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DISTRIBUTION AND CHEMISTRY OF FRACTURE-LINING MINERALS
AT YUCCA MOUNTAIN, NEVADA

by

Barbara A. Carlos, Steve J. Chipera, and David L. Bish

ABSTRACT

Yucca Mountain, a >1.5-km-thick sequence of tuffs and subordinate lavas in southwest
Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-
lining minerals have been studied because they may provide information on past fluid transport
and because they may act as natural barriers to radionuclide migration within the fractures.
Cores from seven drill holes have been studied to determine the distribution and chemistry of
minerals lining fractures at Yucca Mountain.

Fracture-lining minerals in tuffs of the Paintbrush Group, which is above the static water
level at Yucca Mountain, are highly variable in distribution, both vertically and laterally across
the mountain, with the zeolites mordenite, heulandite, and stellerite widespread in fractures
even though the tuff matrix is generally devitrified and nonzeolitic. Where heulandite occurs as
both tabular and prismatic crystals in the same fracture, the two morphologies have different
compositions, suggesting multiple episodes of zeolite formation within the fractures.
Manganese-oxide minerals within the Paintbrush Group are rancieite and lithiophorite. The
silica polymorphs (quartz, tridymite, and cristobalite) generally exist in fractures where they
exist in the matrix, suggesting that they formed in the fractures at the same time they formed in
the matrix. Fluorite, calcite, and opal occur over tridymite in some lithophysal cavities. Calcite
also occurs over zeolites in fractures unrelated to lithophysal cavities and is often the youngest
mineral in a given fracture. The clays smectite, palygorskite, and sepiolite are common in
fractures in the Paintbrush Group in drili core USW GU-3; smectite is an abundant fracture-
coating mineral in all drill cores at Yucca Mountain.

In fractures in the Calico Hills Formation and the Crater Flat Group, zeolites generally
exist mainly where the matrix is also zeolitic, although mordenite does occur as fracture linings
in some devitrified intervals of the Crater Flat Group as well. Clinoptilolite and mordenite occur
in fractures in tuffs containing clinoptilolite; analcime is limited to fractures in tuff intervals
containing analcime. These data suggest that the formation of fracture-lining zeolites in the
Calico Hilis Formation and the Crater Flat Group may have been coincident with the original
alteration of the tuffs. Manganese-oxide minerals in the Calico Hills Formation and the Crater
Flat Group occur principally in devitrified tuff intervals and are mainly cryptomelane/hollandite
family minerals, although lithiophorite, todorokite, pyrolusite, rancieite, and aurorite also occur.

The calcic compositions of the zeolites and manganese-oxide minerals in the Paintbrush
Group and the sodic and potassic compositions of the zeolites and potassic manganese-oxide
minerals in the Calico Hills Formation and Crater Flat Group suggest that fluid compositions in
the Paintbrush Group differed from those in deeper tuffs. Although matrix and fracture-lining
zeolites may have formed under similar conditions (saturation and/or lateral flow) in the Calico
Hills Formation and below, the fractures in the Paintbrush Group contain zeolites where there
are none in the matrix, suggesting that for these minerals, localized mineral deposition resulted
from fracture flow within the unsaturated zone.




. INTRODUCTION

Yucca Mountain in southwest Nevada (Figure 1) is being investigated as a potential site
for a high-level nuclear waste repository partly because the thick sequences of zeolitic tuffs
provide a natural barrier to the migration of some radionuclides, notably the alkali and alkaline-
earth elements (Thomas, 1987). The potential repository horizon is in-the lower portion of the
Topopah Spring Tuff of the Paintbrush Group, >300 m below the surface of the mountain and
150 m above the static water level (SWL). Because fractures represent both past and potential
future transport pathways, fracture-lining minerals are being studied to provide information on
transport within Yucca Mountain and on their use as possible barriers to radionuclide migration.
This report ingludes descriptions of fracture coatings in core from seven holes drilled before
1984 (USW G-1, G-2, GU-3, G-3, G-4, UE-25a#1, and UE-25b#1). Of these, G-3 is essentially
a continuation of GU-3, and UE-25b#1 is a continuation of UE 25 a#1. Both holes were
stepped over slightly from the original hole and cored deeper below the SWL. This study of
fracture-lining minerals was limited to the Paintbrush Group, the Calico Hills Formation, and the
Crater Flat Group, the units most likely to be encountered by future fluid flow between the
potential repository and the accessible environment. Although these cores were drilled before
development of an approved quality assurance (QA) program, they are useful in developing
conceptual models of mineral distribution that may be validated, modified, or discarded as data

are collected from new cores. Previous publications on Yucca Mountain fracture coatings have

focused on single drill cores or single mineral suites (see Carlos, 1985; Carlos, 1987; Carios,
1989; Carlos et al., 1991; Carlos et al., 1993; Carlos et al., 1995). This report represents a
summary of existing fracture mineralogy data at Yucca Mountain.

Il. BACKGROUND GEOLOGY

Yucca Mountain is composed of a >1.5-km-thick sequence of tuffs and subordinate
lavas (Scott et al., 1983; Carr et al., 1986). The tuff units include partially to densely welded
devitrified tuff, densely welded vitrophyre, and nonwelded vitric tuff which in places has been
extensively altered to zeolite minerals. Detailed descriptions of these ash flow tuffs are given in
Lipman et al. (1966), Byers et al. (1976), and Carr et al. (1986), and regional geology of the
volcanic field and ages of the tuffs are discussed in Sawyer et al. (1994). The stratigraphy of
the drill cores examined in this study has been described by Spengler et al. (1979), Spengler et
al. (1981), Lobmeyer et al. (1983), Maldonado and Koether (1983), Scott and Castellanos
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Figure 1. Location map showing Yucca Mountain and the drill holes mentioned in this report.




(1984), and Spengler and Chornack (1984). From top to bottom, the units at Yucca Mountain
are the Tiva Canyon, Yucca Mountain, Pah Canyon, and Topopah Spring Tuffs of the
Paintbrush Group; the Calico Hills Formation; the Prow Pass, Bullfrog, and Tram Tuffs of the
Crater Flat Group; and older tuffs and lavas that are not included in this study (Figure 2). The
SWL falls within the Crater Flat Group beneath most of Yucca Mountain.

The mineralogy of the tuff units is described in Bish and Chipera (1989). Alteration of
Yucca Mountain tuffs is discussed by Broxton et al. (1987), who describe four depth-related
zones of diagenetic alteration. The zones can be identified by key minerals in the rock matrix in
the partly welded to nonwelded intervals. Zone | is above the SWL and is characterized by the
presence of glass and isolated occurrences of heulandite. Zone |l begins somewhat above the
present SWL and is characterized by the presence of clinoptilolite and mordenite, which replace
glass. Zone lll is characterized by the presence of analcime, although clinoptilolite and
mordenite persist at least in the upper part of this zone, along with quartz and authigenic
potassium feldspar. Zone IV contains albite, which replaces analcime; quartz and potassium
feldspar are also present. Broxton et al. (1987) noted that alteration is more intense toward the
north and attributed the alteration to a thermal pulse related to the Timber Mountain-Oasis
Valley caldera complex located north of Yucca Mountain. Bish (1989) used illite/smectite
interstratifications to infer the temperatures to which the different zones had been subjected.
The distribution of illite/smectite and K/Ar age dates of illite of about 11 Ma support the
hypothesis that alteration was the result of a regional increase in geothermal gradient related to
the Timber Mountain volcanism. No evidence of additional hydrothermal alteration since that
time has been found (Bish and Aronson, 1993).

ill. ANALYTICAL METHODS

Cores from seven drill holes (USW G-1, G-2, GU-3, G-3, G-4, UE-25a#1, and UE-
25bi#1) representing five different localities on and near Yucca Mountain (Figure 1) were
examined to determine the distribution of fracture-lining minerais. More than 500 samples from
the Paintbrush Group, the Calico Hills Formation, and the Crater Fiat Group were examined in
this study. Fracture coatings were first examined using a binocular microscope to choose
samples for grain mounts, thin sections, and scanning electron microscope (SEM) studies.
Samples included closed fractures for which thin sections could be made, crystals with
identifiable morphology that could be chipped off the fracture surface for grain mounts, and

fragments of open fractures that were ground to a flat surface and polished. Powders for X-ray




TIVA CANYON
TUFF
YUCCA MIN and
PAH CANYON TUFFS
o b ]
=
O
(04
)
I
[75]
=
% TOPOPAH
'2 SPRING
= TUFF
g
Potential Repository
Horizon
e D DEVITRIFIED
B ViROPHYRE
VITRIC
ZEOLITIC
SWL IS WITHIN CRATER
PROW PASS FLAT GROUP BENEATH
PROPOSED REPOSITORY
THE CALICO HILLS FORMATION
% IS VITRIC OVER PART
o) BULLFROG OF YUCCA MOUNTAIN
9 TUFF
g
L.
04
2
O
TRAM
TUFF
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powder diffraction (XRD) analysis were scraped from surfaces and then hand picked under a
binocular microscope to remove rock-matrix contamination. XRD analyses were obtained with
Siemens D-500 powder diffractometers using Cu Ka radiation and incident- and diffracted-
beam Soller slits. Samples were mounted either as powders pressed into a cavity machined
into an aluminum or glass sample plate or by suspension in deionized water or acetone and
sedimentation onto an off-axis cut (zero-background) quartz plate. Samples were typically run
from 2° to 70° 26 using 0.02° steps with typical count times of 16 s/step.

Open fracture surfaces were studied with an IS| model DS-130 SEM equipped with a
Tracor Northern Series 1l energy-dispersive X-ray (EDX) analytical system. Secondary-electron
images (SEI) and backscattered-electron images (BEI) were acquired at magnifications as high
as 10,000x using accelerating voltages between 19 and 29 kV. Thin sections across filled
fractures, polished chips, and grain mounts of crystals scraped from fracture surfaces were
examined using a Tracor Northern SEM, model ADEM, equipped with an integrated EDX
analytical system. SEl and BEI were collected at magnifications as high as 20,000x using
accelerating voltages of 15 or 20 kV. EDX analyses assisted in the identification of minerals.
Samples for chemical analysis were selected to represent most of the different fracture-
lining minerals from the different intervals. Quantitative elemental analyses of thin sections,
polished chips, and grain mounts were acquired on Cameca MBX and Cameca SX-50 electron-
probe microanalyzers using wavelength-dispersive spectrometry. Both instruments were
operated at an accelerating voltage of 15 kV and a beam current of 15 nA. A 10- to 20-um
rastered beam, combined with movement of the sample under the raster, was used to minimize
Na migration during analysis. Compositions were calculated using Bence-Albee correction
methods (Bence and Albee, 1968) for the Cameca MBX instrument and using PAP correction
methods (Pouchou and Pichoir, 1985) for the Cameca SX-50 instrument.

IV. RESULTS

The most common fracture-lining minerals at Yucca Mountain are silica polymorphs,
zeolites, and Mn oxides, with lesser amounts of clay minerals, calcite, fluorite, and Fe oxides.
In general, the fracture-lining zeolites at Yucca Mountain correlate with the diagenetic zone in
which the fractures occur. Appendix | presents the results of XRD analyses of fracture-lining
minerals in these drill cores. This table is not all-inclusive for the mineral distributions in
fractures at Yucca Mountain because many of the resuits listed in this report are from optical
and SEM analyses of fracture samples. For example, calcite is readily identified by its




morphology and does not require XRD analyses for positive identification. Figures 3a through
3e graphically represent the mineral distribution with depth for the more significant minerals
found in fractures at Yucca Mountain. These figures represent a compilation of XRD results
(locations for the samples analyzed by XRD are shown on the right-hand axis of the figures)
and SEM and optical determinations. The zeolite minerals clinoptilolite and heulandite are
isostructural and are not readily distinguishable. No distinction between the two species was
made in Appendix | or Figures 3a through 3e. However, chemical analyses of the
clinoptilolite/heulandite-group minerals present in the Paintbrush Group show calcium-dominant
cation compositions and Si:Al ratios of 3.4 to 3.8 indicative of heulandite (Boles, 1972).
Heulandite samples from fractures in USW G-4 were heated to 450°C for 15 hours (Carlos,
1985) to determine if their structure would collapse as expected for heulandite (Mumpton,
1960). Their response to heating (partial collapse) and their chemical compositions categorize
these fracture coatings as Group-2 heulandites (Alietti, 1972; Boles, 1972). This response
compares well with the results of Chipera et al. (1995b) who found Group-2 heulandites in a
3-m-thick zeolitized zone in drill core UE-25 UZ#16 (above the upper vitrophyre of the Topopah
Spring Tuff). Chemical analyses of clinoptilolite-group minerals below the Paintbrush Group
indicate that they are clinoptilolite and not heulandite.

The silica polymorphs quartz, cristobalite, and tridymite are common in fractures in
devitrified tuff intervals, and their distribution corresponds to the occurrence of these
polymorphs in the host matrix. Opal is common in fractures in the Tiva Canyon Tuff and in
vitrophyres in the Paintbrush Group and is less abundant in other intervals. Opal-CT occurs
with mordenite and clinoptilolite in the Calico Hills Formation and Crater Flat Group.
Manganese-oxide minerals occur in fractures in the moderately to densely welded vitric and
devitrified tuffs throughout the volcanic sequence at Yucca Mountain and are less common in
zeolitic zones. The most common iron-oxide mineral in fractures is hematite. It occurs as red-
brown staining and intergrown with silica and manganese oxides in welded, devitrified intervals.
Specular hematite occurs in and near lithophysal cavities. Calcite and fluorite occur over
tridymite in lithophysal cavities in several drill cores, most frequently in UE-25a#1 and USW
GU-3, but the abundance of these minerals varies laterally across Yucca Mountain. Calcite
commonly occurs in fractures as well as in lithophysal cavities; however, fluorite shows limited
occurrences in fractures and is most common in USW GU-3. Both are most abundant in, but

are not limited to, the Paintbrush Group. Smectite is fairly ubiquitous in fractures throughout

the volcanic sequence at Yucca Mountain. The clay minerals palygorskite, sepiolite, and
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Figure 3a. Distribution of fracture-lining minerals in drill cores UE-25a#1 and UE-25b#1.
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smectite occur sporadically in fractures in the Paintbrush Group in drill hole USW GU-3, either
in varying combinations of the three minerais or singularly. Several occurrences of illite have
been identified in the deeper tuffs.

