
1 Integrating Physics through Constrained Machine Learning Loss

Charlie Vollmer, Matt Martinez,J. Derek Tucker, Ed Jimenez, Reese Davies, Gabriella Dalton

Problem:

Material Classification using
hyperspectral-computed tomography
(H-CT)

Simulated H-CT Scans
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Simulation of data set of difficult to identify materials.
• Water
• Hydrogen peroxide
• Diluted hydrogen peroxide
• Explosive
• Shielded -vs- non-Shielded conditions

Data simulated using Particle and Heavy lon Transport code
System (PHITS).

Current Work:

Neural Networks and Functional Data Analysis (FDA)
perform material classification on simulated data.

fda: Using a metric
that has physical
interpretation
enables us to
measure similarity
between curves of
different material
types.

(Fisher-Rao on
squared-velocity
space)
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Can we take H-CT scans of materials and
accurately deduce what they are?
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Convolutional Neural Net (CNN)
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Deep Neural Net (DNN)
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Can we improve models by penalizing predictions that don't agree with
theory: utilizing the energy dimension available in HC-T?
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Take measurements on real materials and integrate simulated attenuation curves using distance-based
loss function that encourages classification models to penalize deviance from scientific theory.

d(y 5)) + AL a (x), (x1 7))
`data-driven loss"science-driven loss'

y, y - true/predicted label
(x), (x15) - true/predicted attenuation curve
- penalty for prediction deviating from theory
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