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rhamphotheca
(keratin)

foam layer

bony layer

rhamphotheca

Lee, N., et al., Hierarchical multiscale structure-property
relationships of the red-bellied woodpecker (Melanerpes
carolinus) beak. 2014. 11(96): p. 20140274.



Goals

Obj ective

Create a metamaterial that can dissipate repeated mechanical energy input.

Questions to answer

What is the effect of adding a friction element into a metamaterial?

How does the constitutive material affect energy dissipation?

Do scaling laws exists?

Measures of success

High energy dissipation to volume ratios are preferred

Minimize non-repeatable effects during loading (eg. Plastic deformation)

Maximize energy dissipation per unit of elastic energy storage during loading
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Fabrication

Fabricated unit cells in 3 different materials.

2 Different scales

Polymer

Material Jetting

VeraWhite on an
Objet 3d Printer

316L

Powder Bed Fusion

3D Systems ProX 200

Polymer

Two photon lithography

Nanoscribe Photonic
Professional GT
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Testing

Challenges
Preventing the gap between the surfaces
from fusing during printing

Straining the unit cell sufficiently to engage
the surfaces but not damage the cell.

Testing
Load and Unload single unit cell (both
friction and open)

Cycle loaded the metal unit cell
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Results Polymers
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Single Cycle
t = 0.35

— Friction Unit Cell

Energy Friction = 28.13 mJ

— Open Unit Cell

Energy Open = 1.07 rnJ

0,2 0.4 0.6

Displacement fmm]

100 Cycles

Cycling of Metal Friction UC t = 0.42

100th cycle

20 1 1st cycle

0 0.1 0.2 0.3 0.4 0.5 0.6

Displacement (5) [mm]
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Metamaterial cyclical loading
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Metrics (I)

R = 
EFrictionCell

WOpenCell

EFrictionCell is energy lost to friction

WOpenCell is the energy required to load the open cell.

R tell us how much energy is dissipated per energy to
load the unit cell.
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Cycling of Metal Friction UC t = 0.42
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The unit cell strain
hardens and becomes
stiffer.

ie. Slope becomes greater

Friction Hystersis and R as a Function of Cycle
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R = 
EFrictionCell

WOpenCell

EFrictionCell increased

WOpenCell decreased

Therefore R increased

Decrease in work
required to load unit

cell



Extreme temperature Test

Other materials absorb energy as
well (like rubber)

These materials are limited in
their operational range.

Cycled the metal unit cell at -
100C and 300C

200
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— 100
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Cycling Metal UC. Hot and Cold Test
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Friction Hystersis and R as a Function of Cycle
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Metrics (2)

Different materials and different strains were used. So, we need a metric which takes these into
account.

=
EFrictionCell EOpenCell

VE2

EFrictionCell is energy lost to friction

EOpenCell is the energy lost while loading of the open cell

V is volume

E is strain

y tell us how much energy is dissipated per unit volume
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Analytical model of y

Assuming linear elastic properties

Derive y in 15 steps, you get

y —

Reduces to

V73EImuitE2vv3(2L cos(60 + 
2/1 

l(sin(2a) tan(a))

9/12 (Imuita
3 — a3 + u3)tan(a)

y = ZcEmod

Shape and friction coefficient
Elastic Modulus
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Tradeoffs in design

Zero plastic deformation

Minimal energy stored elastic
energy

High frictional energy
dissipation

FEA used to model the plastic
deformation, and frictional
energy.

Metal Unit Cell (t = 0.35)

_ • FEA Open Hex

15 - Experimental Open Hex
• FEA Friction Unit Cell, p = 0

0-
6 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Displacement (5)
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Metal Unit Cell (t = 0.35)

Experimental Friction Unit Cell
80 -A- AnalytIcal, p = 0.7

FEA FrIctlon p = 0.7 (Loading only)

60

w 40

20

0
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Potential Application:Vibration Absorber

Dissipating energy at the resonant frequency of some object.

Will the internal vibration modes of the legs cause them to hit the middle arrow rather than
slide to dissipate energy?

a)
103.73 Hz 268.59 Hz

c)
884.54 Hz High amp

Low amp
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Conclusion

Columbic metamaterials show potential
to dissipate mechanical energy in a
wide variety of environments.

The designs can be customized for an
particular application

Size

Material

Topology

Shape

a) b) c)

lamos
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Backup slides
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Dimensions

Material
q
2

1— sa,
0
 (degrees) 

c

a
 (degrees) 

0_

q
2

Macro-polymer
0.5 11.55 2.92 30 0.45 10.85 63.43 8

1 11.55 2.92 30 0.45 10.85 63.43 8

Micro-polymer 0.01 0.14 0.035 30 0.0125 0.136 63.43 0.1

Metallic 0.35 11.55 2.92 30 0.45 10.85 63.43 8

Lattice With 15 Unit Cells

Macro-polymer
Lattice

0.5 11.55 2.92 30 0.45 10.85 63.43



Table 2 (Results)

Material

Side
Wall

Width, t
(mm)

Hex
Edged
Length,
L (mm)

Hex
Depth,
d (mm)

Unit Cell
Volume,
V (mm.3)

Energy
Dissipated
in Friction
Unit Cell
(mJ)

Macro-
polymer

0.50 11.55 8 2946 0.23

1.0 11.55 8 2946 0.76

Micro-
polymer

0.01 0.14 0.1 0.0051 0.00025

Metallic 0.35 11.55 8 2946 14.2

15-Cell Macro-polymer Latticea

Macro-
polymer
Lattice

0.50 11.55 32 11784 2.57a

Dissipation
Factor, R (-)

1.421

0.581

1.619

3.189

0.580a
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Specific
Energy
from

Frictional
Element,
y (Pa)

4.173E+04

9.783E+04

5.150E+05

5.157E+06

2.998E+06a


