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Motivation

• Eventually, we want: Circuits _>

• Now, we want: Circuits

Quantum
Computer

Quantum
Computer

VI Solutions to problems we
couldn't solve before.

F..
Information telling me how
good this quantum computer
is and maybe how to make it
better.
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What circuits do you run?
How to you analyze the data?

There are two broad types of analysis you can run.

ð
Benchmarkincj 
Answers: How well is this device
working, often in an overall sense?
• Randomized benchmarking (RB)
• Direct RB
• Cycle benchmarking
• Mirror RB
# circuits: typically a qubit-independent
"base" times a number of benchmarks
performed.

%
Model-based characterization 
Answers: What is a predictive error model
that can be used to explain this device's
behavior.
• Gate set tomography (GST)
• General modeling (this talk!)
# circuits: proportional to the number of
parameters in your model.

Modeling is not necessarily more expensive than benchmarking
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Model-based characterization
• How it works:

• Given a parameterized model that predicts circuit outcome probabilities, find
the parameters that result in the best fit between the model and some data.

Optimize 13 (vector of parameters)

Circuit
outcome

probabilities
1M
Fits?
Pr

Modeltri 1
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• Compute the amount of unmodeled-error-per-gate "whatever else is wrong this this thing"
A on a per-gate basis

Model(fibest)

Modeled behavior Unmodeled error

QPU Behavior

• Models can be nested, creating an "onion"



Nested models

r ..... ... ..„. S./.1••••••••••••14.1 •
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Depolarizing-noise

Gate-independent depolarizing noise
•

: (lots of other "layers")

Gates as CPTP maps (domain of Standard GST)

Non-markovian noise (e.g. time-dependent gates)

7



Case study: 2-qubit processor w/physical noise
• Simple noise model including a mix of stochastic and coherent noise, with noise

concentrated on 2-qubit gate coherent errors.

• We'll start by running standard (Clifford) RB: 120 circuits x 10,000 repetitions
1

S
u
c
c
e
s
s
 P
ro
ba
bi
li
ty
 

0.9

0.8

0.7

0.6

0.5

o

- RB fit

• data

:

5 10 15 20 25 30

Depth (number of Cliffords)

RB number r = 0.029
(average error per Clifford)

Sandia
National
Laboratories



2Q processor w/physical noise: reformat RB data
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2Q processor: Depolarizing model, RB data
Construct a depolarizing-noise m
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t the success probabilities?
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Perr

gate parameter (not counting SPAM)

N, = 603

eU1LLCU pruuduillLy

Overall results

Perr = 0.03

Modeled

W = 3.1 x 10-3

Un-modeled

10-1 10-2 10-3 10-4 to-, 10-6

What do we do now? 
1. Call it good enough ©

2. Improve the model y Independent-gate depolarizing model
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2Q processor: Gate-indep. depol. model, RB data
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What do we do now? 
< 1. Call it good enough ©

2. Improve the model Independent-Pauli-stochastic-error model

XTE: 0
, 2 ,

YTE: 0
s. 2 

XTE: 1
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YTE: 1
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CNOT: 0,1

, 
P

X:0 ,Y:0 , 
P

X:1 , 
P

Y:1 ,CNOT
Perr err Perr err err

Np= 5 gate parameters

Na = 529

Overall results

Modeled

W = 2.5 x 10-3
Un-modeled

10-1 10-2 i0-3 10-6



2Q processor: Pauli-stochastic model, RB data
1
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1. Call it good enough ©
What do we do now? 2. Improve the model NŒ = 13

3. Do a harder test Test a set of 400 Rabi-like sequences

X7r: 1
2 J

Ym: 1
1/4, 2 „

1

Sandia
National
Laboratories

CNOT: 0,1

fr,2p.01 frIY:01. I-, X:1} Y:1} CNOT
trPi (Vpi (PPi i J.

(Pi = (X, Y, Z}) (Qi = {IX, IY, ... , ZZ})

N = 27 gate parameters

Overall results

1 W = 3.5 x 10-4

Un-modeled

10-1 10-2 10-3 10-4 to-, 10-6

Modeled



2Q processor: Depolarizing model, Rabi data

Depolarizing-noise model
0.2

0.15

Compared with the RB data

0.1 (that this model was fit to) 0.1

0.05

.0o
o.