The Zone |-l boundary is not coincident with the base of the Paintbrush Group, but as
the nonwelded vitric tuff in the Calico Hills Formation supports few fractures, samples from
Zone | included in this study are limited to the Paintbrush Group. Fracture-lining zeolites below
the Paintbrush Group occur principally in the zeolitic intervals.

Zone |, Paintbrush Gro

The Paintbrush Group consists of four formations (Figure 2). The Tiva Canyon Tuff and
Topopah Spring Tuff are primarily densely welded, devitrified tuffs containing intervals of vapor-
phase alteration and lithophysal cavities that formed during the early cooling and consolidation
of the tuff. Thin vitrophyres are present in the Tiva Canyon Tuff and near the top of the
Topopah Spring Tuff, and a 15- to 20-m-thick (basal) vitrophyre occurs near the base of the
Topopah Spring Tuff. The Pah Canyon and Yucca Mountain Tuffs of the Paintbrush Group are
generally nonwelded and support few fractures. Only in USW G-2, where these units are
thicker, were fractures examined. The abundances and types of fractures in the Paintbrush
Group are controlled by the extent of welding and devitrification in the tuff and by the
abundance of lithophysal cavities. The distribution of fracture-lining minerals varies both

laterally and vertically within the Paintbrush Group across Yucca Mountain.

Devitrified Tuffs within the Paintbrush Group

in the densely welded devitrified portions of the Paintbrush Group, the zeolite minerals
mordenite, heulandite, and stellerite are widespread in fractures even though the tuff matrix is
generally nonzeolitic. Heulandite and stellerite occur as small (10- to 50-um long) prismatic
crystals on fractures throughout the devitrified intervals of the Topopah Spring Tuff in at least
one drill core (USW G-1) and in more limited distribution in other drill cores. Although peak
overlaps with heulandite, mordenite, cristobalite, and feldspar make XRD identification of minor
amounts (<10%) of stellerite difficult, heulandite and stellerite can be distinguished in SEM
images by the pinacoidal terminations of stellerite (Figure 4) and the pyramidal terminations of
heulandite (Figure 5) and by EDX analyses because Ca is the major exchangeable cation in
stellerite, whereas heulandite contains Mg and minor amounts of Na and K in addition to Ca.

Heulandite and stellerite may coexist within a fracture or occur separately at different intervals

13




Figure 4. Secondary-electron image of stellerite crystals from sample USW G-2 1536.
Scale bar is 50 um.

Figure 5. Secondary-electron image of large tabular and small prismatic crystals of heulandite
from sample UE-25a#1 1243. Scale bar is 50 um.
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within a drill core. Stellerite occurs in fractures throughout much of the Topopah Spring Tuff in
drill hole USW G-1, but it is much less abundant than heulandite in drill hole UE-25a#1.
Heulandite and stellerite both have more limited distribution in drill hole USW G-2, the
northernmost hole, in which they occur alone or together in fractures and lithophysal cavities.
Stellerite has not been identified in drill hole USW GU-3, the southernmost hole, nor in drill hole
USW G-4.

Large (50 to 300 um) tabular heulandite crystals (Figure 5) occur with prismatic
heulandite (and locally with stellerite) in an interval extending 10 to 15 m above the top of the
basal vitrophyre of the Topopah Spring Tuff in most drill cores. The exception to this
occurrence is USW GU-3, where this interval with tabular heulandite crystals is only 1 m thick
above the basal vitrophyre. This is the only interval in the Topopah Spring Tuff in driil hole
USW GU-3 that contains heulandite, although heulandite is present in the lower part of the Tiva

Canyon Tuff in this drill hole. This zone of two heulandite morphologies in fractures generally
coincides with a thin zeolitic/argillic interval in the tuff immediately above the vitrophyre.

Chemical analyses of heulandite, of heulandite coexisting with stellerite, and of
coexisting tabular and prismatic heulandite are presented in Appendix ll. For coexisting tabular
and prismatic heulandites in the same fracture, the exchangeable-cation analyses of the
prismatic heulandite cluster tightly and are significantly higher in Mg and lower in Na and Sr
than those of the tabular heulandite (for example, sample UE-25a#1 1242 in Figures 6a and
6b). In addition, some tabular crystals are zoned, with Sr-rich cores and Mg-rich rims.
Stellerite is not plotted on Figures 6a and 6b because it deviates little from the calcium end-
member (Appendix ll); the structure of stellerite does not accommodate significant substitution
of other extra-framework cations (Gottardi and Galli, 1985).

Mordenite occurs as discontinuous blue-white crusts of very fine grained (<1 um long)
crystals, particularly in the shallower intervals and on smooth planar and curviplanar cooling
fractures. It also occurs as mats of longer crystals (as long as 100 pm) partially covering
stellerite and/or heulandite, generally on rougher fractures and locally in lithophysal cavities.
Although widely distributed in fractures across Yucca Mountain, mordenite is not equally
abundant in all drill holes nor at all depths in the Paintbrush Group. Small amounts of
mordenite occur as crusts in the devitrified Tiva Canyon Tuff. In the densely welded devitrified

Topopah Spring Tuff mordenite crusts increase in size and abundance with depth within each

drill hole from about 1% of the fracture surface to more than 20% (more than 50% in some
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holes). Existing data do not indicate any trend in the lateral distribution of mordenite. Trace
amounts of mordenite too minor to be detected by XRD analysis were often identifiable in SEM
images. Mordenite was not chemically analyzed because of the small crystal sizes and the
difficulty in obtaining pure separates.

Lithophysal cavities and many fractures in and near lithophysal intervals contain
tridymite and/or quartz crystals. These cavities and fractures are often rimmed with lighter-
colored zones of vapor-phase alteration. The tridymite morphology of the coatings has been
retained (Figure 7) although the tridymite is often partially or wholly replaced by quartz or
cristobalite. Euhedral quartz crystals occur in lithophysal cavities with or instead of tridymite

and are aiso common in fractures unrelated to lithophysae. Some lithophysal cavities,

particularly those in the Topopah Spring Tuff, contain calcite over tridymite and may also
contain fluorite and/or opal. The most common depositional sequence is tridymite, fluorite,
calcite, and finally opal, although calcite may also occur beneath the fluorite or over the opal.
Both calcite and fluorite are most abundant in USW GU-3 near the southern end of Yucca
Mountain and are somewhat less widespread in UE-25a#1, near the northern end of Yucca
Mountain. Fluorite is not abundant in other drill holes. Opal coats fractures in the Tiva Canyon
Tuff and in the upper Topopah Spring Tuff of the Paintbrush Group; in the lower parts of the
Topopah Spring Tuff some opal has recrystallized to cristobalite. Cristobalite often occurs as

small acicular crystals, especially in zeolitic intervals.

Figure 7. Secondary-electron image of tridymite morphology in lithophysal coating from
sample USW G-2 1178. Mineral is now mostly quartz. Scale bar is 100 um.
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Calcite occurs commonly in lithophysal cavities but also fills fractures that are not visibly
connected with lithophysal cavities. Calcite-filled fractures are abundant in the Tiva Canyon
Tuff in both UE-25a#1 and USW GU-3 and in the upper part of the Topopah Spring Tuff in all
drill cores. In USW G-1, where calcite occurs with prismatic zeolites, the calcite is the youngest
coating in the fracture.

In drill core USW GU-3, smectite and the chain-structure clays sepiolite and palygorskite
form white and yellow crusts on fractures in the Tiva Canyon Tuff and in the upper Topopah
Spring Tuff, commoniy over manganese-oxide minerals. Palygorskite may occur in the same
fracture with sepiolite or smectite, or any of the clays may occur singly. As it is not possible to
distinguish the clays visually, it is not known whether they are intergrown or form separate
crusts on the fracture surfaces. There is no apparent sequence of clay deposition with depth,
except that palygorskite and sepiolite do not occur below about 260 m depth. Smectite also
occurs, particularly in the lower Topopah Spring Tuff, as individual plates as much as 10 um in
diameter or as clusters of plates. It may occur alone, beneath zeolites, or as overgrowths on
zeolites (Figure 8). Kaolinite is much less common but has been identified by XRD from

fractures in two drill cores (USW G-1 and G-2), where it occurs with smectite.

Figure 8. Secondary-electron image of smectite over mordenite from sample USW G-1 1156.
Scale bar is 5 um.




The layer-structure manganese oxides lithiophorite and rancieite form spots and crusts
(0.5 to 2 mm in diameter) and dendrites (1 to 2 cm in diameter) in the Paintbrush Group, both in
densely welded devitrified intervals and in the partially welded Yucca Mountain Tuff. They are
not common in lithophysal intervals. Although crusts and spots may be either rancieite or
lithiophorite (as identified by XRD), dendrites are predominantly rancieite and are commonly
banded with increased amounts of Ce and Pb, aiternating with increased Al content (Figures 9a
and 9b). Appendix Il contains electron microbeam analyses of rancieite and lithiophorite; the

chemistry of these minerals is discussed in more detail in Carlos et al. (19983).

Basal Vitrophyre within the Topopah Spring Tuff

Minerals lining fractures within the basal vitrophyre of the Topopah Spring Tuff are
extremely fine grained and were identified by XRD. The most abundant fracture coatings are
smectite, opal-CT, and manganese-oxide dendrites, although fractures may also contain
heulandite or mordenite. Phillipsite coexists with smectite in isolated occurrences in fractures
within the basal vitrophyre from two drill holes (USW GU-3 and UE-25a#1). Crystals as large
as 125 pm in diameter from sample USW GU-3 1200 were identified by XRD as phillipsite and
were analyzed by electron microprobe. A representative analysis of these crystals is included
in Appendix Il. As in some other zeolites and authigenic feldspars at Yucca Mountain (Broxton
et al., 1987), the Si:Al ratio obtained for this sample is higher than in the ideal formula. Erionite
occurs in fractures and rock matrix in very limited intervals within the vitrophyre and in the
altered tuff immediately above the basal vitrophyre in several drill holes where it comprises <1
wt% of the matrix but may be as much as 45 wt% of the fracture coating within single fractures
(Chipera and Bish, 1989; Bish and Chipera, 1991). Erionite has recently been identified in
significant abundances in a 3-m-thick zone in the vitric tuff matrix immediately below the basal
vitrophyre in drill hole USW UZ-14 (up to 35 wt%; Guthrie et al., 1995). In most samples, fine-
grained erionite fibers (<30 um long) closely resemble mordenite and cannot be distinguished in
hand-samples or in SEM images. immediately above the vitrophyre in USW GU-3, the small
acicular crystals visible at 25x magnification are probably erionite, although a mineral separate
could not be obtained to verify this identification. The occurrence of both erionite and phillipsite
is limited to an interval of a few meters in or near the upper surface of the basal vitrophyre in all
of the pre-1984 cores in which they have been identified. In addition to erionite, sample USW
GU-3 1189 contains a phase that has been tentatively identified as kenyaite, a layered hydrous

sodium silicate found in Lake Magadi in southern Kenya (Eugster, 1967).
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Figure 9a. Backscattered-electron image of rancieite dendrite from sample USW G-4 64.
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Figure 9b. Trace of Al, Pb, and Ce across the rancieite dendrite along the line in Figure 9a.
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Chabazite has been identified by XRD in fracture coatings within the basal vitrophyre of
the Topopah Spring Tuff in water well J-13 in Jackass Flat (Carlos, 1989) and in drill hole USW
VH-1, about 8 km southwest of Yucca Mountain in Crater Flat. The vitrophyre in both these
holes is below the SWL. As with many zeolites lining fractures in the Topopah Spring Tuff
basal vitrophyre at Yucca Mountain, cryptocrystalline coatings do not permit visual identification
of minerals or of textural relationships in these samples. Chabazite has not been identified from

fractures in diagenetic Zone | (above the SWL) at Yucca Mountain.

Diagenetic Il and IlI

Diagenetic Zone Il includes the zeolitic Calico Hills Formation and, for most drill holes,
the zeolitic portions of at least the upper tuffs of the Crater Flat Group. Unlike the matrix
alteration, which is commonly dominated by clinoptilolite, mordenite and subordinate
clinoptilolite are the principal fracture-lining zeolites. Mordenite forms mats and crusts of fibers
on fracture surfaces, with individual mordenite crystals in the Calico Hills Formation usually
from 2 to 15 um in length, locally reaching 30 um in length. Opal-CT commonly occurs
interstitial to the mordenite crystals, but it also can occur as spheres as much as 10 um in
diameter underlying mordenite. Mordenite forms thin discontinuous coatings or thick mats of
fibers 10 to 30 um (rarely as much as 100 um) in length in the Crater Flat Group (Figure 10).

Clinoptilolite coexists with mordenite in Zone Il, which extends to the base of the Crater
Flat Group in the south (in drill hole USW G-3) but includes only the upper tuffs of the Crater
Flat Group in the more northern holes. Large (as long as 200 pm) prismatic or tabular crystals
of clinoptilolite occur locally in fractures in the Calico Hills Formation and in the Prow Pass and
Bullfrog Tuffs of the Crater Flat Group over most of Yucca Mountain, but they also occur in the
Tram Tuff of the Crater Fiat Group in the southernmost drill hole (USW G-3). In some
fractures, small euhedral crystals of clinoptilolite (5 to 10 um diameter) are covered by
mordenite. Clinoptilolite was commonly identified only by XRD analysis of fracture coatings and
presumably is the small euhedral and anhedral plates (5 to 10 um in diameter) that are
embedded in mats of mordenite seen in SEM images. Analyses of some of the larger
clinoptilolite crystals from Zone 1l are presented in Appendix IV and are plotted in Figure 11.
Although the exchangeable-cation composition varies greatly among samples, insufficient
chemical data exist on fracture-lining clinoptilolites at Yucca Mountain to determine whether the
compositions follow the same trends with increasing depth as do matrix clinoptilolites (Broxton

et al., 1987). However, comparison of analyses in Appendix IV with analyses of matrix
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Figure 10. Secondary-electron image of mordenite from the Prow Pass Tuff of the Crater Flat
Group in diagenetic Zone [I. Scale bar is 10 um.
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Figure 11. Ternary plot of clinoptilolite analyses from the Calico Hills Formation and the Crater
Flat Group showing variation in composition among samples. The number of
analyses for each sample is indicated by n.




clinoptilolites from similar intervals (Broxton et al., 1986, Appendix F) shows that the fracture-
lining clinoptilolites are similar in composition to those in the matrix in all samples. Within
diagenetic Zones Il and Ill, the cation compositions of matrix clinoptilolites range from
K-dominant to Na-dominant on the western side of Yucca Mountain and to Ca-dominant on the
eastern side.

