the tensile
fracture stress O:

23 1
IMEK - |” 3
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where N is a shape factor (1.12 for penny-shaped cracks) and Cj is the shear wave velocity of

the material. Thus, k and m are really not additional material constants for the model. For the oil
shale, Kipp and Grady [21] reported fracture stress versus strain rate data and this is shown in
Fig. 1. Based on these data and the material properties given above, m and k are determined to

be 7.0 and 5.116 10%%/m3, respectively.

Using these material properties and 0.5 for B, the response of the oil shale under bulk
tension can now be examined. Fig. 2 shows the pressure-volumetric strain relationship under
uniaxial homogeneous straining for three strain rates. In this figure, positive pressure denotes
bulk tension. Strain-softening is observed as a consequence of the micro-cracking damage
accumulation. The material’s capability to carry bulk tension increases with the strain rate.
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Figure 1. Oil Shale tensile fracture stress versus strain rate data.
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Figure 3. Damage versus volumetric strain plot.
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Damage accumulation as a function of volumetric strain is shown in Fig. 3. The loading/
unloading/reloading behavior for 1000/s strain rate is exhibited in Fig. 4 and 5 in terms of the
pressure- and damage-volumetric strain plot, respectively. It is seen that the damage evolution is
an irreversible process. During reloading, no more damage accumulation will take place until
the strain level have exceeded the previous maximum. The value for B controls the unloading
response. For =0, elastic unloading along the damaged bulk modulus will result. For B=1,
unloading is along the original bulk modulus similar to elastic/plastic behavior. For f§ between 0
and 1, a combined damage/plastic unloading response results. The effect of B is illustrated in
Fig. 6. Note that because of the modifications, the numerical values reported here are slightly
different from those in [1]. Also, the exponential representation in Equation (8) renders better
numerical convergence and smooth softening responses.

4.0 NONLOCAL FORMULATION

Nonlocal formulations involve the introduction of localization limiters, usually an
internal length scale, into classical continuum field equations. Depending on the degree of
sophistication, several theories exist in the literature [7-13, 22]. The purpose of the present
investigation is to examine general nonlocal effects and it suffices to consider a simple yet
efficient formulation. To this end, the nonlocal continuum with local strain model [13] is
adopted here. Typically, for this model, some of the variables in the constitutive equation are
defined by spatial averaging while the others retain their local definitions. The spatial average of

the magnitude of an arbitrary variable 1y at location x may be defined by the equation

so.o 1 T L} 1] l L4 T ¥ ¥ I T T ¥ ¥ I L L} L} L} l ¥ L) L} ¥
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Figure 6. Effect of B on unloading.
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V(z) = [ods—x)dV (13)
\4

The pointed brackets < > denote the averaging operator, V is the volume of the body, o(x) is

the weighing function which defines the averaging, and s is the general coordinate vector. The
selection of the weighing function is based on numerical efficiency. The normal (Gaussian)
distribution function (error density function)

ax) =e (14)

was selected in [13] for two-dimensional geometries. In Equation (14), [ is the characteristic
length which is a material property that defines the diameter of the representative volume.
Judicious choices of the variables which should be subjected to spatial averaging are
required. In [13], for a nonlocal plasticity model, only the plastic strain was subjected to spatial
averaging and satisfactory results were obtained. Motivated by the results in [13], the present
nonlocal formulation will apply spatial averaging to state variables relating to material damage
while others maintain their local definitions. By analyzing Equations (1) - (8) and replacing the

16
-'gﬁcd

crack density parameter 16C,/9 with 1—e , a mixed system of algebraic and ordinary
differential equations can be constructed for the evolution of tensile damage as follows:

Skmer~'r Ko 2.
¢, = (pCévmax) g, (15)
16
_ 19, 9P
D = 1_2\7(1-6’ J (16)
K = K(1-D) amn
16
= _ 2(1-9)(5-9), 9P
G = G[l—s oy [l—e ﬂ (18)
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P = 3Ré,~3Ke,D (19)
5 = 2Géy;+2Gey, (20)

where s;; and e;; are the deviatoric stress and strain tensor, respectively and the dot superscript

denotes differentiation with respect to time. Together with Equation (8), Equations (15)-(20) can
be used to calculate the evolution of tensile damage in the material. For a given imposed state of
deformation in a time or loading step, the crack density increment is calculated from Equation
(15) and C; is updated to the end of the time step. The damage increment is obtained by

differentiating Equation (16) and its value can be updated. It follows from Equations (8), (17)
and (18) that the time rate and the degraded Poisson’s ratio, bulk and shear modulus can be
evaluated. Then, through Equations (19) and (20), the stress state is obtained. The state variables
which affect the damage evolution are the crack density parameter C; and the damage variable
D. Thus, spatial averaging based on Equations (12)-(14) is applied to C; and D only while all
other field variables retain their local definitions. In compression, local plasticity theory of the
Prager-Drucker type governs the constitutive behavior of the material.

