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Abstract—The state of California is leading the nation with
respect to solar energy and storage. The California Energy
Commission has mandated that starting in 2020 all new homes
must be solar powered. In 2010 the California state legislature
adopted an energy storage mandate AB 2514. This required
California's three largest utilities to contract for an additional 1.3
GW of energy storage by 2020, coming online by 2024. Therefore,
there is keen interest in the potential advantages of deploying
solar combined with energy storage. This paper formulates
the optimization problem to identify the maximum potential
revenue from pairing storage with solar and participating in
the California Independent System Operator (CAISO) day ahead
market for energy. Using the optimization formulation, five years
of historical market data (2014-2018) for 2,172 price nodes were
analyzed to identify trends and opportunities for the deployment
of solar plus storage.

I. INTRODUCTION

Energy storage is a unique grid asset in that it is able
to both source and sink electric power to the grid. This
bidirectional capability makes energy storage an extremely
flexible asset that can provide a number of grid benefits [1]—
[3]. These benefits can be categorized based on the time
scale. On a longer time scale are energy supply interactions,
where large amounts of energy are supplied or pulled from
the grid. These are often referred to as "energy" applications.
Examples include renewable energy time shift and energy
arbitrage in market areas. On the other hand, "power ap-
plications normally transpire on a much shorter time scale
and are employed to support real-time control of the electric
power grid. Examples include voltage support and small signal
stability. A summary of grid benefits, divided into energy and
power applications, appears in Table I. Since the operation
of an energy storage system often involves deciding which
service to provide at each time interval to maximize revenue
or grid benefit, it is naturally formulated as an optimization
problem.

This paper focuses on energy arbitrage and renewable
energy time shift. In a market area, the value of a grid
asset comes from participating in the market. Therefore, an
asset is only compensated for grid services for which there
is a corresponding market product. The state of California is
leading the nation with respect to solar energy and storage. The
California Energy Commission has mandated that starting in
2020 all new homes must be solar powered [4]. In 2010 the

TABLE I
SUMMARY OF ENERGY STORAGE APPLICATIONS [3].

Energy Applications Power Applications

Arbitrage

Renewable energy time shift

Demand charge reduction

Time-of-use charge reduction

T&D upgrade deferral

Grid resiliency

Frequency regulation

Voltage support

Small signal stability

Frequency droop

Synthetic inertia

Renewable capacity firming

California state legislature adopted an energy storage mandate
AB 2514 [5]. This required California's three largest utilities to
contract for an additional 1.3 GW of energy storage by 2020,
coming online by 2024. Therefore, there is keen interest in the
potential advantages of deploying solar combined with energy
storage.

This paper formulates the optimization problem to identify
the maximum potential revenue from pairing storage with
solar and participating in the California Independent System
Operator (CAISO) day ahead energy market. Five years of
historical market price data and solar irradiance data were
analyzed for 2,172 pricing nodes to identify opportunities and
trends for energy storage plus solar deployments. It should be
noted that this analysis assumes that the size of the energy
storage plus solar system is small with respect to the size of
the market and is therefore a price taker. For large systems
a production cost modeling approach must be employed to
quantify the impact on energy prices.
The paper is organized as follows. A review of the related

literature is summarized in Section II. The energy storage
and solar model are discussed in Section III. Results from
analyzing five years of CAISO price data for 2,172 nodes
are presented in Section IV. Concluding remarks are found in
Section V.

II. RELATED WORK

There has been a significant amount of work looking
at quantifying the maximum potential revenue from energy
storage participating in energy and ancillary service markets.
Modeling storage for arbitrage and frequency regulation in the
CAISO market is described in [6], arbitrage and frequency
regulation with pay-for-performance is modeled in [7], and
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arbitrage between the day ahead and real time market is
addressed in [8]. Modeling storage for arbitrage and frequency
regulation in the New York Independent System Operator
(NYISO) market is described in [9]. The revenue optimization
problem for energy storage participating in the PJM energy and
frequency regulation markets is outlined in [10]. A dynamic
programming solution to the revenue optimization problem
with a nonlinear efficiency model, typical of flow batteries, is
proposed in [11]. This includes a case study of the the potential
revenue from a Vanadium Redox Flow Battery (VRFB) system
in PJM's energy and frequency regulation market. A descrip-
tion of the market opportunities for energy storage in PJM
is summarized in [12]. The arbitrage, frequency regulation,
regional network services (RNS), forward capacity market
(FCM) and resilience value of energy storage for a municipal
light department in ISO New England appears in [13]. Revenue
opportunities for energy storage in the Southwest Power Pool
(SPP) integrated marketplace are considered in [14].

The trade-offs between ac and dc connected storage plus
solar are discussed in [15]. A discussion of the value of
energy storage plus solar for community distrubuted gener-
ation (CDG) projects in NYISO is presented in [16]. The
New York analysis did not consider charging from the grid.
An assessment of the energy storage required to meet re-
newable ramp rate limitations is discussed in [17]419]. The
contributions of this paper include formulating the revenue
optimization problem for storage plus solar participating in
an energy market as well as an in-depth analysis of CAISO
historical market data to identify trends and opportunities in
California. In this paper, the storage model is formulated to
allow charging from the grid or from solar.