Chabazite has beén identified from one sample (UE-25b#1 2165) in the Crater Flat
Group at Yucca Mountain; it coexists in Zone |l with clinoptilolite and alkali feldspar (Figure 12).
Chemical analyses of the chabazite are included in Appendix IV. Euhedral crystals of analcime
(Figure 13) occur in fractures only at the northern end of Yucca Mountain where the Crater Flat
Group is altered to diagenetic Zone il and where analcime aiso occurs in the matrix.
Clinoptilolite-heulandite occurs in fractures below this depth and may coexist in the matrix with
analcime (Bish and Chipera, 1989). Representative analyses of analcime from a fracture in
sample USW G-2 3137 are given in Appendix IV. The fracture analcime has an Si-rich, Na
end-member composition, similar to the analyses of matrix analcime reported by Broxton et al.
(1987). Fractures, which are less common in the most altered intervals of the Tram Tuff of the
Crater Flat Group, contain no zeolites even though anaicime and clinoptilolite may be present in
the matrix. Hematite, calcite, and green clay (illite) are the most abundant fracture-filling

minerals in the deepest portions of Zone Il within the Tram Tuff.

Figure 12. Secondary-electron image of chabazite from sample UE-25b#1 2165. Scale bar is
10 um.
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The central portions of the three tuffs of the Crater Flat Group are moderately to densely
welded, devitrified tuff. Manganese-oxide minerals, iron oxides, quartz, and calcite are the
most abundant fracture coatings in the devitrified Crater Flat Group over most of Yucca
Mountain. Cryptomelane-hollandite is the most common manganese-oxide mineral throughout
the Crater Fiat Group below the SWL. It may occur with lithiophorite, todorokite, pyroiusite,
aurorite, or, in one sample, rancieite. Hollandite surrounds large lithiophorite crystals in the
Prow Pass Tuff and sometimes appears less corroded than the lithiophorite (Figure 14),
suggesting that the lithiophorite was partially dissolved by later fluids, which then deposited
hollandite. Hollandite also surrounds or partially replaces pyrolusite in the Crater Flat Group.
Manganese-oxide coatings from several fractures in the Crater Flat Group from USW G-4 were
analyzed by electron microprobe (analyses are presented in Appendix V). There appears to be
a chemical continuum between cryptomelane (K-rich) and hollandite (Ba-rich). In the analyses,
all Mn is assumed to be Mn**, although Mn®* is known to substitute for Mn** in the octahedral
sites (Post et al., 1982). Most samples contain a fairly restricted range of compositions within
each sample, although there is considerable chemical variation between samples. The ternary
plots in Figures 15a and 15b illustrate the most significant variations in tunnel cation chemistry;
Carlos et al. (1993) contains a more detailed discussion of the manganese-oxide mineral
chemistry.

in the devitrified intervals below the SWL, hematite is the dominant iron-oxide mineral.
It occurs as rusty-red powder, as staining in fine-grained quartz coatings, and as intergrowths
with manganese oxides. In the northernmost hole (USW G-2), goethite occurs with hematite in
several fractures. Mordenite is generally the only zeolite found in fractures in the devitrified
Crater Flat Group, and its distribution and abundance vary across the mountain, with the
greatest abundance being in the southernmost drill holes (USW GU-3 and USW G-3). Smectite
occurs with mordenite in some fractures in the devitrified intervals. Quartz is common in
fractures in the devitrified intervals, usually as euhedral crystals. Lithophysal-type fracture
coatings occur in the Bullfrog and Tram Tuffs of the Crater Flat Group; although the tridymite
morphology has been preserved, the silica mineral is now quartz. Quartz-lined fractures often
contain manganese-oxide minerals and may also contain calcite or mordenite. Fluorite occurs
with quartz and calcite in one fracture in the Tram Tuff in USW G-1. Calcite is unevenly
distributed but is locally abundant as a fracture filling in the Crater Flat Group. As mentioned
above, it is the most common filling in the more aitered tuffs of Zone Iil, but it also occurs over
restricted depth intervals in the devitrified tuffs, usually with manganese-oxide minerals.
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Figure 13. Secondary-electron image of analcime over quartz from sample USW G-2 3137.
Mordenite is visible as the ropelike feature in the upper left corner of the photo.
Scale bar is 100 um.

Figure 14. Secondary-electron image of large lithiophorite crystal surrounded by rods of
hollandite from sample USW G-2 2878. Scale baris 10 um.
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Figure 15a. Ternary plots of proportions of tunnel cations showing chemical variability in the
manganese-oxide minerals in the Prow Pass and Bullfrog Tuffs of the Crater Flat
Group in drill hole USW G-4. Sample numbers indicate sample depth in feet.
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Figure 15b. Ternary plots of proportions of tunnel cations showing chemical variability in the
manganese-oxide mineral in the Tram Tuff of the Crater Flat Group in drill hole
USW G-4. Sample numbers indicate sample depth in feet.
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V. DISCUSSION
Distribution and Paragenesis

The distribution of zeolite minerals in fractures at Yucca Mountain appears to depend on
several factors but generally correlates with the diagenetic alteration zones as defined by the
matrix mineralogy (Broxton et al., 1987). Zone | contains a complex and diverse suite of
zeolites in fractures even though the matrix is predominantly nonzeolitic. Stellerite has been
identified only from the Paintbrush Group, but it is not present in all the cores nor does it appear
to be limited to one interval within the devitrified Paintbrush Group. In addition, the matrix that
hosts the stellerite-containing fractures usually does not contain stellerite. Until recent analyses
of samples from drill core UE-25 UZ#16 were performed (Chipera et al., 1995b), stellerite had
not been identified in any bulk-rock samples from Yucca Mountain.

The prismatic zeolites stellerite and heulandite are most widely distributed in fractures in
drill holes USW G-1 and UE-25a#1, located along Drill Hole Wash, suggesting a relationship
between proximity to the wash and abundance of heulandite and stellerite. Preliminary
examination of more recently drilled cores (USW UZ-14 and USW NRG-7a), however,
suggests a more complex control on distribution of stellerite than simple proximity to Drill Hole
Wash. As future holes are drilled, it may be possible to define better the lateral distribution of
these zeolites in Zone | and identify any correlations with structural features.

Fractures in the Paintbrush Group contain a generally calcic suite of minerals, including
calcite, Ca-zeolites (stellerite, heulandite, and mordenite), Ca-smectite, and rancieite, along
with silica polymorphs and lithiophorite. Pore-water extracts from the Paintbrush Group where
it is above the SWL (Yang, 1992) have a chemistry strikingly different from the chemistry of
groundwater from the Paintbrush Group below the SWL (Benson et al., 1983), with markedly
increased Ca, Mg, K, and Sr above the SWL. Few analyses of pore waters are available,
however, and the compositional variability of these waters is not known. The higher Ca, Mg,
and Sr contents of the pore waters, compared with the composition of groundwater below the
SWL, do appear to be reflected in the fracture-lining mineral assemblages in the Paintbrush
Group. '

Chipera et al. (1995a) used representative chemical compositions and estimated
thermodynamic properties to model the conditions under which the various fracture-lining
zeolites at Yucca Mountain formed. Figure 16 shows the results of a calculation constrained
using a representative modern Yucca Mountain water value for silica activity (obtained from

Kerrisk, 1987) and a temperature of 35°C. Increasing the temperature for the calculation to
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125°C did not change the diagram significantly. The Ca-Na-K compositions of modern Yucca
Mountain groundwater (Kerrisk, 1987) plot within the clinoptilolite stability field, although either a
slight decrease in silica activity or an increase in Ca content would result in conditions favorable
for the formation of stellerite. Chipera et al. (1995a) found it necessary to suppress the
formation of stellerite to create a stability field for heulandite. However, they speculated that

heulandite would have formed more readily in their models if they had included Mg in the

calculations.

The isolated occurrences of erionite and phillipsite at the top of the Topopah Spring Tuff
basal vitrophyre in drill holes USW GU-3 and UE-25a#1 suggest the presence of a localized

geochemical environment not normally found at Yucca Mountain. Chipera et al. (1995a) found,
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Figure 16. Log activity diagram for the zeolite phases found at Yucca Mountain calculated
using estimated thermodynamic data and representative chemical analyses of the
minerais (from Chipera et al., 1995a).
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in their modeling of zeolite stability, that erionite and phillipsite form under conditions with
elevated K:Ca ratios. The identification of kenyaite coexisting with erionite in USW GU-3 is
tentative. Kenyaite is found in Lake Magadi in Kenya (Eugster, 1976). Lake Magadi sediments
contain abundant trachytic glass that is altering primarily to erionite (Surdam and Eugster,
1976). Surdam and Eugster (1976) report water compositions for Lake Magadi that are high in
alkalis and low in alkali-earths in accord with the calculations by Chipera et al. (1995a). If the
identification of kenyaite is indeed correct, geochemical conditions resulting in its formation at
Yucca Mountain can be constrained to Na'/H" ratios greater than 5 and silica activities
approaching that of amorphous silica (Bricker; 1969).

The presence of two different morphologies and at least two different compositions of
heulandite in fractures in the Topopah Spring Tuff suggest at least two episodes of heulandite
formation. Differing compositions for the large tabular crystals within a fracture (UE-25a#1
1242, Appendix Il) suggest that different crystals formed at different times from different fluids,
that later fluids resulted in partial cation exchange within the crystals, or that overgrowths of a
different composition were deposited. Additional studies of individual crystals may determine
whether the observed compositional variation in tabular crystals is a result of regular zoning,
two or more compositions (generations) of tabular crystals and no zoning within individual
crystals, cation exchange along some preferred direction within the crystals, or some
combination of the above.

No direct evidence exists for the absolute age of fracture-lining zeolites in the
Paintbrush Group. Heulandite in the Paintbrush Group contains insufficient K to permit dating
by the K-Ar technique (e.g., WoldeGabriel et al., 1993). Slickensides on crusts of fine-grained
mordenite in some fractures indicate movement along the fractures after deposition of the
mordenite. Other zeolites and coarser mordenite have not been affected by movement,
suggesting that they may have been deposited after most of the tectonic activity at Yucca
Mountain and are therefore younger than 11.6 Ma (Scott et al., 1983; Sawyer et al., 1994).
Alternatively, zeolites may have been deposited during the early history of the tuff, but
subsequent tectonic movement was restricted to a few fractures or zones that either did not
contain coarser zeolites or the zeolites were destroyed during movement. In several fractures
in the Paintbrush Group, calcite overlies coarse zeolites, and it may be possible to constrain the
age of fracture-lining zeolite deposition by determining the age of the calcite.

The Zone I-Zone 1l boundary is neither coincident with nor parallel to the present SWL

and, therefore, probably indicates the position of the SWL at the time of zeolitization, before




tectonic tilting of Yucca Mountain and before deposition of the Rainier Mesa Tuff of the Timber
Mountain Group 11.6 Ma ago (Broxton et al., 1987; Sawyer et al., 1994). Correlation of
fracture-lining zeolites in diagenetic Zones Il and Il with degree of zeolitization of the host tuff
suggests that the fracture coatings may have formed at the same time as the alteration of the
tuffs. The similarity of chemical compositions of matrix and fracture-lining clinoptilolite support
this theory. An increase in degree of alteration to diagenetic Zone iil in both fractures and
matrix toward the north of Yucca Mountain suggests that this alteration may have been a result
of hydrothermal activity related to the Timber Mountain volcanism, constraining the age of the
zeolites to >10.7 Ma (Bish and Aronson, 1993). Mineralogical differences between the fracture-
lining zeolites and manganese-oxide minerals in the Paintbrush Group (Ca-rich) and those in
the Crater Flat Group (K-, Na-rich) suggest that deposition may have occurred at different times

and almost certainly from fluids of different composition.

Transport
Many fractures in Zone | that contain heulandite are not sealed and have open

passages that are potential flow paths. The heulandite and mordenite coatings may act as
barriers to radionuclide migration away from the potential repository, assuming that they are not
affected by increased temperature after emplacement of waste (possibly up to 200°C in the
potential repository itself; Buscheck and Nitao, 1992). Alternatively, they may react at elevated
temperature with water present in the rock to form other mineral assemblages (e.g., heulandite
= anaicime + calcite +-silica; Bish and Aronson, 1993). Fractures that contain predominantly
silica polymorphs are generally closed to present flow, but the same minerals are contained in
abundant lithophysal cavities that are still open. Possible connections between these cavities
cannot be determined from drill core, as the diameter of the cavities is often larger than the
diameter of the core. If a repository is emplaced in Yucca Mountain, it is possible that the
increased heat load may generate a convective system that could dissolve the less-stable silica
polymorphs (e.g., cristobalite and tridymite) within Zone | (Buscheck and Nitao, 1992).
Experimental data (Rimstidt and Newcomb, 1989) suggest that silica may be dissolved and
transported in fractures away from the potential repository toward the cooler rocks where the
solution would then precipitate silica and zeolites, possibly sealing the local fractures.

Inasmuch as fractures within zeolitic intervals in Zones ll and lli contain the same
minerals as the matrix in those intervals, modeling retardation of radionuclides in solution as a

function of zeolite content need only consider flow times rather than different mineralogy or
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chemistry for fractures in these intervals. Although thick mats of mordenite fibers that fili
fractures will allow passage of water, they may act as filters for suspended radionuclide colloids
if the colloid particle size is larger than the interstitial space between fibers (<1 um).

Within the devitrified intervals in the Crater Flat Group, manganese- and iron oxide-
minerals are the most common coatings and are potentially the most significant minerals below
the SWL for retardation of some radionuclides, particularly the actinides (Triay et al., 1991).
Most of the manganese-oxide minerals in fractures below the SWL are tunnel-structure
minerals (e.g., cryptomelane, hollandite, coronadite, and todorokite) that consist predomi'nantly
of Mn**, with minor Mn®* (Manceau and Combes, 1988; Manceau, personal communication,
1988; Post and Bish, 1988). Pyrolusite contains exclusively Mn*", and aurorite and lithiophorite
contain substantial Mn**. Because of the ease with which the Mn in these minerals can be
reduced, their contribution to sustaining oxidizing-groundwater conditions should be considered
(Bish and Post, 1989).