Without going into more details, this nonlocal damage model have been vectorized and
implemented into the explicit finite element code PRONTO 2D [14] for efficient computations.

5.0 NUMERICAL CALCULATIONS

General nonlocal effects are examined based on the comparisons of results between local
and nonlocal calculations. The example problem selected is the same one used in [6] which
involves the sudden stretching of a plate with a centrally located hole. Consider the 0.2 m by
0.4m rectangular plate with a 0.1 m diameter hole in the center in Fig. 7. A step tensile pulse is

L 0.4 m »

o H(t)

S
AAAAAAL
YYVYVYVYVY

0.1m

Figure 7. Schematic drawing of the example problem.
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applied symmetrically to the left and right edge of the plate. The plate consists of the same Oil
Shale material as the one given in the section on the characteristics of the damage model. For
numerical calculations, the pulse is given a strength of 10.0 MPa. Both the nonlocal and local
damage models as implemented in the finite element code PRONTO 2D are used to obtain the
dynamic response of the plate. The plane strain condition is assumed to prevail. Because of
symmetry, only one quarter of the geometry in Fig. 7 needs to be included in the finite element
mesh. Four meshes with varying degree of fineness are chosen to investigate mesh size effects.
Fig. 8 shows the most coarse mesh with 75 elements and 96 nodes. A 90-degree rotation of the
schematic drawing in Fig. 7 has been made. The boundary of the hole is divided into 10
elements. The second mesh is constructed by simply doubling the numbers of divisions in both
the x and y directions in Fig. 8. Thus, the mesh consists of 300 elements and 341 nodes. Ina
similar expansion, the third mesh is constructed with 1,200 elements and 1,281 nodes. To avoid
an excessive number of elements, the fourth mesh only doubles the number of divisions in the
third mesh in the lower right part of the plate and consists of 2,800 elements and 2,921 nodes.
This is justified because with the applied tensile pulse, the high stress gradients are anticipated
to concentrate around the lower right part of the plate and it is not necessary to place fine mesh
in other parts of the plate. The finest mesh with 2,800 elements is shown in Fig. 9.

Calculations were carried out on the Cray YMP computer at Sandia National
Laboratories. The results of the local continuum model are presented first. The evolution of
damage focused on the lower 0.09-by-0.09 meter area of the plate is depicted at four time
intervals at 0.175, 0.2, 0.215 and 0.225 miliseconds after the tensile pulse has been applied. The
results are given in Figs. 10 - 13, respectively, corresponding to the four meshes. It is clear that
damage localizes near the lower right edge of the hole and with more refined mesh, damage
localizes into a narrower band. The fact that damage occurs at a direction deviating from the
bottom edge of the hole is due to the effect of wave propagation and the strain rate dependence
of the damage model. A more detailed explanation is given in [6] and will not be repeated here.

The localization of deformation can also be observed by plotting the distribution of bulk
strain around the boundary of the hole. These are shown in Figs. 14 -17 for the four meshes at
four time intervals. Because the actions are concentrated at the lower right part of the plate, only
the lower 45-degree arc of the hole boundary has been included. The bulk strains are the values
at integration points of the first layer of elements closest to the hole boundary. The distance is
measured counterclockwise from the bottom edge of the hole. Bulk strain localization is clearly
observed. Also, the results do not converge with mesh refinement in that the peak strain
localizes into a narrower band and attain larger values with mesh refinement.

An additional parameter, namely the characteristic length, is required for the nonlocal
calculations. For the present model, the localization limiter is taken to be the radius of the
minimum crack that will be activated during the loading process. From the local calculation, the
nominal strain rate attained under the applied tensile pulse is approximately 1000 /s. Thus, from
Equation (7), the minimum crack radius can be calculated and the value is 0.005 m. This value
is used for the characteristic length I in Equation (14). This value compares to the minimum
dimensions of 0.0196, 0.0098, 0.00196, and 0.00098 m, respectively, for the four meshes
selected in the calculations.

16



Units in meters

0.08 -

NNEANEAN

0.03 -

\

Figure 8. Finite element mesh with 75 elements.
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Figure 9. Finest mesh with 2,800 elements.
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The corresponding nonlocal results to those in Figs. 10 -13 are shown in Figs. 18-21.
Because the characteristic length is less than the minimum dimension of mesh 1, the nonlocal
averaging will not take effect, and the results in Fig. 18 are identical to those in Fig. 10. When
the meshes become progressively finer, the smearing effect of the nonlocal results becomes
more pronounced. It is observed that the narrow band of localized damage in Fig. 13 is replaced
by lower damage values spread over a wider area near the same location, Fig. 21.