III. MODELING

To evaluate the potential opportunities for energy storage
plus solar in the CAISO day ahead market, a notional 1 MW
solar plant and a 1 MW, 4 MWh energy storage system were
modeled at 2,172 CAISO price nodes. Five years (2014-2018)
of LMP price data was analyzed. The following subsections
describe in more detail the energy storage and solar modeling.

A. Energy Storage Model

The analysis in this paper employs a discrete time energy
flow model to represent the energy storage system [6]. Because
the CAISO day ahead energy market operates on an hourly
interval, the time step size, T, for the model is 1 hour. The
state of charge at time step i is given by:

si = + — q 1̀ (1)

where rls is the storage efficiency over a time period, Tic is
the conversion efficiency associated with conversion losses,
qi," is the amount of energy charged at time step i, and 4
is the amount of energy discharged at time step i. For a
typical lithium ion battery storage system, the losses over each
time step are often negligible, so a common value for 77,, is
1.0. A round trip conversion efficiency of 85-90 percent is
representative of most lithium ion energy storage systems. In

order to accommodate the storage plus solar consideration, an
additional term is added to account for the solar energy that
is used to recharge the storage system at time step i, denoted
by (IT

sa = si-1718 + (4'1; + lc — 
qd (2)

This model assumes an ac coupling between the storage
system and solar system as the conversion losses are the same
for charging from the grid or from solar. The model can be
easily modified to account for a dc coupling between the solar
and storage by using a separate conversion efficiency, n,s2s,
to model the lower conversion losses associated with a dc
coupling. This is expressed as

Si = si—ins + qInc + — q`,1 (3)

An alternative modeling formulation is to account for the
conversion losses associated with charging and discharging
independently. While this is more representative of the un-
derlying physics of an energy storage system, associating the
losses with charging has the benefit of yielding a state of
charge quantity which represents the available state of charge.
Both models are mathematically equivalent [3]. The energy
storage model parameters and values used for the analysis in
this paper are summarized in Table II.

si
ris
Tic

77s2s

q

Q

T

d

TABLE II
ENERGY STORAGE MODEL PARAMETERS.

State of charge at time step i (MWh)

1.0 Storage efficiency (percent)

0.85 Storage grid conversion efficiency (percent)

0.85 Storage solar conversion efficiency (percent)

Quantity of energy purchased from the mar-
ket at time step i for charging (MWh)

Quantity of energy charged from solar at
time step i (MWh)

Quantity of energy sold to the market (dis-
charged) at time step i (MWh)

1.0 Maximum energy that may be
charged/discharged in one time step
(MWh)

4.0 Maximum state of charge (MWh)

1.0 Model time step (hours)

B. Solar Model

The solar plant modeling was based on the publicly avail-
able PVLIB model [20]. A representative solar panel, the
Canadian Solar CS5P-220M, was selected from the Sandia
module database [20]. A representative 1 MW ABB inverter,
ABB: ULTRA-1100-TL-OUTD-2-US-690-x-y-z 690V [CEC
2013], was selected from the California Energy Commission
(CEC) inverter database. The panels were over sized for the
inverter by a factor of 1.4, which is typical for new installations
[21]. The solar array paremeters are: array azimuth = 180
degrees; array tilt = local latitude; 22 modules in series; and
350 parallel strings. The irradiance and weather parameters for
each location, dry bulb temperature, wind speed, barometric
pressure, direct normal irradiance (DNI), diffuse horizontal



irradiance (DHI), and global horizontal irradiance (GHI), were
downloaded from the National Solar Radiation Data Base [22].
The altitude for each pricing node location was downloaded
from Google Earth based on the latitude and longitude [23].
The power output of a representative solar plant is found

in Figure 1. The dc power represents the output power of the
solar panels that is the input to the inverter. The ac power
is the output power of the inverter. The clipping of the ac
power occurs because the panels are over-sized relative to the
inverter.
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Fig. 1. ENCINA_1_NO01 node solar plant dc and ac power, January 10,
2018.

The amount of solar energy generated over each time period
is defined as qr. This energy must flow to the storage system
or be sold in the market. The amount of solar energy used to
charge the storage system at each time step was previously
defined as q:. Therefore, the amount of solar energy sold in
the market at each time step is defined as

q7n, (4)

C. Optimization Formulation

Estimating the maximum potential revenue from energy
storage plus solar can be formulated as a linear program (LP)
optimization. The cost function is defined as

J = E RA, — CAid — + + ] (5)
i=

with the following financial quantities

Ai
Cd

Cr

Price of electricity (LMP) at time step i
Cost of discharging at time step i
Cost of recharging at time step i

The first term of the cost function is the revenue associated
with selling discharged energy from the energy storage system
into the market. The second term is the cost associated with
recharging by purchasing energy from the market. The last
term is the revenue associated with selling some fraction of
the solar energy into the market. The decision variables for

the revenue maximization problem, which are non-negative
quantities, are summarized in Table III.
The cost terms associated with operating the energy storage

system, Cr and Cd, can be used to model system degradation.
The most straightforward approach is to define the discharge
cost as the capital cost divided by the expected throughput
of the system. This is a simplistic approximation that allows
an LP optimization formulation. Better degradation models
involve counting cycles [24], which is often not amenable to
an LP formulation. These cost terms were not employed in
the analysis.

q7.

qi

TABLE III
SUMMARY OF DECISION VARIABLES.