Vi. SUMMARY AND CONCLUSIONS

Fracture-lining minerals in the Paintbrush Group are highly variable in distribution, both
vertically and laterally, across Yucca Mountain. The zeolites mordenite, heulandite, and
stellerite are widespread in fractures in the Paintbrush Group even though this unit is generally
devitrified and nonzeolitic. The silica polymorphs present in the fractures, however, generally
correspond to the same species present in the matrix. The manganese-oxide minerals in this
unit are lithiophorite and rancieite. Factors controlling the distribution and chemistry of fracture-
lining manganese oxides and zeolites in the Paintbrush Group are not yet understood, but the
minerals must have formed under different geochemical conditions and possibly at different
times than fracture-lining minerals in the underlying tuffs. Zeolite and calcite fracture coatings
in the Paintbrush Group are important because they may provide information on water-rock
interactions within the fractures and because they may be affected by increased temperatures
after emplacement of waste.

Fracture-lining zeolites in the Calico Hills Formation and the Crater Flat Group include
mordenite, clinoptilolite, and analcime and correlate with the zeolitic aiteration of the tuffs
containing them. The zeolites in fractures probably formed primarily during zeolitization of the
nonwelded portions of those tuffs and are probably >10.7 Ma in age. Mordenite is the only
zeolite that occurs in devitrified intervals of these units. Manganese oxides are locally abundant
in the devitrified intervals and are mostly cryptomelane-family minerals, chemically and
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structurally different from the manganese oxides in the Paintbrush Group. Although the
manganese oxides occur hundreds of meters below the SWL, the Mn is primarily Mn**, which

can be reduced and may locally produce more oxidizing conditions in the groundwater.
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APPENDIX |

QUALITATIVE MINERALOGY AS DETERMINED BY XRD

Sample numbers are depths in feet.

Smct = Smectite
Clpt = Clinoptilolite/heulandite
Mord = Mordenite
Stel = Stellerite
Trid = Tridymite
Crst = Cristobalite
OpCT = Opal-CT
Qtz = Quartz
Feld = Feldspar
Paly = Palygorskite
Hem = Hematite
Calc = Calcite
Ranc = Ranceite
Lith = Lithophorite

non

Crpt = Cryptomelane/holiandite

Pyro = Pyrolusite
Fluo = Fluorite

Maj
Min
Trc

KEY

[T I I TR |

Major abundance -- > ~20% of the minerals
Minor-abundance -- ~5-20% of the minerals
Trace abundance -- < 5% of the minerals
Not detected

Presence uncertain
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APPENDIX Il

FRACTURE-LINING ZEOLITES IN THE TOPOPAH SPRING TUFF

Data were collected on Cameca MBX and SX-50 electron microprobés.
Analyses were accepted if totals were >84% and Al/Zcations was between 0.95 and 1.05.

Data acquired before 1993 were not included in the tables because Sr was not included in the
analyses.

High background counts for Ba on the SX-50 resulted in a BaO detection limit of 0.33 wt%.

Sample numbers indicate drill hole and depth in feet.

n/a = not analyzed
- = not detected
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, APPENDIX i
FRACTURE-LINING MANGANESE-OXIDE MINERALS IN THE PAINTBRUSH GROUP

Quantitative analyses of rancieite were accepted if SiO, was <2 wt% and Al,O3; was <12 wt%.

Semiquantitative analyses (on unpolished surfaces) were accepted:

for rancieite if SiO, was <2 wt% and Al,O3; was <12 wt%, and
for lithiophorite if SiO, was <4 wt% and Al,O; was >18 wt%, and if totals were >75%.

Sample numbers indicate drill hole and depth in feet.

not analyzed
not detected

n/a
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Rancieite in the Tiva Canyon Tuff

SiO,
TiO,
MnO,
CeQ,
Al O,
Fe,04
MgO
CaOl
NiO
CuO
Zn0O
SrO
BaO
PbO
Na,O
K;O
P,0O;
La,0,
MoQ;
WO,
Cl
Total

Si
Ti
Mn
Ce
Al
Fe
Mg
Ca
Ni
Cu
Zn
Sr
Ba
Pb
Na
K
P
La
Mo
W
Total
0-2

USW G-4 49.9
142 133 122 102 114
067 078 059 122 132
58.34 59.30 61.01 5893 61.61
428 287 153 1589 171
10.22 820 11.31 10.86 1069
157 256 118 230 271
117 118 126 083 1.00
266 3653 247 335 354
- - - o1 -
- 023 021 038 -
091 087 108 119 070
014 014 006 010 -
128 112 078 069 0.86
375 320 416 403 245
- 012 009 - -
020 015 016 014 0.10
022 017 007 - -
- - - 013 -
043 028 029 039 033
0.08 0141 010 008 008
87.35 86.14 87.58 8744 88.24
011 011 0.08 008 0.09
004 005 003 007 0.07
315 324 323 315 320
012 008 004 004 0.04
094 076 102 099 095
003 015 007 013 015
014 014 014 011 OMNM
022 030 020 028 029
- - - 0.01 -
- 001 001 002 -
005 005 006 007 0.04
001 001 000 000 -
004 003 002 002 003
008 007 009 008 0.05
- 0.02 0.01 - -
002 002 002 001 0.01
001 001 000 - -
- - - 000 -
001 001 001t 001 0.01
5.03 506 506 508 603
900 900 900 9800 9.00
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USWG-464.5
137 132 121 141 104 188
107 051 062 013 - 1.07
59.44 60.19 60.54 6022 6245 56.94
377 488 345 434 287 806
1019 844 842 532 628 859
229 089 115 236 124 178
114 109 120 093 117 126
350 322 306 2353 219 3.26
025 - 013 012 - 0.16
- - 023 024 - 0.34
069 053 051 073 060 068
- 010 010 017 023 0.07
078 139 123 143 173 082
320 307 416 331 544 229
- - - 008 - -
014 014 013 014 023 0.09
017 019 0145 023 015 022
- - - 014 018 0.09
037 045 038 046 045 -
012 007 011 008 006 0417
88.49 8648 86.78 85.37 86.31 87.87
010 010 0140 012 008 0.15
006 003 0.04 001 - 0.06
314 329 331 341 351 3.09
010 013 0.10 012 008 0.22
092 079 079 051 060 0.79
013 005 007 015 008 0.11
013 013 014 011 014 015
029 027 026 031 019 027
002 - 0.01 0.01 - 0.01
- - 0.01 0.01 - 0.02
004 003 003 004 004 0.04
- 000 000 001 0.01 0.00
002 004 004 005 006 003
007 007 009 007 012 005
- - - 0.01 - -
001 001 001 001 002 0.01
001 001t 001 002 001 0.01
- - - 0.00 001 0.00
001t 001t 001 001 001 -
505 499 501 499 49 501
900 9.00 900 900 900 900




Rancieite in the Tiva Canyon Tuff, continued

USW G-4 70.85
Sio, 112 099 060 126 0.71
TiO, 064 052 - 061 -
MnO,  62.81 6122 6190 57.47 64.07
CeO, 441 295 094 333 147

AlL,O, 11.74 1052 11.73 11.01 7.92
Fe,O, 1.22 2.04 0.57 222 1.34

MgO 135 123 145 112 120
Cao 242 194 209 243 217
NiO - - - 023 0.18
CuO 051 043 059 061 074
ZnO 104 084 114 095 117
SrO 009 009 015 0.05 027
BaO 068 081 072 065 111
PbO 357 457 424 298 627
Na,O 042 012 0.08 0.17 025
K,O 012 014 020 011 023
P,0s 012 014 008 015 011
La,0, - - 015 019 033
MoO; - - 0.22 - -

WO, 039 - 058 044 073
Cl 006 005 006 008 007
Total 9241 8860 87.49 86.06 90.34
Si 008 008 005 010 006
Ti 0.04 003 - 004 -

Mn 318 325 329 311 344
Ce 011 008 003 009 0.04
Al 101 095 1.06 1.02 073
Fe 007 012 003 013 008
Mg 015 014 017 013 014
Ca 019 016 017 020 018
Ni - - - 0.01 001
Cu 003 002 003 004 004
Zn 006 005 0.06 005 007
Sr 000 000 001 000 001
Ba 002 002 0.02 002 003
Pb 007 009 009 006 013
Na 002 002 001 003 0.04
K 001 001 002 001 002
P 001 001 001 001 001
La - - 0.00 001 001
Mo - - 001 - -

w 0.01 - 001 001 001
Total 504 504 506 507 505
0? 900 900 900 800 9.00




Semiquantitative Analyses (on Unpolished Flat Surfaces) of Rancieite and Lithiophorite in the Topopah

Spring Tuff
Rancieite Lithiophorite

Usw G4 UE-25a#1 UE-25a#1 USwW G4 UsSwW G-4

795.6 1252.3 12562.3 1258.0 1201.6
SiO, 1.65 129 1.96 1.00 1.31 1.08 360 196 3.96 3.35
TiO, 0.94 1.54 154 065 0.55 012 033 044 066 0.54
MnO, 60.85 66.06 64.59 50.29 49.39 49.45 4793 50.62 50.96 53.99
Al,O4 7.03 254 362 18.16 20.97 23.77 2266 18.77 23.40 20.60
Fe,0; 2.02 5.08 454 296 257 037 101 178 163 2.56
MgO 0.74 066 0.59 068 0.93 064 058 049 047 0.85
Ca0 4.84 413 419 082 0.39 029 056 072 051 1.32
NiO - - 020 - - - 023 - - -
Zn0 0.34 0.51 056 053 1.07 076 044 057 0.39 1.03
SrO 0.25 113 1.14 0.11 0.06 - - 0.05 - 0.19
BaO 0.98 133 1.14 - 018 - - - - 0.48
PbO 1.23 061 1.39 0.30 - - - - - 0.51
Na,0 0.07 030 022 0.07 0.08 - - - - 0.32
K;O 0.17 0.16 0.28 0.08 0.06 - - 009 005 0.10
P,0s 0.13 - - - 012 - - - - -
La,0, 0.1 0563 0.56 n/a n/a n/a n/a n/a n/a n/a
Cl 0.04 - - - - - - 004 - 0.04
Total 81.29 8587 86.52 76.65 77.68 76.48 77.34 7553 82.03 85.88
Si 0.13 010 0.15 0.31 040 033 108 061 1.12 0.93
Ti 0.06 0.09 0.09 0.15 0.13 003 007 010 0.14 0.1
Mn 3.40 360 3.49 10.84 10.43 1041 990 1086 9.93 10.39
Al 0.67 024 033 704 755 853 798 693 7.78 6.76
Fe 0.12 0.30 027 069 059 008 023 042 035 0.54
Mg 0.09 0.08 0.07 032 042 029 026 023 020 0.35
Ca 0.42 035 0.35 027 013 009 018 024 015 0.39
Ni - - 0.01 - - - 0.06 - - -
Zn 0.02 0.03 0.03 012 0.24 017 010 013 0.08 0.21
Sr 0.01 0.05 0.05 0.02 0.01 - - 0.01 - 0.03
Ba 0.03 0.04 0.03 - 0.02 - - - - 0.05
Pb 0.03 0.01 0.03 0.03 - - - - - 0.04
Na 0.01 005 0.03 004 005 - - - - 0.17
K 0.02 0.02 0.03 0.03 0.02 - - 004 0.02 0.04
La 0.00 0.02 0.02 n/a n/a n/a nfa n/a n/a n/a
Total 5.01 497 499 19.87 20.00 19.93 19.85 19.67 19.76 20.02
0? 9.00 900 9.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00

65




APPENDIX IV

FRACTURE-LINING ZEOLITES IN THE CALICO HILLS FORMATION
AND IN THE CRATER FLAT GROUP (DIAGENETIC ZONES i1 AND Iif)

Analyses were accepted if totals were >85 % and Al/Zcations was between 0.95 and 1.05.

For sample USW G-2 1761 and analcime in USW G-2 3137, analyses were accepted if
Al/zcations was <1.10 because there were no analyses below a ratio of 1.05.

High Al/Zcation ratios are attributed to Na loss. In sample USW G-2 1761, Na loss occurred
because the grains are small, precluding movement of the sample during analysis or use of a
large defocused beam. Na is the dominant cation in chabazite, so even a small Na loss was

reflected in the Al/Zcation ratio.
Sample numbers indicate drill hole and depth in feet.

n/a = not analyzed

- = not detected
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APPENDIX V

FRACTURE-LINING MANGANESE-OXIDE MINERALS IN THE CRATER FLAT GROUP

All analyses were previously published in LA-11787-MS (Carlos et al., 1990) and are included in
this appendix for completeness. Mineral identifications are given where known. Many samples

contained finely intergrown crystals of two manganese-oxide minerals or of hematite and
cryptomelane-hollandite. Analyses, although representative of the coating present, may not be

of single phases.

Sample numbers indicate drill hole and depth in feet.

not analyzed

not detected
possible presence of <0.5 % CeO,

possible presence of >0.5 % CeO,

n/a

*

¥k
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Manganese Oxides from USW G-4 1990-1991°

Pyrolusite Cryptomelane-Hollandite
Sio, 182 262 169 025 044 024 026 058 020 056 0.16
Tio, - - 0.22 - 0.11 - - - - - -
MnO, 86.56 85.42 91.78 88.60 8664 87.13 8343 8202 8566 83.85 86.67
Ce0O, 015 0.14 0.16 - - - n/a - n/a n/a -
AlLO, 272 280 1.87 045 044 046 078 057 048 075 054
Fe,0, 021 017 060 089 069 083 074 072 073 131 069
MgO - - - - - - - - - - -
Cao 0.13  0.11 009 009 011 022 025 024 023 0.23
SrO - - - - 018 009 0.12 0.07 - 0.07
BaO 0.11 - - 489 502 505 561 574 584 595 6.03
Na,O - - 0.1 031 029 023 036 035 031 036 0.37
K,0O 0.05 005 0.06 474 483 465 334 319 38 38 4.13
Total 9162 91.33 96.60 10022 9855 98.80 94.83 9354 97.41 96.87 98.89
si* 023 033 020 003 006 003 003 008 003 007 0.02
Ti™ - - 0.02 - 0.01 - - - - - -
Mn* 744 734 752 753 750 752 750 748 753 740 7.52
Ce* 0.01 001 0.01 - - - nfa - n/a n/a -
Al 040 041 026 007 006 007 012 009 0.07 011 0.08
Fe* 0.02 002 005 008 007 0.08 007 007 007 013 0.07
Ca*? 0.01 002 001 001 001 001 003 004 003 003 003
sr*? - - - - - 0.01 001 001 0.01 - 0.01
Ba" - - - 024 025 025 029 030 029 030 0.30
Na*' - - 0.03 007 007 006 009 009 0.08 009 0.09
K 0.01 001 0.01 074 077 074 055 054 063 063 066
Total 812 812 8.11 877 879 877 869 868 873 876 877

0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00




Manganese Oxides from USW G-4 1990-1991, continued

Cryptomelane-Hollandite

SiO, 068 024 026 019 027 055 029 026
TiO, - - - - - - 0.11 -
MnO, 8252 8590 8323 86.94 83.83 84.12 8368 8454
CeO, n/a n/a n/a n/a n/a n/a

AlL,O,3 056 062 052 062 043 034 053 042
Fe,O, 083 094 065 052 091 103 065 061

MgO - - - - - - - -
Ca0 024 024 023 019 021 014 026 022
Sro 0.10 0.07 007 0.07 0.06 - 005 007
BaO 609 631 631 655 832 862 9.02 923
Na,O 040 041 036 040 037 033 037 032
K,O 323 363 357 361 252 291 234 213
Total 9465 98.36 9520 99.09 9692 98.04 97.30 97.80
Si* 009 003 003 002 003 007 004 003
Ti™ - - - - - - 001 -
Mn** 745 749 751 753 749 745 748 752
Ce™ n/a nla n/a n/a n/a - n/a -
Al 009 009 008 009 007 005 008 0.06
Fe* 0.08 009 006 005 009 010 006 0.06
Ca*? 003 003 003 003 0.03 002 004 003
Sr*? 001 001 001 0.01 000 - 000 0.01
Ba*? 031 031 032 032 042 043 046 047
Na*' 010 010 ©0.09 010 009 008 009 0.08
K" 054 058 059 058 042 048 039 035
Total 870 873 873 872 865 868 864 860
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

2 Analyzed for but not detected: Co, Ni, Cu, Zn, Pb, P, La, Y, and C!




Manganese and Iron Oxides from USW G-4 2099-2100?