0
-0.05

-0.1
0.5

Predicted probability

•

•

0.05

:a
.0
o

-2

0
-0.05

-0.1

-0.15

Compared with

Rabi data

•

•
•

•

4

-0.2 
0 0.5 1

Predicted probability

Sandia
National
Laboratories

N, = 1988



2Q processor: Gate-indep. depol. model, Rabi data

Gate-independent depolarizing noise
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2Q processor: Pauli-stochastic model, Rabi data

Pauli-stochastic noise
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N, = 735

1. Call it good enough ©

2. Improve the model y Local coherent & stochastic noise model



2Q processor w/physical noise (cont.)

• Coherent and Pauli-stochastic errors

Stochastic

Coherent

Xn: 0
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1
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2 ,

1
CNOT: 0,1

fpk01. fmcrT1
lrri J i l-rt. tr "-.1 1
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(Pi = (X, Y, Z}) (Qi= (IX, IY,...,ZZ})

Np=54 gate parameters

0.04

_o
(0 0.02

os_

-o
cu
I— —0.02
cu

O —0.04

0.5

Predicted probability

Overall results
W = 0

Modeled
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What about RB data, does this model work for random circuits?
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2Q processor w/physical noise (cont.)
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Overall results

w = 5 8 x 10-6

10-1 10-2 10-3 10-4
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Recap: what we did and how much it cost

/to

Test 1: Execute 120 RB circuits & do RB

How does the best depolarizing-noise
model (Np=1) describe the RB data? STOP

lir Not well enough, expand model

How does the best ,-te-indepenu—,
Jepolarizing noise model (Np=5)
describe the RB data?

How does the best Pauli-stochastic
model (Np=27) describe the RB data?

How does the Coherent + Pauli-
-,tochastic model describe the RB
data (no re-fitting)?

.l9 Well enough, STOP running tests

Well enough,
try another test

Test 2: Execute 400 Rabi circuits

How do _ models describe
the Rabi data (no re-fitting)?

ir Not well enough, expand model

[ How does the best Conerent +
Pauli-stochastic noise model
(Np=54) describe the Rabi data?

Very well, check with past test
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It, s easy, using
pyGSTi 0.9.9
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Conclusions
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■ Model-based characterization can be a powerful tool in understanding a quantum
processor.

■ Models predict behavior and give insight into noise processes.

■ Un-modelable behavior can be quantified.

■ Not as cost-prohibitive as you might think: # of circuits scales with model parameters, and
so can be small, and any circuits can be used. Can be done with more qubits, limited by
model complexity (# parameters) and circuit simulate-ability.

■ Customizable, e.g. physics-informed models.

■ Interesting asides illustrated by our example:

■ Depolarizing noise model derived from RB does not predict RB data to statistical
precision.

■ Scatter in RB data does not imply coherent noise.

■ RB data is sufficient to construct a stochastic-noise model (at least in some cases).



SAME FOR 1K SAMPLES (EXTRA)
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Case study: 2-qubit processor w/physical noise
■ Simple noise model including a mix of stochastic and coherent noise, with

noise concentrated on 2-qubit gate coherent errors.

■ We'll start by running standard (Clifford) RB:
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2Q processor w/physical noise (cont.)
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2Q processor w/phvsical noise (cont.)
Construct a depolz
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What do we do now
1. Call it good enough ©

2. Improve the model 1=> Independent-gate depolarizing model

predict the success probabilities?
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[177:1 CNOT:0,1
2 

1 gate parameter (not counting SPAM)

Results 
• model doesn't explain

data (Nu = 62)
• But it's not bad: W = 0.2%
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2Q processor w/physical noise (cont.)
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CNOT: 0,1 

, 
P

X:0 ,Y:0 , 
P

X:1 , 
P

Y:1 ,CNOT
Perr err Perr err err

5 gate parameters

Results 
• model doesn't explain

data (Nu = 54)
• But it's not bad: W = 0.1%

(better than depol. model)

Independent-Pauli-stochastic-error model
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2Q processor w/physical noise (cont.)
1
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CNOT:0,1

1
X:01 fr, Y:01 

• 
uX:11 

i 
u 
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i uQ 
f,CNOT

t-ip• -ip• -/•
t t 

(Pi = (X, Y, Z}) (Qi = {IX, IY,..., ZZ})

27 gate parameters

Results 
• Does explain data (Nu = 1)
• W = 0

1. Call it good enough ©
2. Try to predict more data / do 

a harder test 
F_I> 

What about Rabi-like sequences?



2Q processor w/physical noise (cont.)
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2Q processor w/physical noise (cont.)
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2Q processor w/physical noise (cont.)
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Call it good enough ©

Expand model Mi> Local coherent & stochastic noise model



2Q processor w/physical noise (cont.)

• Pauli-coherent and stochastic errors

Stochastic

Hamiltonian
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2Q processor w/physical noise (cont.)
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