Quantity of energy purchased from the mar-
ket at time step i for charging (MWh)

Quantity of energy charged from solar at
time step i (MWh)

Quantity of energy sold to the market (dis-
charged) at time step i (MWh)

The constraints associated with the optimization formulation
include limits on the energy storage state of charge,

0 < si < S (6)

limits on the energy storage dispatch at each time interval,
including the solar energy that is used for charging,

0 < (t: q`,1 < Q (7)

and the solar energy used for charging must always be less
than or equal to the solar generation.

q: < qr (8)

It should be noted that this formulation assumes that the solar
inverter power rating is the same as the energy storage inverter
power rating. This assumption is easily relaxed if necessary.

IV. CAISO RESULTS

In order to assess the opportunity for energy storage plus so-
lar in the CAISO day ahead market, five years (2014-2018) of
CAISO market data for 2,172 nodes combined with irradiance
data for those locations were analyzed for a notional storage
plus solar system. The model assumes perfect foresight which
yields an upper bound to the maximum potential revenue.
The optimization problem was formulated using the Pyomo
optimization framework [25]. The distribution of average an-
nual additional revenue provided from pairing energy storage
with solar is presented in Figure 2. This is defined as the
revenue from solar plus storage minus the revenue from solar
alone. The geographic distribution of average annual solar
plus storage revenue is illustrated in Figure 3. The geographic
distribution of additional revenue provided from pairing energy
storage with solar is found in Figure 4.

In order to quantify the trend in benefit of combining energy
storage with solar in CAISO, a linear regression model was
fitted to the additional revenue enabled by energy storage.

AR(t) = AR0 + Kt (9)



The additional revenue, AR(t) is a function of a constant,
AR0, plus a term multiplying the time in years. The K
term from the regression provides an estimate of the trend.
The coefficient of determination, or R2, is sometimes used
as a crude measure of the strength of a relationship fit by
least squares [26]. R2 is the proportion of the variance in
the dependent variable, AR(t), that is predictable from the
independent variable t [26]. The coefficient of determination
is defined as:

R2 = 1 —
S2

(10)

where Se2 is the variance of the residuals from the fit and
S2 is the variance of the dependent variable. An R2 of 0.5
implies that 50% of the variability of the dependent variable
has been accounted for by the model. Regression results for
representative nodes are illustrated in Figure 5. It should be
noted that because of the definition of R2, a horizontal slope
will have an R2 = O. Summary results for the trend appear in
Figure 6. Results are only shown for nodes with an R2 > 0.5.
Of the nodes with an R2 > 0.5, the median R2 value is 0.72.
2079 of 2172 nodes meet this criterion.
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Fig. 2. Distribution of average annual revenue from solar, 2014-2018.

V. CONCLUSION

This paper presents the optimization formulation to estimate
the maximum potential revenue from pairing solar generation
with energy storage and participating in an energy market.
Using a notional 1MW solar plant model and a 1 MW, 4MWh
energy storage model, five years of CAISO historical day
ahead market data and irradiance data were employed to esti-
mate opportunities for energy storage plus solar in California.
Based on the results, the additional revenue provided from
energy storage is probably not enough to justify an investment
given current storage capital costs. However, this analysis only
considered one value stream - participation in the day ahead
energy market. Additional value streams such as frequency
regulation and participating in the real time energy market
might provide additional revenue. In addition, the analysis
identified a clear trend in the value created by pairing energy

2014-2018 average annual DAM revenue
from solar + storage ($K)
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Fig. 3. Average annual solar plus storage revenue, 2014-2018.
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Fig. 4. Average annual additional DAM revenue from storage, 2014-2018.
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Fig. 5. Representative regression results for additional revenue from energy
storage in the day-ahead market, 2014-2018. Node: ALAMT5G_7_B 1, R2
= 0.80, slope = $13,893/year; Node: LMECST1_7_B 1, R2 = 0.50, slope =
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Fig. 6. Annual additional DAM revenue from storage trend, 2014-2018 (2079
of 2172 nodes with R2 > 0.5).

storage with solar. This is likely caused by the increasing
penetration of solar and the associated downward pressure
on energy prices. If this trend continues, the value of energy
storage to solar will only continue to increase.

Future research areas include estimating maximum potential
revenue from participating in additional markets: the real
time energy market, the frequency regulation market, and
the ramping product market. In addition, further research is
required to develop accurate market price forecasts to harvest
a large fraction of the maximum potential revenue when
providing multiple grid services.
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