Sio,
TiO,
MnO,
CeO,
AlLO;

iron Oxides
901 837 895 552
202 229 2.31 1.93
0.10 - - -
087 08 095 062
7360 73.33 74.03 84.10
- - 0.05 -
0.16 009 011 025
0.12 - - -
- - 0.20 -
030 039 027 nla
- - 0.07 0.06
86.18 B85.32 86.94 92.48
136 128 1.34 080
021 024 024 019
0.01 - - -
015 015 017 0.1
837 846 835 9.20
- - 0.01 -
0.03 001 0.02 0.04
0.01 - - -
- - 0.01 -
0.01 002 0.01 n/a
- - 0.01 0.01
10.16 10.17 10.17 10.35
16.00 16.00 16.00 16.00

Pyrolusite
161 071 083 085 0.77
- 0.24 - - -
86.27 9232 91.07 90.14 93.90
012 020 021 026 -
136 094 149 108 1.19
298 2156 3.00 117 224
0.07 007 007 005 0.09
- - 0.12 - -
0.21 - - 0.16 -
- 022 040 043 120
- - - - 0.48
- - - - 0.10
9262 96.85 97.19 9414 99.97
020 008 010 010 0.09
- 0.02 - - -
742 763 751 766 7.59
001 001 0.01 001 -
020 013 021 016 0.16
028 019 027 011 020
001 001 001 001 001
- - 0.01 - -
0.02 - - 0.01 -
- 0.01 0.02 0.02 0.06
- - - - 0.02
- - - - 0.01
813 809 814 809 814
16.00 16.00 16.00 16.00 16.00




Manganese and Iron Oxides from USW G-4 2099-2100, continued

Coronadite
133 097 066 104 0.83
70.83 7249 7416 7272 7409
- - n/a n/a -
060 019 018 027 024
158 119 110 154 115
0.06 - 006 005 0.05
142 175 207 211 226
2282 2273 20.00 1936 2167
0.08 0.06 - 0.05 0.07
98.72 99.38 9823 97.14 100.36
018 014 0.09 015 0.12
7.11 724 735 725 728
- - n/a n/a -
010 003 003 005 004
017 013 0.12 017 012
0.01 - 0.00 000 0.00
008 010 012 012 0.13
089 088 077 075 083
0.01 0.01 - 001 0.01
857 854 848 850 853
16.00 16.00 16.00 16.00 16.00

Pb-Hollandite
071 038 030 034 047
7892 7414 7795 7813 78.98
* n/a n/a - *
015 039 036 046 0.28
1.81 129 074 149 1.45
- - - - 0.24
0.07 - 0.05 - 0.08
0.22 - 0.11 - 0.20
028 023 - - -
0.29 0.08 - - 0.23
962 998 1038 1165 11.99
n/a 864 753 588 n/a
010 014 016 0.08 0.16
031 042 059 059 0.39
92.48 96.69 98.17 0862 9447
010 005 004 005 0.06
743 729 739 734 7.40
- n/a n/a - -
002 007 006 007 0.04
019 014 008 0.15 0.15
- - - - 0.05
0.01 - 0.01 - 0.01
0.02 - 0.01 - 0.02
0.03 0.02 - - -
002 0.01 - - 0.02
051 056 056 062 064
- 037 028 022 -
003 004 004 002 0.04
005 008 010 010 0.07
841 8.61 857 857 8.50
16.00 16.00 16.00 16.00 16.00




Manganese and Iron Oxides from USW G-4 2099-2100, continued

Hollandite

SiO, 03 089 08 014 014 026 030 009 016 043 005 046
TiO, 013 0.10 - 0.08 0.07 - - - - 0.15 - -
MnO, 78.11 7054 7228 8180 8084 8148 7616 8122 8178 7446 8198 78.90

CeO, n/a n/a n/a - n/a n/a

AlLO, 042 078 063 044 039 032 043 042 049 053 035 046
Fe,0, 124 241 252 059 088 150 103 060 066 118 058 1.68
MgO - 0086 - - - - - - - 030 - -
Ca0 015 008 0.07 011 007 - 015 009 010 016 0.07 0.08
NiO - - - - - - 014 - - - - -
ZnO - - - - 0.11 - - - - - - -
Sro - - - - - - - - - - - -
BaO 12.07 12.19 1229 1250 1258 1279 12.80 1294 1302 13.04 1305 13.11
PbO nfa  n/a n/a 047 057 0.29 n/a 043 0.51 n/a 0.33 n/a
Na,O 013 0.10 - 012 019 - 021 013 012 014 019 0.16
K,O 122 079 075 111 102 055 108 114 083 112 103 062
Total 93.82 87.94 8943 97.36 96.86 97.19 92.36 97.06 9767 9151 097.63 9547
si* 0.05 013 013 002 002 003 004 001 002 006 001 006
Ti* 0.01 0.01 - 0.01 0.01 - - - - 0.02 - -
Mn** 740 715 720 748 746 746 738 748 748 730 750 7.36
Ce™ - - - n/a n/a n/a - - n/a - n/a -
Al 007 013 011 007 0.06 005 008 007 0.08 009 005 007
Fe* 0143 027 027 006 009 015 011 006 007 013 0.06 0.17
Mg*? - 001 - - - - - - - 0.086 - -
Ca" 002 001 001 002 0.01 - 002 001t 001 0.02 0.01 0.01
Ni*2 - - - - - - 002 - - - - -
Zn*? - - - - 0.01 - - - - - - -
Sr+2 - - - - - - - - - - - -
Ba" 065 070 069 065 066 066 070 068 067 072 068 069
Pb*? n/a n/a nfa 002 002 001 nfa 002 002 nla 001 n/a
Na*! 0.03 0.03 - 0.03 0.05 - 006 003 0.03 004 005 0.04
K" 021 015 014 019 017 009 019 019 014 020 0417 0.11
Total 857 860 855 854 855 846 861 855 852 864 854 853

0* 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00




Manganese and iron Oxides from USW G-4 2099-2100, continued

Hollandite Shard-Filling Hollandite

SiO, 014 046 032 012 033 105 110 1.29 035 0.19 021
TiO, - 0.13 - - 0.16 - - - - 0.13 -
MnO, 81.47 8144 8201 80.98 78.70 80.20 7578 77.71 7113 8164 84.36
CeO, n/a * - * * n/a - * - - -
AlL,O 0.41 048 042 028 030 069 068 056 1.82 1.01 0.91
Fe, 04 0.62 1.76 147 077 192 424 35 375 0.47 0.33 0.28
MgO - - - 0.32 0.31 - - - 005 0.08 0.05
Ca0o 0.11 0.07 - 012 006 010 008 0.16 009 0.13 0.11
NiO - - - - 0.17 - - - - - -
Zn0O - - - - - - - - 015 023 0.15
SrO - - 005 020 0.19 - - 0.23 005 0N 0.13
BaO 1340 13.45 14.02 1403 1426 1496 1503 1579 1057 11.09 10.88
PO 0.57 n/a 0.33 nia n/a - - nia 026 020 022
Na,O 0.14 0.0 013 016 0.13 017 0.21 0.18 028 0.14 0.17
K,O 1.07 0.70 067 102 054 043 038 040 1.42 198 262
La,0, - - - - - - - - 0.13 0.17 0.14
P,05 n/a n/a nfa n/a nfa n/a nfa n/a - 0.05 -
Total 97.93 98.60 9942 98.00 97.07 101.84 96.82 100.07 86.77 97.48 10023
Sit 002 006 004 002 004 013 015 017 0.05 0.02 0.03
Ti* - 001 - - 0.2 - - - - 0.01 -
Mn** 747 736 740 743 730 7.07 7.07 7.04 725 740 743
Ce™ n/a - - - - n/a - - - - -
Al 006 008 006 004 005 010 011 0.09 032 016 014
Fe™ 006 0.17 014 008 019 041 036 0.37 0.05 0.03 0.03
Mg*? - - - 006 006 - - - 001 002 001
Ca*? 0.02 0.01 - 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02
Ni*? - - - - 0.02 - - - - - -
Zn*? - - - - - - - - 0.02 002 0.01
Sr? - - 000 002 001 - - 002 000 001 0.01
Ba*? 070 069 072 073 075 075 079 0.81 0.61 0.57 0.54
Pb*2 0.02 n/a 0.01 n/a n/a - - n/a 0.01 0.01 0.01
Na*' 004 003 003 004 003 004 005 0.05 0.08 004 0.04
K" 018 0.12 0.11 017 009 0.07 007 0.07 027 033 043
La™ - - - - - - - - 0.01 0.01 0.01
p*® n/a n/a n/a n/a n/a n/a n/a n/a - 0.01 -
Total 856 852 853 860 858 859 8861 8.62 869 864 869
0* 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

2 Analyzed for but not detected: Cu, La, Y, and CI

77




Manganese Oxides from USW G-4 2615° and USW G-4 2620°

USW G4 2615
Todorokite
Sio, 045 047 062 053
TiO, 024 028 065 047
MnO, 75.99 7542 72.57 7269
Ce0, n/a n/a - -
ALO; 028 049 045 0.38
Fe,0, 248 252 301 249
MgO 0.33 038 034 023
Ca0 262 241 220 220
NiO - - - -
ZnO - - - -
Sro 180 179 148 163
BaO 326 267 375 3.08
PbO - - 008
Na,©O 137 155 147 119
K,O 0.80 0.88 093 0.97
La,0, - - - 012
Total 89.62 88.86 87.17 86.06
Si* 0.06 006 009 008
Ti* 0.02 0.03 007 0.05
Mn** 718 745 7.06 7.15
Al 0.05 008 007 006
Fe® 026 026 032 027
Mg* 0.07 0.08 007 005
sz 0.38 035 0.33 0.34
Ni - - - -
Zn*? - - - -
Sr'? 0.14 014 012 0.3
Ba*? 017 014 021 017
Pb*? - - - 0.00
Na*' 036 041 032 0.33
K*‘3 014 015 017 0.18
La* - - - 0.01
Total 884 887 883 881
0? 16.00 16.00 16.00 16.00

USW G4 2620
Hollandite
073 068 067 089 062 190 0.72
1.91 180 178 173 164 151 1.64
71.89 7151 74.03 70.87 7321 6972 75.39
n/a - - - n/a n/a -
025 054 035 029 045 113 0.67
803 703 701 679 711 689 7.06
0.12 - - - - - 0.14
035 030 033 026 026 0339 0.22
- - - - - 0.11 -
026 0.18 - 0.19 - - -
234 252 243 240 245 246 3.22
680 681 691 692 766 775 7.80
085 035 045 048 028 036 n/a
063 050 047 056 057 0982 0.54
132 114 146 152 137 130 140
014 0.1 - - - - n/a
9562 9347 9589 9290 9562 9444 98.80
010 009 009 012 008 026 0.09
019 018 018 0.18 0.16 015 0.16
664 672 677 672 675 648 6.72
004 009 005 005 007 018 0.10
081 072 070 070 071 070 0.69
0.02 - - - - - 0.03
005 004 005 004 004 006 0.03
- - - - - 0.01 -
0.03 0.02 - 0.02 - - -
018 020 019 019 019 019 0.24
036 036 036 037 040 041 0.39
003 001 002 002 001 0.01 n/a
016 013 012 015 015 024 0.14
023 020 025 027 023 022 0.23
0.01 0.01 - - - - n/a
885 877 877 882 880 891 8.82
16.00 16.00 16.00 16.00 16.00 16.00 16.00

2 Analyzed for but not detected: Co, W, Cu, Ag, P, Cl,and Y
® Analyzed for but not detected: P, Cl, Co, Cu, and Y




Manganese Oxides from USW G-4 2656°

SiO, 0.74 069 061 064 050 125 057 081 104 1.00
TiO, 110 1.07 125 076 087 175 069 139 0.96 145
MnO, 77.30 7291 7165 73.95 7226 71.71 77.72 72.92 71.57 72.86
CeO, * * *  nfa nla * * nla nla *

AlLO; 043 035 039 043 042 086 047 044 073 0.36
Fe,O0; 4.82 488 450 447 437 836 417 486 502 514
MgO 3.03 282 285 276 273 276 291 266 240 247
CaO 137 1.37 134 136 136 147 142 126 156 146
ZnO - - - - - - - - 024 -

SrO 0.63 055 056 042 044 064 060 045 046 0.59
BaO 148 164 190 202 203 222 230 255 268 269
PbO nfa nfa nfa 029 033 na na 029 032 n/a

Na,O 195 231 196 188 203 150 202 190 148 1.94
KO 0.18 0.18 0.13 018 020 025 0.16 0.17 021 0.16
La,0, nfa nfa nfa 013 - nla nla - - nla