Convergence of the numerical results with mesh refinement is observed from the
distribution of bulk strain along the hole boundary. Again, Figs. 22-25 correspond to those in
Figs. 14-17. Figs. 24 and 25 show the convergence of bulk strain with mesh refinement.
However, the magnitude of the bulk strain is much less than that for the corresponding local
calculation. At 0.215 ms, better convergence is achieved in Fig. 24 than the one in Fig. 25 at
0.225 ms. This is attributed to the oscillatory nature of the solution due to pulse loads and the
relatively unsophisticated nonlocal formulation adopted here.

6.0 SUMMARY AND DISCUSSIONS

The effect of nonlocal continnum formulation on the dynamic damage accumulation
process in a brittle solid has been investigated. This study is based on a microcrack based
continuum damage model. A nonlocal formulation has been added and the resulting model has
been implemented into the transient dynamic finite element code PRONTO 2D for numerical
computations. Characteristics of the damage model are presented. The mesh size effect has been
studied through a selected example problem.

The nonlocal formulation introduces an additional internal length parameter which must
be determined. For the current damage model, this parameter was taken to be the minimum
crack dimension which will be activated under the applied pulse load. For other constitutive
models, the determination of this length scale may be difficult. Results from the numerical
simulations indicate that the nonlocal formulation can yield mesh size independent solutions.
However, nonlocality tends to smear out and decrease the magnitude of localized deformation
patterns. In many physical situations, such as shear banding, localized and concentrated
deformations are physical realities. These characteristics can potentially be lost in nonlocal
solutions.

An additional numerical consideration is the selection of mesh size. Based on the present
formulation, it is obvious that if the minimum dimension of the finite elements is larger than the
characteristic internal length scale, then both local and nonlocal calculation will yield the same
result. This is because the nonlocal spatial averaging is extended only to the reach of the internal
length scale. Therefore, if the internal length scale can be calculated, then by selecting this
length scale to coincide with the least dimension of the finite element mesh, one can use a local
formulation to obtain solutions which exhibit a localized zone of correct size and the correct
amount of energy dissipation. This may be the reason why many complex local continuum
based calculations, such as penetration mechanics analyses [23], do yield reasonable solutions
relative to test data.

18



DAMAGE MODEL HOLE PROBLEM {75 ELEMENTS)
4 T T g e G
R e e
- 2 %

T
e o
0 i

z

. /#'/’ 7
T ik
P
.

0.013

0.088 [2%7

[l =l=]=]=u]u]~]=]

0.083 ¥

>
0.038
0.013 -
N N "‘)‘,g/{{//' SR R . N Fo Z
0.013 0.038 0.063 0.088 0.013 0.038 0.063 0.088
X X
Figure 10. Damage evolution for mesh 1.
0.088 £
0.063 [
bl
0.038
0.013
DANAGE
q 203 0.000
0.088 %oﬂzs
3% 0.250
#4 0.375
4 0.500
- L e
0.063 [ 0:875
1.000
.
0.038 .
Time in seconds
TIME 0.17S0E-3
0.013 IE 91338573
TINE 0.2150E-3
TIHE 0.2251E-3

X

Figure 11. Damage evolution for mesh 2.
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Buk Strain Distribution Along Hole Boundary at 0.175 ms
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Figure 15. Bulk strain distribution at 0.2 ms.
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Figure 14. Bulk strain distribution at 0.175 ms.
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Buk Strain Distribution Along Hole Boundary ot 0.215 ms
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Figure 16. Bulk strain distribution at 0.215 ms.

Buk Strain Distribution Along Hole Boundary at 0.225 ms
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Figure 17. Bulk strain distribution at 0.225 ms.
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Bulk Strdin Distribution Along Hole Boundary at 0.175 ms
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Figure 22. Nonlocal bulk strain distribution at 0.175 ms.

Bulk Strain Distribution Along Hole Boundary at 0.2 ms

3000.0 T T T T T T T T T T T

——— 2800 Elements

2500.0

/

2000.0

1500.0

1000.0

Bulk Strain (Microstrain)

P SRS URYN EPUR T SO U Y YR VRN VR SO NN VY VT THT VAN (N VO S S

500.0

T ||-||||-|-|-|/Il-:x-

llll

0 v v b eoe g Uyrn o by o a Uy w v a e 00 be a1 r s

S5 1.0 15 20 25 3.0 35 40
Distance (cm)

=)

Figure 23. Nonlocal bulk strain distribution at 0.2 ms.

25



Bulk Strain Distribution Along Hole Boundary at 0.2 15 ms
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Figure 24. Nonlocal bulk strain distribution at 0.215 ms.

Bulk Strain Distribution Along Hole Boundary at 0.225 ms
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Figure 25. Nonlocal bulk strain distribution at 0.225 ms.
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