Total 93.03 88.87 87.14 89.29 87.54 9277 93.03 89.70 88.67 90.12

Si* 0.09 0.09 008 009 007 016 007 0.11 0.14 0.3
Ti* 0.11 011 013 0.08 009 017 007 014 0.10 0.15
Mn** 6.83 677 679 686 685 641 691 675 6.72 6.72
Al*® 0.06 0.06 006 007 007 013 007 007 012 0.06
Fe* 046 049 046 045 045 081 040 049 051 0.52
Mg+2 0.58 059 058 055 056 053 056 053 049 049
Ca"? 0.19 020 020 020 020 020 020 0.18 0.23 0.21
Zn*? - - - - - - - - 002 -

Sr*? 0.05 004 004 003 004 005 004 003 004 005
Ba* 007 009 010 011 011 011 012 013 0.14 0.14
Pb*? n/a nfa na 001 001 nla n/a 001 001 nfa

Na*' 048 060 052 049 054 038 050 049 0.39 0.50
K 0.03 003 002 003 004 004 003 003 004 0.03
La™ nfa nla nla 001 - nla nla - - nla

Total 896 9.07 900 897 902 900 897 898 894 898
0* 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

0.99
1.22
71.16
n/a
0.38
4.51
2.55
1.36

0.40
2.85
0.27
1.90
0.20

87.79

0.14
0.13
6.75
0.06
0.47
0.52
0.20

0.03
0.15
0.01
0.51
0.04

9.00
16.00

1.18
2.00
72.65

0.66
7.35
219
1.17

0.66
2.85
n/a
1.38
0.74
n/a
92.83

0.15
0.20
6.53
0.10
0.72
0.42
0.16

0.05
0.15
n/a
0.35
0.12
n/a
8.95
16.00

1.20
2.02
66.64
n/a
1.63
7.04
1.98
1.05
0.18
0.52
2.98
0.92
1.34
0.71
0.11
88.32

0.17
0.21
6.35
0.26
0.73
0.41
0.16
0.02
0.04
0.16
0.03
0.36
0.12
0.01
9.02
16.00

1.23
2.03
69.55

0.54
7.32
1.78
1.28
0.24
0.85
3.16
n/a
1.56
0.57
n/a
90.11

0.17
0.21
6.48
0.09
0.74
0.36
0.18
0.02
0.07
0.17
n/a
0.41
0.10
n/a
8.99
16.00

1.86
1.88
68.58
n/a
0.65
7.37
1.87
1.17

0.49
3.27
0.62
1.52
0.50
0.13
89.91

025
0.19
6.40
0.10
0.75
0.38
0.17

0.04
0.17
0.02
0.40
0.09
0.01
8.97
16.00

 Analyzed for but not detected: P, Cl, Cu, Mo, Sc, W, Ta, Cd, Y, and Ni
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Manganese Oxides from USW G-4 2814°

Sio, 097 161 154 075 088 096
TiO, 0.10 - 0.10 - 010 0.14
MnO, 9277 9024 8862 9117 9193 8958
CeO, n/a - n/a 0.19 n/a n/a

AlLO, 044 053 046 046 059 049
Fe,0, 040 134 177 051 062 1.09
MgO - - - - - -

Cao 015 027 027 014 016 0.15
NiO - - - 0.10 - -

BaO 281 28 314 316 318 465
PbO - 023 024 020 012 023
Na,O 0.09 - 0.07 - 0.07 008
K0 - - - - - -

La,0, - 0.15 - 0.08 - -

Total 97.73 9719 9621 96.76 9765 97.37
Si* 012 020 019 009 011 0.2
Tit 0.01 - 0.01 - 0.01  0.01
Mn** 772 756 753 772 769 761
Ce™ n/a - n/a 0.01 n/a n/a

Al 0.06 008 007 007 008 007
Fe* 004 012 016 005 006 010
Mg*? - - - - - -

ca®” 002 004 004 002 002 002
Ni*? - - - 0.01 - -

Ba* 043 013 015 015 015 0.22
Pb*? - 001 001 001 000 001
Na;” 0.02 - 0.02 - 0.02 002
La* - 0.01 - 0.00 - -

Total 812 814 817 812 814 818
02 16.00 16.00 16.00 16.00 16.00 16.00

® Analyzed for but not detected: P, Cl, Co, Y, Zn, and Sr




Manganese Oxides from USW G-4 2854°

SiO, 097 170 087 102 08 077 122 052 166 028 042 051
TiO, 043 024 030 066 068 034 073 - 015 0.15 - 0.1
MnO, 84.08 83.00 8433 7462 7598 7912 6654 8221 7145 7757 7940 8241
CeO, ** b n/a nfa * n/a n/a n/a n/a 050 n/a n/a

Al,O, 120 124 076 088 147 067 116 069 094 032 042 074
Fe,O, 292 260 210 490 444 316 1275 086 622 081 068 080
MgO - - - - 038 0.05 - - 012 022 0.09 -

Ca0o 035 036 061 040 037 064 031 078 097 072 078 0.70
Zn0O - - 0.18 - - - - - 025 036 0.30 -

SrO - 015 028 015 024 093 014 078 088 109 160 060
BaO 146 184 38 538 559 699 769 830 869 883 894 898

PbO nfa nla - 018 nfa 024 028 052 056 035 017 065
Na,O - - 018 0.08 - 030 009 037 043 048 064 037
K,O - - 016 014 009 045 012 063 064 035 079 053
La, 0, n/a n/a - 016 n/a 0.12 - - - - 0.13 -
P05 n/a n/a - - n/a - 0.06 - - - - -
Total 91.41 91.13 9363 8867 90.09 9378 91.09 9566 92.96 92.08 94.36 96.40
si** 042 022 011 014 011 010 017 007 023 004 006 007
Ti* 004 002 003 007 007 003 008 - 002 002 - 001
Mn** 743 735 745 709 708 724 636 743 674 739 738 742
Ce* - - n/a n/a - n/a n/a n/a nfa 002 n/a n/a
Al 018 019 011 016 023 010 019 011 015 005 007 0.11
Fe* 028 025 020 051 045 031 133 008 064 008 007 0.08
Mg*? - . - - 008 001 - - 002 005 002 -
Ca® 005 005 008 006 005 009 005 011 014 011 011 010
Zn*? - 0.02 0.03 0.04 003

Sr*? - 001 002 001 002 007 001 O006 007 009 012 0.05
Ba*? 007 009 019 029 030 036 042 043 046 048 047 046

Pb*2 na n/a - 001 mnma 001 001 002 002 001 001 002
Na*’ - - 004 002 - 008 002 009 011 013 0417 009
K - - 003 002 002 008 002 011 011 006 014 0.09
La™ nfa nla - 001 nla 001 - - - - 001 -
p*e n/a n/a - - n/a - 001 - - - - -
Total 818 819 829 839 840 849 865 850 874 856 864 850
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00
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Manganese Oxides from USW G-4 2854, continued

SiO, 120 124 038 041 0389 040
TiO, 1.00 057 037 - 0.29 -
MnO, 7421 6782 7734 7926 77562 77.73
CeO, * n/a 066 nla n/a n/a
AlLO, 167 078 038 043 041 045
Fe,0, 653 885 217 101 198 108

MgO - 008 011 007 014 0.14
Ca0 036 073 062 072 072 077
ZnoO - - 027 024 018 0.18
Sro 043 060 145 146 151 1.33
BaO 902 906 916 917 927 927
PbO na 072 015 - - 018
Na,O 014 026 055 054 061 046
K,O 020 035 030 063 062 080
La,0, n/a - - - - 0.1
P,0s n/a - - - - -
Total 9476 91.06 9391 9393 9364 92.90
sit 016 017 005 006 0.05 0.05
Tit 0.10 0.06 0.04 - 003 -
Mn** 677 658 725 738 727 735
ce* - nfa 003 na nla na
Al 026 013 006 007 007 0.07
Fe® 065 094 022 010 020 0.11
Mg*? - 002 002 001 003 003
ca™ 005 011 009 010 010 0.11
Zn*? - - 003 0.02 002 002
sr? 003 005 011 011 012 011
Ba*? 047 050 043 048 049 050
Pb*? nla 003 0.01 - - 0.01
Na*' 0.04 007 014 014 016 0.12
K* 003 006 005 011 011 0.14
La: n/a - - - - 001
p* n/a - - - - -
Total 855 872 859 860 865 863
0? 16.00 16.00 16.00 16.00 16.00 16.00

0.42
0.14
78.62
n/a
0.37
115
0.21
0.94
0.29
1.03
9.79
0.52
0.53
0.59

0.17
94.77

0.06
0.01
7.30
n/a

0.086
0.12
0.04
0.14
0.03
0.08
0.52
0.02
0.14
0.10

0.02
8.63
16.00

0.34
0.34
74.78
n/a
0.43
1.98
0.10
0.69

1.36
8.81
0.14
0.56
0.61

91.14

0.05
0.04
7.25
n/a

0.07
0.21
0.02
0.10

0.1
0.54
0.01
0.16
0.11

8.66
16.00

0.42

77.52
n/a
0.40
1.40
0.21
0.89
0.36
0.92
9.82
0.64
0.48
0.33
0.10
0.17

93.66

0.06

7.30
n/a
0.06
0.14
0.04
0.13
0.04
0.07
0.52
0.02
0.13
0.06
0.01
0.02
8.60
16.00

0.32
0.13
78.54
n/a
0.42
0.63
0.12
0.87
0.23
1.28
10.11
0.40
0.53
0.64

0.07
94.29

0.04
0.01
7.36
n/a

0.07
0.06
0.02
0.13
0.02
0.10
0.54
0.01
0.14
0.11

0.01
8.63
16.00

0.39

74.20
0.36
0.36
1.43
0.27
0.91
0.33
0.88

10.13
0.51
0.53
0.29
0.18
0.13

80.90

0.06

7.25
0.02
0.08
0.15
0.086
0.14
0.03
0.07
0.56
0.02
0.15
0.05
0.01
0.02
8.64
16.00

0.52
0.87
72.11
0.57
0.44
6.11
0.08
0.49

0.83
12.28
0.17
0.38
0.22
0.13

96.20

0.07
0.09
6.84
0.03
0.07
0.63
0.02
0.07

0.07
0.66
0.01
0.10
0.04
0.01

8.69
16.00




Manganese Oxides from USW G-4 2854, continued

W-Hollandite Pyrolusite Todorokite?
SiO, 0.62 044 037 021 099 1.19 0.46 0.63
TiO, 0.73 0.99 0.84 0.90 029 0.34 020 0.72
MnO,  70.44 63.15 64.71 65.84 87.87 88.20 77.17 69.00
Ce0, n/a - - - 0.39 087 0.56 0.29
AlLO, 0.59 120 094 090 230 084 0.51 0.48
Fe,0, 6.26 8.51 8.33 862 228 225 2.80 8.38
MgO 0.08 0.06 0.07 0.06 0.04 0.05 0.10 0.09
Cao 0.40 0.11 0.15 0.13 0.48 0.47 0.77 0.43
ZnoO - - 022 0.31 - 016 0.33 0.26
Sro 0.54 - - - 0.15 023 118 0.39
BaO 13.13 13.95 13.62 14.69 236 208 8.85 12.43
PbO 0.23 042 035 0.16 0.13 0.19 0.17 020
Na,0 0.25 0.08 0.11 - - 019 0.51 0.20
K,O 0.31 0.09 011 0.10 0.09 0.15 061 0.27
La,0, - - 012 - 0.12 0.15 - 010
WO, n/a 200 262 289 - - - 050
P,0O5 - n/a n/a n/a n/a n/a n/a n/a
Total  93.58 91.00 92.66 94.81 97.49 97.36 94.22 94.37
sit 0.09 0.06 0.05 0.03 0.12 0.14 0.06 0.09
Ti* 0.08 0.11 0.09 0.10 0.03 0.03 0.02 0.08
Mn* 6.81 641 646 6.46 7.33  7.42 719 664
ce™ n/a - - - 0.02 0.04 0.03 0.01
Al 0.10 021 016 0.15 033 0.12 0.08 0.08
Fe® 0.66 0.94 091 0.92 021 021 0.28 0.88
Mg*? 0.02 0.01 0.02 0.01 0.01  0.01 0.02 0.02
ca" 0.06 0.02 002 0.02 0.06 0.06 0.11 0.06
Zn*? - - 002 003 - 001 0.03 0.03
Sr*? 0.04 - - - 0.01 0.02 0.09 0.03
Ba* 0.72 0.80 0.77 0.82 011  0.10 047 068
Pb*? 0.01 0.02 0.01 0.01 0.00 0.01 0.01  0.01
Na"' 0.07 0.02 0.03 - - 004 0.13 0.05
K" 0.06 0.02 0.02 0.02 0.01 002 0.10 0.05
La*® - - 0.01 - 0.01  0.01 - 001
w'e nfa 0.08 0.10 0.11 - - - 002
p*s - nfa nla nla na nla nfa nla
Total 8.71 870 869 867 824 824 864 872
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

# Analyzed for but not detected: Cl, Y, and Ni
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Manganese Oxides from USW G-4 2917°

Blades Lobes
Si0O, 117 15 089 1.08 1.13 040 053 137 046 044 064 08 079 028
TiO, 033 031 061 066 0.78 049 061 168 034 034 084 160 184 025
MnO, 86.95 83.33 81.57 80.57 79.50 74.63 75.03 61.77 77.85 79.28 7449 6444 68.29 80.53
CeO, 039 035 - 033 - 0.17 - 027 037 041 029 024 - 0.20
ALO, 079 078 061 067 107 035 037 058 051 050 058 064 069 049
Fe,0, 232 293 382 365 4.05 368 399 866 291 265 479 6.03 6.15 1.31
MgO 0.08 008 006 013 0.09 0.18 017 0.16 011 010 010 010 010 012
Ca0O 018 016 023 0.27 0.25 141 133 092 079 074 054 071 066 066
NiO - - - 0.09 - - - - - - - - - -
ZnO 043 0.58 - 047 039 0.28 - 035 018 018 0.19 - - 0.16
SrO - - - 013 0.12 199 187 126 133 126 126 1.03 1.02 1.13
BaO - 018 150 172 192 451 454 677 710 734 749 760 768 850
PbO - - - 015 0.16 021 029 068 026 030 032 039 034 029
Na,0 0.12 0.17 011 0.19 - 092 073 040 057 041 038 032 037 042
K0 - - 0.15 010 0.16 136 113 072 184 166 178 165 164 178
La,0, - 0.11 - 011 0.08 019 019 014 025 019 025 012 0.16 0.20
P05 - - - - - - - - - - - - - 008
Total 92.76 90.55 89.55 90.32 89.70 90.77 90.78 85.73 94.87 95.80 93.94 8573 89.73 96.40
si* 0.15 020 0.12 014 0.15 005 007 020 006 006 009 013 011 0.04
Ti* 0.03 0.03 006 007 0.08 005 006 019 003 003 009 018 020 0.02
Mn*™ 751 739 740 730 7.24 709 709 635 717 722 696 664 669 7.32
Ce™ 0.02 0.02 - 0.02 - 0.01 - 001 002 002 001t 0.01 - 0.0
AP 0.12 0142 0.09 010 0.17 006 006 010 008 008 0.09 0.11 012 0.08
Fe** 022 028 0.38 036 040 038 041 097 029 026 049 068 066 013
Mg+2 0.01 002 0.01 003 0.02 004 003 004 002 002 002 002 002 002
Ca‘;2 0.02 002 0.03 004 0.04 021 019 015 011 010 008 011 010 0.09
Ni* - - - 0.01 - - - - - - - - - -
Zn*2  0.04 0.05 - 005 0.04 0.03 - 0.04 002 002 0.02 - - 0.02
Sr*? - - - 0.01 0.01 0.16 015 011 010 010 010 0.09 008 009
Ba*? - 0.01 008 0.09 0.10 024 024 039 037 038 040 044 043 044
Pb*? - - - 0.01 0.01 001 001 003 001 001 001 002 0.01 0.01
Na*'  0.03 004 0.03 0.05 - 025 019 012 015 010 010 009 010 0.11
K - - 0.03 0.02 0.03 024 020 014 031 028 031 031 030 030
La;3 - 0.01 - 001 0.00 0.01 001 0.01 .01 001 001 001 0.01 0.01
P* - - - - - - - - - - - - - 001
Total 8.14 818 8.22 8.28 8.27 882 873 883 876 869 876 885 882 869
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

& Analyzed for but not detected: Co
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Maganese Oxides from USW G-4 2923°

Hollandite
SiO, 1.06 1.02 112 1.02 1.1 114 097 119 1.10
TiO, 148 156 132 178 176 148 175 164 175
MnO, 65.47 6850 6593 6873 6814 66.35 6587 6853 67.77
CeO, n/a 0.37

ALO, 049 047 047 055 065 056 055 052 0.64
Fe,0, 529 508 543 522 516 506 546 494 541

MgO 0.30 010 023 026 007 027 006 0.21 0.1
Ca0 0.81 070 085 079 08 070 064 078 0.71
ZnO - 026 038 037 020 037 - - 0.21
SrO 1.19 1.12 1.41 127 0.96 1.17 1.10 135 0.99
BaO 669 696 700 712 7.21 730 737 7.80 8.11
PbO n/a n/a n/a n/a 016 n/a n/a n/a -

Na,O 0.72 0.74 089 072 070 068 065 065 069
K0 1.61 1.61 1.44 176 2.06 1.66 1.52 1.56 1.54
La,04 n/a nfa n/a n/a 019 nla n/a n/a 0.14
Total 85.11 88.12 86.47 8959 8919 86.74 8594 89.17 89.54
St 0.16 0.15 016 014 016 017 014 017 0.16
Ti* 016 017 015 019 019 016 019 0.18 0.19
Mn** 670 677 668 670 669 669 670 673 666
ce™ - - - -  nfa - - - 002
Al*? 0.09 008 008 003 011 010 010 0.09 0.1
Fe® 059 055 060 055 055 056 061 0.53 0.58
Mg+2 007 002 005 005 0.01 0.06 0.01 0.04 0.02
Ca*? 013 0.1 0143 012 012 0.1 010 012 011
Zn*? - 003 004 004 002 0.04 - - 002
sr*? 0.10 0.09 012 0140 0.08 010 009 O0.11 0.08
Ba*? 039 039 040 039 040 042 043 043 045
Pb*? n/a n/a n/a na 001 n/a n/a n/a -

Na*' 0.21 0.21 025 020 019 019 019 0.18 0.19
K" 0.30 029 027 032 037 031 029 028 0.28
La®™ nfa na nfa na 001 na na na 001
Total 8.89 8.85 893 890 892 890 885 885 887
0* 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

“Analyzed for but not detected: Cl, Y, Ni, and P
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Manganese Oxides from USW G-4 2947°

Sio,
TiO,
MnO,
CeO,
Al,O,
F3203
MgO
Ca0
NiO
Zn0
SrO
BaO
PbO
Na,O

Cryptomelane-Hollandite

0.46
0.38
81.68

0.48
1.98
0.08
0.48

0.17
0.84
3.76

0.29
3.02

0.06
94.58

0.06
0.04
7.34

0.07
0.19
0.02
0.07

0.02
0.06
0.19

0.07
0.65
0.01
8.78
16.00

0.56
0.39
81.15
n/a
0.49
2.28
0.10
0.54

0.18
0.80
4.50
0.17
0.37
3.83
0.14
0.10
95.60

0.07
0.04
7.26
n/a

0.07
0.22
0.02
0.07
0.02
0.06
0.23
0.01
0.09
0.63
0.01
0.01
8.82

0.36
0.7
83.25
n/a
0.39
1.30
0.09
0.44

0.22
0.88
4.52

0.31
4.45

0.09
06.47

0.05
0.02
7.39
n/a

0.06
0.13
0.02
0.06

0.02
0.07
0.23
0.08
0.73
0.01
8.84

16.00 16.00

0.57
0.52
75.26
n/a
0.87
2.56
0.05
0.43

0.56
4.78
0.13
0.27
4.08

0.07
90.15

0.08
0.05
7.16
n/a

0.14
0.27
0.01
0.06

0.04
0.26
0.00
0.07
0.72

0.01
8.88
16.00

0.81
0.73
69.43
n/a
0.86
3.33
0.12
0.63

0.7
4.90

0.26
3.44
0.09
0.13
856.44

0.12
0.08
6.98
n/a

0.15
0.36
0.03
0.10

0.06
0.28

0.07
0.64
0.00
0.02
8.89
16.00

0.42
0.24
83.50

0.32
215

0.63

0.22
1.04
4.98
n/a
0.39
3.61
n/a
n/a
97.50

0.05
0.02
7.35

0.05
0.21

0.09

0.02
0.08
0.25
n/a
0.10
0.59
n/a
n/a
8.79
16.00

0.79
0.44
78.62
n/a
0.60
3.00
0.13
0.65

0.93
5.03

0.34
3.49

94.02

0.10
0.04
7.17
n/a

0.09
0.30
0.03
0.09

0.07
0.26
0.09
0.59
8.83
16.00

0.58
0.36
83.15

0.52
2.86
0.13
0.59

0.22
1.22
5.09
n/a
0.39
3.43
n/a
n/a
98.54

0.07
0.03
7.24

0.08
0.27
0.02
0.08

0.02
0.08
025
n/a
0.10
0.55
n/a
n/a
8.80
16.00

0.36
0.17
83.46
n/a
0.40
1.65
0.08
0.52

0.88
5.14

0.36
3.66

0.08
96.76

0.05
0.02
7.39
n/a

0.06
0.16
0.02
0.07

0.07
0.26
0.09
0.60
0.01
8.77
16.00

0.55
0.40
82.01

0.26
2.31
0.08
0.71

1.13
5.17
n/a
0.42
3.22
n/a
n/a
96.26

0.07
0.04
7.30

0.04
0.22
0.02
0.10

0.08
0.26
n/a
0.10
0.53
n/a
n/a
8.77
16.00

0.47
0.32
80.58

0.36
227
0.16
0.71

1.17
5.26
n/a
0.42
3.61
n/a
n/a
95.33

0.06
0.03
7.28

0.06
0.22
0.03
0.10

0.09
0.27
n/a
0.1
0.60
n/a
n/a
8.85
16.00

0.42
0.15
80.31

0.35
1.97
0.22
0.62

1.17
537
n/a
0.45
3.59
n/a
n/a
94.62

0.06
0.01
7.31

0.06
0.20
0.04
0.09

0.09
0.28
n/a
0.1
0.60
n/a
n/a
8.85
16.00

0.50
0.31
82.68

0.38
210
0.10
063

0.97
5.38
n/a
0.48
3.57
n/a
n/a
97.10

0.06
0.03
7.31

0.06
0.20
0.02
0.09

0.07
0.27
n/a
0.12
0.58
n/a
n/a
8.81
16.00




Manganese Oxides from USW G-4 2947, continued

Cryptomelane-Hollandite

Sio, 0.52
TiO, 0.35
MnO,  80.20
Ce0, -

AlLO, 0.38
Fe,0; 251
MgO 0.15
Ca0 0.65
NiO -

Zn0C -

Sro 0.96
BaO 5.39
PbO -

Na,O 0.45
K,O 2.97
La, 05 0.14
P,0s 0.17
Total 04.84
si* 0.07
Ti* 0.03
Mn*: 7.25
Ce" -

Al*® 0.06
Fe*? 0.25
Mg*? 0.03
Ca';z 0.09
Ni* -

Zn+2 _

Sr*? 0.07
Ba’z 0.28
Pb* -

Na*' 0.11
K 0.50
La;'a 0.01
p* 0.02
Total 8.77
0 16.00

047
0.39
82.02

0.42
240
0.09
0.73

1.18
540
n/a
042
3.49
n/a
n/a
97.01

0.06
0.04
7.27

0.06
0.23
0.02
0.10

0.09
0.27
n/a
0.10
0.57
n/a
n/a
8.82
16.00

0.53
0.24
82.20
n/a
0.40
1.99
0.10

0.64

0.81
5.46

0.33
3.63
0.16
0.16
96.65

0.07
0.02
7.30
n/a

0.06
0.19
0.02
0.09

0.06
0.27

0.08
0.60
0.01
0.02
8.79
16.00

0.34
0.1
83.10

0.33
1.45
0.06
0.56

1.21
5.47
n/a
0.38
3.69
n/a
n/a
96.70

0.04
0.01
7.40

0.05
0.14
0.01
0.08

0.09
0.28
n/a
0.09
0.61
n/a
n/a
8.80
16.00

0.45
0.18
81.98
nfa
0.43
2.03
0.13
0.56

0.24
0.81
5.51

0.37
3.60

0.13
96.42

0.06
0.02
7.31
n/a

0.07
0.20
0.02
0.08

0.02
0.06
0.28

0.09
0.59
0.01
8.81
16.00

0.50
0.12
80.93
n/a
0.39
1.99
0.07
0.58

0.78
5.54

0.39
3.67

0.12
95.08

0.07
0.01
7.32
n/a

0.06
0.20
0.01
0.08

0.06
0.28
0.10
0.61
0.01
8.81
16.00

87

0.56
0.21
79.14
n/a
0.36
2.39
0.12
0.69

0.18
0.91
5.62

0.39
3.19
0.12
0.15
94.03

0.07
0.02
7.25
n/a

0.06
0.24
0.02
0.10

0.02
0.07
0.29
0.10
0.54
0.01
0.02

8.80
16.00

1.03
0.79
68.20
n/a
0.75
4.50
0.10
0.72

0.85
5.63

0.31
2.44
0.15

85.47

0.15
0.09
6.89
nfa

0.13
0.49
0.02
0.1

0.07
0.32
0.09
0.45
0.01
8.83
16.00

0.52
0.26
81.54

0.38
1.83
0.10
0.61

1.18
5.63
n/a
0.47
3.54
n/a
n/a
96.16

0.07
0.03
7.31

0.06
0.19
0.02
0.08

0.09
0.29
n/a
0.12
0.59
n/a
n/a
8.83
16.00

0.54
0.21
81.42
n/a
0.37
2.00
0.10
0.61

0.78
5.65

0.34
3.20
0.10
0.16
95.48

0.07
0.02
7.31
n/a

0.06
0.20
0.02
0.08

0.06
0.29

0.09
0.53
0.00
0.02
8.75
16.00

0.52
0.28
81.35
n/a
0.53
2.26
0.18
0.70

1.00
5.65

0.51
2.7
0.11

95.80

0.07
0.03
7.28
n/a

0.08
0.22
0.03
0.10

0.08
0.29
0.13
0.45
0.01
8.76
16.00

0.94
1.06
72.95

0.65
4.49
0.20
0.94

0.84
5.66
n/a
0.40
2.47
n/a
n/a
90.60

0.13
0.1
6.92

0.1
0.46
0.04
0.14

0.07
0.30
n/a
0.11
0.43
n/a
n/a
8.82
16.00

1.06
0.79
68.61
n/a
0.74
4.36
0.13
0.81

0.19
0.78
5.68

0.28
2.70
0.10
0.22
86.44

0.15
0.09
6.85
n/a

0.13
0.47
0.03
0.13

0.02
0.07
0.32

0.08
0.50
0.01
0.03
8.86
16.00




Manganese Oxides from USW G-4 2947, continued

Cryptomelane-Hollandite

SiO, 0.59
TiO, 0.43
MnO, 77.27
CeO, n/a

AlLO; 0.65
Fe,0s 2.59
MgO 0.11
Ca0 0.63
NiO -

Zn0O 0.15
Sro 0.78
BaO 5.81
PbO -

Na,0 0.26
K,O 3.08
La,0, 0.14
P,Os -

Total 92.49
Si* 0.08
Tit 0.04
Mn** 7.20
ce* nla

Al 0.10
Fe"sz 0.26
Mg* 0.02
Ca’;2 0.09
Ni* -

Zn*? 0.01
Sr*? 0.06
Ba*z 0.31
Pb* -

Na*' 0.07
K 0.53
Lgs*a 0.01
P -

Total 8.79
o? 16.00

0.95
0.85
71.23
0.19
0.67
4.03
0.37
0.85

0.66
5.85

0.34
1.86

0.19
88.04

0.13
0.09
6.94
0.01
0.1
0.43
0.08
0.13

0.05
0.32
0.09
0.33
0.02
8.74
16.00

0.57
0.24
79.64
nfa
0.41
2.36
0.12
0.62

0.84
6.10

0.34
3.25

0.09
9458

0.08
0.02
7.26
n/a

0.06
0.23
0.02
0.09

0.06
0.32
0.09
0.556
0.01
8.79
16.00

0.74
0.31
80.41

0.42
2.67
0.19
0.72

0.30
1.32
6.12
n/a
0.40
2.79
n/a
n/a
96.39

0.10
0.03
7.20

0.06
0.26
0.04
0.10

0.03
0.10
0.31
n/a
0.10
0.46
n/a
n/a
8.79
16.00

0.53
0.27
76.34
0.27
0.44
2.27
0.13
0.63
0.20

0.92
6.20

0.33
1.89
0.16
0.14
80.71

0.07
0.03
7.25
0.01
0.07
0.23
0.03
0.09
0.02

0.07
0.33

0.09
0.33
0.01
0.02
8.66
16.00

0.51
0.34
79.04

0.37
243
0.10
0.78

1.27
6.21
n/a
0.42
3.02
n/a
n/a
94 .49

0.07
0.03
7.24

0.06
0.24
0.02
0.1

0.10
0.32
n/a
0.11
0.51
n/a
n/a
8.81
16.00

0.97
0.83
71.99
n/a
0.47
5.77
0.58
1.40

0.20
1.08
6.35

0.46
1.23
0.1
0.09
91.53

0.13
0.08
6.80
n/a

0.08
0.59
0.12
0.20

0.02
0.09
0.34

0.12
0.21
0.01
0.01
8.80
16.00

0.59
0.22
79.34
n/a
0.43
2.26
0.13
0.68

0.28
0.92
6.50

0.38
277
0.09
0.20
94.79

0.08
0.02
7.23
n/a

0.07
0.22
0.03
0.10

0.03
0.07
0.34

0.10
047
0.00
0.02
8.77
16.00

0.89
0.28
75.62
n/a
0.63
3.61
0.26
1.34

0.21
1.14
6.58

0.79
0.49
0.22

92.07

0.12
0.03
7.07
n/a

0.10
0.37
0.05
0.19

0.02
0.09
0.35

0.21
0.08
0.01
8.69
16.00

0.53
0.32
77.00

0.72
1.64
0.16
1.09

1.1¢
8.32
n/a
0.47
0.48
n/a
n/a
91.91

0.07
0.03
7.26

0.12
0.147
0.03
0.16

0.09
0.45
n/a
0.12
0.08
n/a
n/a
8.59
16.00

0.55
0.48
77.06

0.60
1.94
c.21
1.16

1.21
9.60
n/a
0.58
0.47
n/a
n/a
93.86

0.07
0.05
7.19

0.10
0.20
0.04
0.17

0.09
0.51
n/a
0.15
0.08
n/a
nfa
8.65
16.00

0.56
0.64
77.73

0.54
2.44
0.25
1.26
0.12
0.41
1.61
9.75
n/a
0.64
0.49
n/a
n/a
96.44

0.07
0.06
7.10

0.08
0.24
0.05
0.18
0.01
0.04
0.12
0.51
n/a
0.16
0.08
n/a
n/a
8.72
16.00

? Analyzed for but not detected: ClandY




Manganese Oxides from USW G-4 2954-2955%

Cryptomelane-Hollandite +/- Todorokite

SiO, 0.09
TiO, -

MnO, 76.31
CeO, n/a

ALO, 0.11
Fe,O, 1.33
MgO 2.69
Ca0o 1.20
ZnO 0.15
Sro 0.95
BaO 3.04
PbO -

Na,0 1.55
K,O 0.18
La,O, -

Total 87.60
Si“: 0.01
Ti* -

Mn** 7.27
Ce** n/a

Al 0.02
Fe*? 0.14
Mg*? 0.55
Ca*? 0.18
Zn*? 0.02
Sr*? 0.08
Ba*z 0.16
Pb* -

Na*' 0.41
K”3 0.03
La* -

Total 8.87
0? 16.00

0.32
0.45
82.77

0.44
2.94
0.22
0.59

1.48
3.70
n/a
0.75
3.46
n/a
97.12

0.04
0.04
7.26

0.07
0.28
0.04
0.08

0.11
0.18
n/a
0.18
0.56
n/a
8.85
16.00

0.18
0.74
77.91

0.13
1.89
2.23
1.08

1.18
3.70
n/a
1.50
0.58
n/a
91.12

0.02
0.07
7.18

0.02
0.19
0.44
0.15

0.09
0.19
n/a
0.39
0.10
n/a
8.86
16.00

0.28
0.35
79.26
n/a
0.60
2.24
0.66
0.77

1.04
3.85

1.14
2.93

93.12

0.04
0.03
7.24
n/a

0.09
0.22
0.13
0.11

0.08
0.20
0.29
0.49
8.93
16.00

0.14
0.15
78.14

0.18
1.80
2.37
1.21

0.97
3.87
n/a
1.43
0.40
n/a
90.66

0.02
0.02
7.24

0.03
0.18
0.47
0.17

0.08
0.20
n/a
0.37
0.07
n/a
8.85
16.00

0.30
0.41
75.31
n/a
0.41
2.55
0.41
0.74

1.34
4.03

0.91
2.38

88.79

0.04
0.04
7.24
n/a

0.07
0.27
0.08
0.1

0.1
0.22
0.256
0.42
8.85
16.00

89

0.31
0.62
78.79
n/a
0.93
3.32
0.31
0.59

1.27
4.03

0.75
3.04

93.96

0.04
0.06
7.15
n/a

0.14
0.33
0.06
0.08

0.10
0.21
0.19
0.51
8.87
16.00

0.17
0.17
80.96

0.17
1.69
1.73
1.17
0.22
142
4.03
n/a
1.33
0.78
n/a
93.84

0.02
0.02
7.28

0.03
0.17
0.34
0.16
0.02
0.1
0.21
n/a
0.34
0.13
n/a
8.81
16.00

0.29
76.46

0.15
2.85
1.49
1.23

1.38
4.05
n/a
1.18
0.67
n/a
89.45

0.04
7.23

0.02
0.26
0.30
0.18

0.11
0.22
n/a
0.31
0.12
n/a
8.80
16.00

0.49
0.22
76.94

0.22
460
0.78
1.42
0.23
2.08
4.07
n/a
1.23
1.02
n/a
93.30

0.06
0.02
7.05

0.03
0.46
0.15
0.20
0.02
0.16
0.21
n/a
0.32
0.17
n/a
8.86
16.00

0.34
0.51
77.96
n/a
0.55
263
0.33
0.67

1.09
4.21

0.64
2.82

91.75

0.05
0.05
7.24
n/a

0.09
0.27
0.07
0.10

0.08
022
0.17
0.48
8.81
16.00

0.20
0.21
78.69

0.14
1.96
2.18
1.20

1.15
422
n/a
1.51
0.40
n/a
91.86

0.03
0.02
7.22

0.02
0.20
0.43
0.17

0.09
0.22
n/a
0.39
0.07
n/a
8.85
16.00




Manganese Oxides from USW G-4 2954-2855, continued

Sio,
MnO,
Ce0,
Al,O5
Fe, O,
MgO
CaO
Zn0
SrO

Cryptomelane-Hollandite +/- Todorokite

0.30
0.37
73.34
n/a
0.41
2.70
0.59
0.76

1.1
4.27

0.89
2.35
87.09
0.04
0.04
7.20
n/a
0.07
0.29

0.12
0.12

0.09
0.24
0.25
043
8.88
16.00

0.39
0.67
81.03

0.62
3.58
0.20
0.35

1.03
4.28
n/a
0.53
3.75
n/a
96.43

0.05
0.06
7.18

0.09
0.35
0.04
0.05

0.08
0.22
n/a
0.13
0.61
n/a
8.86
16.00

024
0.20
78.89

0.18
2.38
1.29
1.13
0.25
1.08
443
n/a
0.97
1.28
n/a
92.32

0.03
0.02
7.25

0.03
0.24
0.26
0.16
0.02
0.08
0.23
n/a
0.25
0.22
n/a
8.80
16.00

0.84
0.45
70.26

0.52
3.54
0.22
0.85
0.16
1.33
4.51
n/a
0.58
2.41
n/a
85.67

0.12
0.05
7.04

0.08
0.39
0.05
0.13
0.02
0.11
0.26
n/a
0.16
045
n/a
8.86
16.00

0.62
0.62
71.11

0.35
4.21
0.45
0.95
0.31
1.67
4.55
n/a
0.75
1.67
n/a
87.26

0.09
0.07
7.00

0.06
0.45
0.10
0.15
0.03
0.14
0.25
n/a
0.21
0.30
n/a
8.84
16.00

0.33
0.33
78.79

0.39
2.69
0.82
0.90
0.26
1.20
4.59
n/a
0.85
2.09
n/a
93.24

0.04
0.03
7.21

0.06
0.27
0.16
0.13
0.03
0.09
0.24
n/a
0.22
0.35
n/a
8.83
16.00

0.28
0.18
79.55

0.22
1.89
1.30
1.18

1.23
4,61
n/a
1.05
1.37
n/a
92.96

0.04
0.02
7.27

0.03
0.20
0.26
0.17

0.09
0.24
n/a
0.27
0.23
n/a
8.81
16.00

0.44
0.49
74.36
n/a
0.49
2.94
0.76
1.01
0.19
0.91
463

0.78
2.05

89.05

0.06
0.05
7.13
n/a

0.08
0.31
0.16
0.15
0.02
0.07
0.25

0.21
0.36
8.85
16.00

0.31
0.30
75.71

0.35
2.78
0.90
1.00

1.3
4.65
n/a
0.99
1.75
n/a
90.05

0.04
0.03
7.18

0.06
0.29
0.18
0.15

0.10
0.25
n/a
0.26
0.31
n/a
8.86
16.00

0.37
0.41
77.58

0.41
2.71
0.92
0.93

1.20
4.71
n/a
0.86
1.71
n/a
91.81

0.05
0.04
7.20

0.06
0.27
0.18
0.13

0.09
0.25
n/a
0.22
0.29
n/a
8.80
16.00

0.34
0.60
78.24
0.21
0.52
3.01
0.50
0.80

1.02
4.76

0.63
264

93.27

0.05
0.06
7.18
0.01
0.08
0.30
0.10
0.1

0.08
0.25
0.16
0.45
8.82
16.00

0.46
0.94
69.44

0.48
428
0.07
0.37

1.19
4.78
n/a
0.47
2.90
n/a
85.38

0.07
0.10
7.02

0.08
0.47
0.02
0.06

0.10
0.27
n/a
0.13
0.54
n/a
8.87
16.00




Manganese Oxides from USW G-4 2954-2955, continued

Cryptomelane-Hollandite +/- Todorokite

Sio, 053 025 047 082 053 047 023 081 023 035 033 077
TiO, 0.37 - 087 046 035 049 019 039 014 026 036 048
MnO, 75.39 77.16 70.13 6827 7253 7206 7589 7292 7980 7465 7545 73.82
CeO, - - - - - - - - - n/a - -

AlLO; 033 017 047 033 021 033 026 034 018 0.18 034 040
Fe,0O, 347 223 444 436 398 349 224 414 243 303 322 517
MgO 102 163 008 0.81 114 114 152 072 1148 150 158 0.88
Ca0 1.11 137 037 109 142 1.11 134 122 122 128 144 154
ZnO - - - 0.25 - - - 0.26 034 0.15 - -

SrO 1.30 0.88 1.13 1.23 1.32 1.09 0.78 1.60 1.44 0.87 0.62 1.06
BaO 479 481 482 487 498 508 508 519 523 535 6.10 6.21
PbO n/a n/a n/a n/a n/a n/a 0.11 n/a n/a - - 0.14
Na,O 090 106 048 070 091 078 097 069 08 113 094 084
K,O 119 084 305 124 073 103 070 132 1068 062 041 0.81
La,03 n/a n/a n/a n/a n/a n/a - n/a n/a - - 0.11
Total 9040 90.40 86.31 8543 88.10 87.07 89.31 89.60 94.11 8837 90.79 9223
si* 007 003 007 012 007 007 003 011 003 005 0.04 010
Ti™ 0.04 - 009 005 004 005 002 004 001 003 004 005
Mn** 741 724 702 695 704 707 722 699 725 7143 710 6.90
Ce™ - - - - - - - - - n/a - -

Al 005 003 008 006 003 006 004 006 003 003 005 006
Fe* 0.36 023 048 048 042 037 023 043 024 031 033 053
Mg"2 021 033 002 018 024 024 031 015 023 031 032 0.18
Ca*? 016 020 006 017 021 017 020 018 017 019 021 022
Zn*? - - - 003 - - - 003 003 002 - -

Sr*? 010 007 009 0140 011 009 006 013 011 007 0.05 0.08
Ba*? 026 026 027 028 027 028 027 028 027 029 033 033
Pb*? n/a n/a n/a n/a n/a n/a 0.00 n/a n/a - - 0.01
Na*' 024 028 013 020 025 021 026 019 022 030 025 0.22
K" 021 015 05 023 013 019 012 023 018 011 0.07 0.14
La* n/a n/a n/a n/a n/a n/a - n/a n/a - - 0.01
Total 880 881 889 883 881 880 878 882 877 883 879 883
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

2 Analyzed for but not detected: P, Cl, Co, Cu, Y, and Ni
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Manganese Oxides from USW G-4 2967°

Cryptomelane
Sio, 052 070 116 044 030 018 043 048
TiO, 115 110 118 041 032 021 057 050
MnO, 7349 7529 69.02 7863 79.97 80.70 7441 76.76
CeO, - n/a n/a 1.81 n/a - 053 nla
AlL,O, 067 064 081 038 038 049 046 043
Fe,O, 401 415 444 275 187 178 268 272
MgO 007 010 006 038 047 030 024 025
CaO 047 042 045 089 079 073 073 071
ZnoO - 016 - 022 - 023 021 0.16
Sro 091 099 093 103 119 114 113 117
BaO 554 58 6.07 612 630 640 7.18 745
PbO - - - 035 - 021 026 025
Na,O 038 044 031 068 065 056 053 054
K,O 269 305 264 215 224 243 161 2.11
La,0, - - - - - - - 013
Total 89.90 9290 87.07 96.24 9448 0536 9097 9366
si* 0.07 0.09 017 006 004 002 006 0.06
Ti* 012 041 013 004 003 002 006 005
Mn** 704 7.00 68 713 730 733 715 7.16
Ce* - n/a na 0.08 n/a - 0.03 n/a
A 011 010 014 006 006 008 008 007
Fe* 042 042 048 027 019 018 028 0.28
Mg*? 0.01 0.02 001 007 009 006 005 0.05
Ca®? 007 006 007 013 011 010 011 0.10
Zn*? - 0.02 - 0.02 - 002 002 002
Sr*? 007 008 008 008 009 009 009 009
Ba* 030 031 034 031 033 033 039 039
Pb*? - - - 0.01 - 001 001 0.01
Na"' 010 011 009 017 017 014 014 0.14
K" 048 052 048 036 038 041 029 036
La™ - - - - - - - 0.01
Total 879 885 883 879 878 878 875 880
0? 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

® Analyzed for but not detected: Cl, Y, and Ni




